Tree Pattern Rewriting Systems

B. Genest[◊] A. Muscholl[♠] O. Serre[♣] M. Zeitoun[♠]

 $^{\diamond}$ IRISA, Univ. Rennes 1 & CNRS

▲LaBRI, Univ. Bordeaux & CNRS

*LIAFA, Univ. Paris 7 & CNRS. Deserves credit for the slides!

ACTS, Chennai, 2009/31/1

2 Tree rewriting systems: patterns and queries

Verification problems

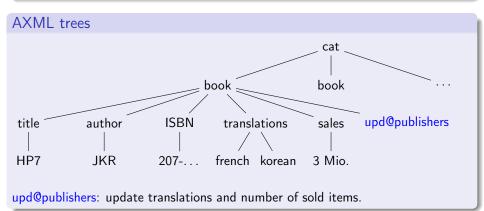
Tree rewriting systems: patterns and queries

3 Verification problems

ACTIVE DOCUMENTS [ABITEBOUL & CO]

Document trees

- XML: unranked, unordered, (finitely) labelled finite trees.
- Active XML (AXML): extended by service nodes. Implicit data representation



Objectives

Capture Service Calls

- Query information on a document tree on given peer (example: service upd on peer publishers),
- Add query result (= forest) to the original tree at a designated node (materialization of service call).

Objectives

Capture Service Calls

- Query information on a document tree on given peer (example: service upd on peer publishers),
- Add query result (= forest) to the original tree at a designated node (materialization of service call).

Remark

- We consider here wlog. a single peer (i.e., a single document tree).
- Query result may contain itself service nodes (recursion). Order in which services are called can be relevant.

Objectives

Capture Service Calls

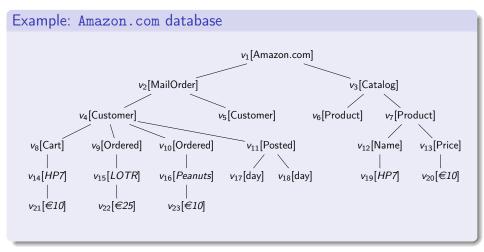
- Query information on a document tree on given peer (example: service upd on peer publishers),
- Add query result (= forest) to the original tree at a designated node (materialization of service call).

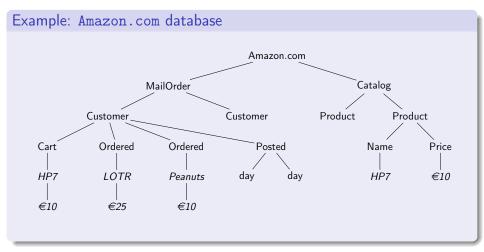
Remark

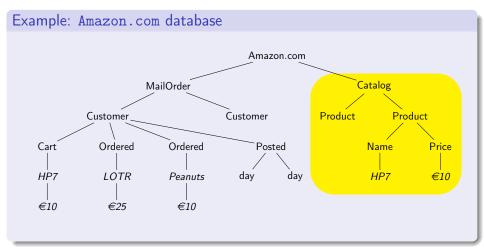
- We consider here wlog. a single peer (i.e., a single document tree).
- Query result may contain itself service nodes (recursion). Order in which services are called can be relevant.

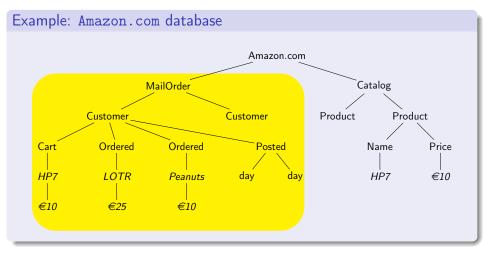
Examples of properties to verify

- Termination: is there an infinite sequence of service calls?
- Reachability: given documents d_1, d_2 , can d_2 be reached from d_1 ?

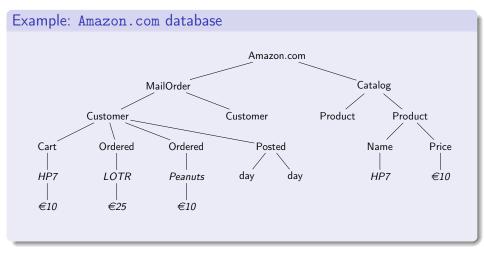






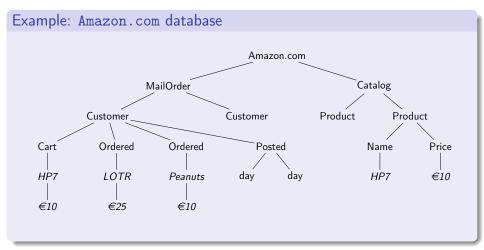


Tree document: unranked, unordered, (finitely) labelled tree.



Order service on Amazon.com: (add-product + delete-product)*checkout.

Tree document: unranked, unordered, (finitely) labelled tree.

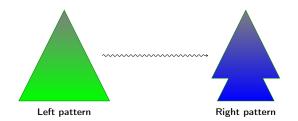


Examples of actions to model: add a new customer, add a product to the cart of a customer, delete a product from the cart...

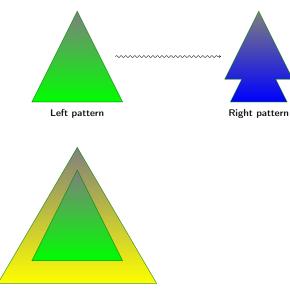
2 Tree rewriting systems: patterns and queries

3 Verification problems

TREE REWRITING RULES: INFORMAL DESCRIPTION

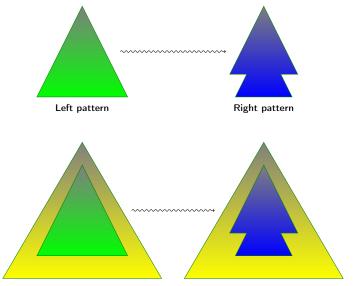


TREE REWRITING RULES: INFORMAL DESCRIPTION



Document tree

TREE REWRITING RULES: INFORMAL DESCRIPTION

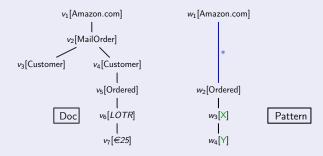


Document tree

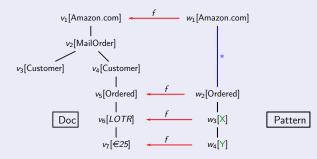
New document tree

- ► Pattern: Tree *P* with
 - ▶ node labels from *Tags* ∪ *Var*,
 - child edges
 - descendant edges (marked *).
- Match a pattern P against a document T: injective mapping from P into T, from the root, label-preserving on Tags.

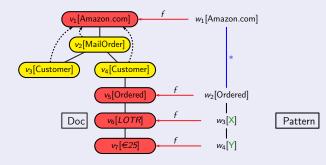
- Pattern: Tree P with
 - ▶ node labels from *Tags* ∪ *Var*,
 - child edges
 - descendant edges (marked *).
- Match a pattern P against a document T: injective mapping from P into T, from the root, label-preserving on Tags.



- Pattern: Tree P with
 - ▶ node labels from *Tags* ∪ *Var*,
 - child edges
 - descendant edges (marked *).
- Match a pattern P against a document T: injective mapping from P into T, from the root, label-preserving on Tags.



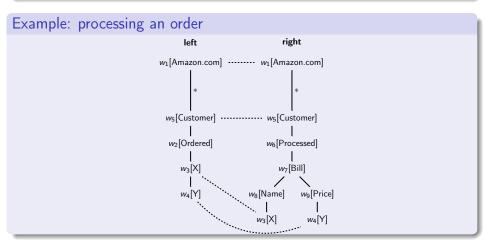
- Pattern: Tree P with
 - ▶ node labels from *Tags* ∪ *Var*,
 - child edges
 - descendant edges (marked *).
- Match a pattern P against a document T: injective mapping from P into T, from the root, label-preserving on Tags.



Rewriting

Tree Pattern Rewriting Rule

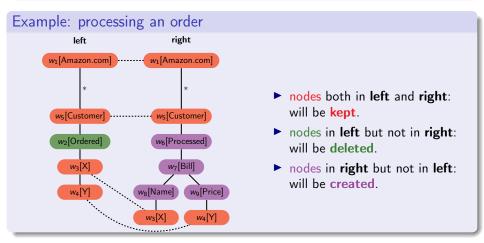
Rewriting rule (left, right):



REWRITING

Tree Pattern Rewriting Rule

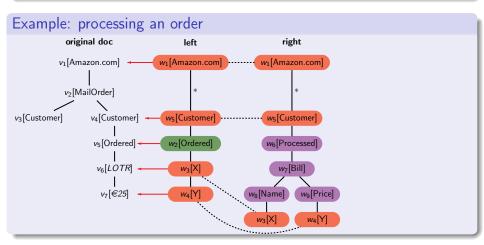
Rewriting rule (left, right):



Rewriting

Tree Pattern Rewriting Rule

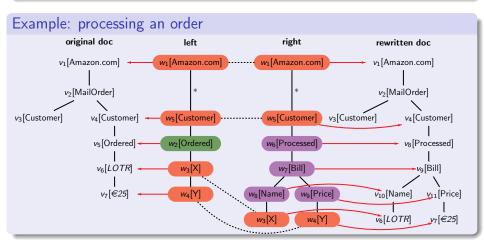
Rewriting rule (left, right):



REWRITING

Tree Pattern Rewriting Rule

Rewriting rule (left, right):



Rewriting

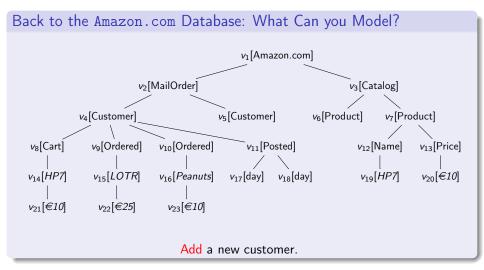
Tree Pattern Rewriting Rule

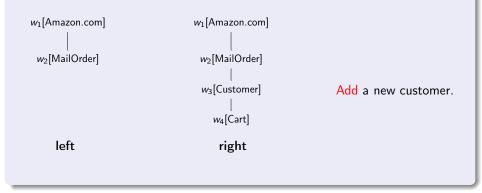
Rewriting rule (left, right):

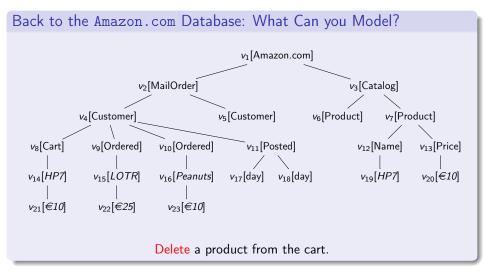
▶ left, right: tree patterns + nodes ids w₁, w₂,...

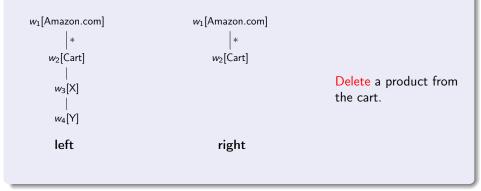
Application of a Rule

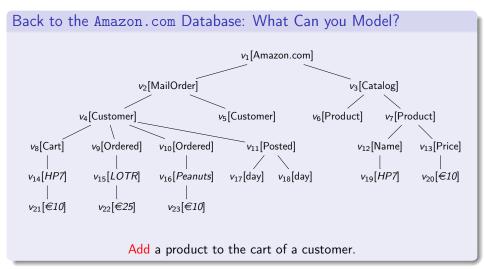
- 1. Match document with left.
- 2. Keep those nodes (and related ones) matched with nodes in left \cap right.
- 3. Delete those nodes (and related ones) matched with nodes in left \setminus right.
- 4. Create nodes induced by $\textbf{right} \setminus \textbf{left}.$



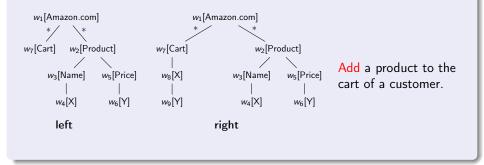








Back to the Amazon.com Database: What Can you Model?



TREE PATTERN QUERIES

Tree Pattern Queries (TPQ)

TPQ query : $Q \rightsquigarrow P$:

- ► Q: tree pattern.
- P: tree possibly using variables appearing in Q.

Tree Pattern Queries (TPQ)

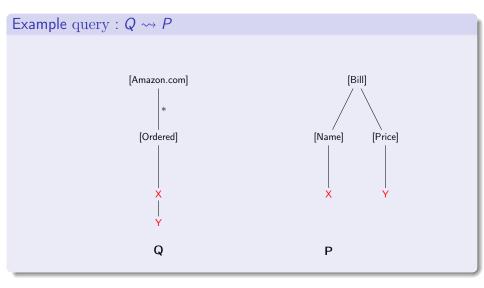
TPQ query : $Q \rightsquigarrow P$:

- ► Q: tree pattern.
- ► *P*: tree possibly using variables appearing in *Q*.

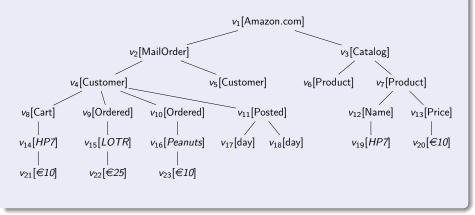
Each matching of a tree T with Q leads an instance of P in which variables are replaced by the tag implied by the matching.

Result of a TPQ query : $Q \rightsquigarrow P$ on a tree T: forest query(T) of all instantiations of P by matching between Q and T.

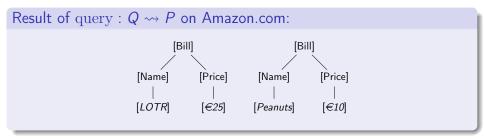
TREE PATTERN QUERIES



TREE PATTERN QUERIES



TREE PATTERN QUERIES



Adding Tree Pattern Queries to Rules

Actually Rewriting Rules Might Be Richer...

Rewriting rule (left, right, query, guard):

- ▶ left, right: tree patterns. TP right might contain special nodes marked by \$.
- query: tree pattern query.
- **guard**: set of forests.

Adding Tree Pattern Queries to Rules

Actually Rewriting Rules Might Be Richer...

Rewriting rule (left, right, query, guard):

- left, right: tree patterns. TP right might contain special nodes marked by \$.
- query: tree pattern query.
- **guard**: set of forests.

Application of a rule to a tree T

- 1. Match T with **left** via some embedding f.
- 2. The rule is enabled for f iff $query_f(T) \in guard$.
- 3. Then everything is as before except that one attach to any node marked \$ a copy of $query_f(T)$

WHAT CAN YOU EXPRESS NOW?

Guards

- If after 21 days a posted parcel is still not received the customer can require a payback.
- Cancel some approvisioning from the manufacturer for some product when the stock is greater than some threshold.

Plug results from TPQ

- Produce a bill.
- Give the list of all articles in all carts.

2 Tree rewriting systems: patterns and queries

Overification problems

VERIFICATION

Tree Pattern Rewriting Systems (TPRS)

TPRS (T, \mathcal{R}) : initial tree T, finite set \mathcal{R} of rewriting rules. In general, a TPRS is an infinite-state system.

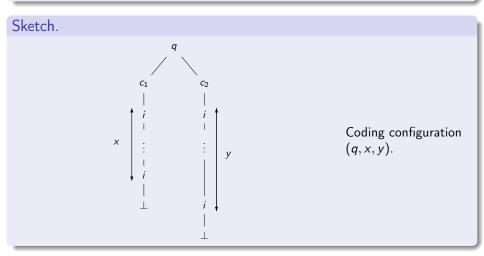
Questions on input (T, \mathcal{R}) :

- Termination.
- Finite-state property.
- Reachability.
- Pattern reachability (or coverability).
- Confluence from reachable T_1 and T_2 .
- Weak confluence: for any reachable T_1 , T_2 , do some T'_1 , T'_2 exist with $T_1 \xrightarrow{*} T'_1$, $T_2 \xrightarrow{*} T'_2$ and T'_1 subsumed by T'_2 ?

TPRS ARE TOO POWERFUL :-(

Theorem

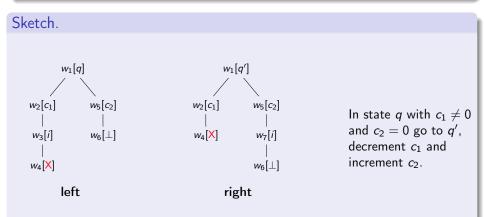
Any two-counter machine can be simulated by a TPRS such that the machine stops iff the TPRS terminates.



TPRS are too powerful :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine stops iff the TPRS terminates.



TPRS are too powerful :-(

Theorem

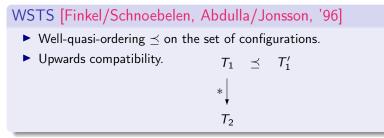
Any two-counter machine can be simulated by a TPRS such that the machine stops iff the TPRS terminates.

Undecidability causes

- Deletion?
- Ability to copy subtrees?
- Unbounded depth?

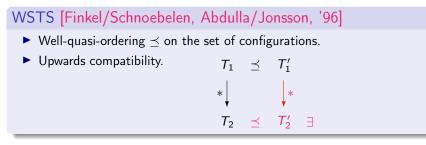
Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering \leq such that every infinite sequence of elements from X contains an infinite increasing subsequence.



Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering \leq such that every infinite sequence of elements from X contains an infinite increasing subsequence.



Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering \leq such that every infinite sequence of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, '96] • Well-quasi-ordering \leq on the set of configurations. • Upwards compatibility. $T_1 \leq T'_1$ $* \downarrow \qquad \downarrow *$ $T_2 \prec T'_2 =$

Theorem [Finkel/Schnoebelen, Abdulla/Jonsson, '96]

Termination and coverability are decidable for WSTS (requires some additional effectiveness properties).

- Strict TPRS: no deletion allowed (all node in **left** are in **right**).
- Depth-bounded TPRS: for some constant K, every T' with T → T' is of depth at most K.
- Guards are upward closed.

- Strict TPRS: no deletion allowed (all node in **left** are in **right**).
- Depth-bounded TPRS: for some constant K, every T' with T → T' is of depth at most K.
- Guards are upward closed.

	Term.	FS	Reach.	P-reach.	Confl.	W-confl.
Strict	U	U	D	U	U	U

Strictness is not enough

Simulating a 2-counter machine still works (instead of deleting, move to some garbage node).

- Strict TPRS: no deletion allowed (all node in **left** are in **right**).
- Depth-bounded TPRS: for some constant K, every T' with T → T' is of depth at most K.
- Guards are upward closed.

	Term.	FS	Reach.	P-reach.	Confl.	W-confl.
Strict	U	U	D	U	U	U
Depth-Bounded	D	U	U	D	U	U

Decidability

- Def. A tree T' subsumes a tree T iff there is an injective embedding of T into T' preserving the root, the labelling and the parent relation.
- ► Lemma. For any K ≥ 0, the subsumed relation is a well-quasi order over unordered trees of depth at most K.
- Techniques from WSTS yield decidability.

- Strict TPRS: no deletion allowed (all node in **left** are in **right**).
- Depth-bounded TPRS: for some constant K, every T' with T → T' is of depth at most K.
- Guards are upward closed.

	Term.	FS	Reach.	P-reach.	Confl.	W-confl.
Strict	U	U	D	U	U	U
Depth-Bounded	D	U	U	D	U	U

Undecidability

- Simulate a reset Petri net (depth 2 is enough).
- FS property and reachability are undecidable for reset Petri nets [Dufour/Finkel/Schnoebelen '98].
- One can reduce reachability to (weak) confluence.

- Strict TPRS: no deletion allowed (all node in **left** are in **right**).
- Depth-bounded TPRS: for some constant K, every T' with T → T' is of depth at most K.
- Guards are upward closed.

	Term.	FS	Reach.	P-reach.	Confl.	W-confl.
Strict	U	U	D	U	U	U
Depth-Bounded	D	U	U	D	U	U
Depth-B. Strict	D	D	D	D	U	U

Decidability

- Reachability is easy: exploration of a finite set.
- ► FS property comes from the fact that one has a strict WSTS.

LOWER BOUNDS

Remark. Decidability is implicitly based on non-constructive proofs coming from Higman's Lemma.

Lower Bounds

Remark. Decidability is implicitly based on non-constructive proofs coming from Higman's Lemma.

Theorem

The following problems have at least non-elementary complexity:

- ► Input: A pattern P, a TPRS (T, R) and an integer k such that the depth of (T, R) is bounded by k.
- Problem 1: Is the pattern P reachable in (T, \mathcal{R}) ?
- Problem 2: Does (T, \mathcal{R}) terminate?

Lower Bounds

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

- Simulate a run of M, a n → tower(k, n)-space bounded TM on input x by a linear size depth-bounded TPRS.
- Encode each configuration of *M* by a tree.
- ▶ Build TPRS to enforce transitions of *M*.
- Use counters to distinguish tape positions.
- At depth K, one can count up to tower(K, 2).

LOWER BOUNDS

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

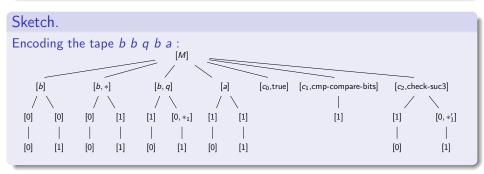
Encoding of counters as in [Walukiewicz '98]

A level 2 counter encoding 13:

LOWER BOUNDS

Theorem

Pattern reachability and termination are non-elementary decidable.



UNDIRECTED TPRS

Undirected TPRS

- ► No more restriction on the depth.
- TP used in left and in query cannot use the parent relation (only ancestor relation).

UNDIRECTED TPRS

Undirected TPRS

- No more restriction on the depth.
- TP used in left and in query cannot use the parent relation (only ancestor relation).

Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded TPRS.

Theorem

Termination and pattern reachability have at least non primitive recursive complexity for undirected TPRS.

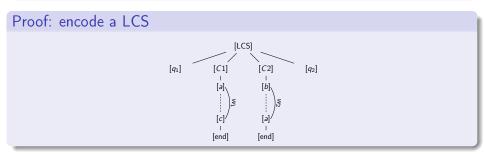
UNDIRECTED TPRS

Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded TPRS.

Theorem

Termination and pattern reachability have at least non primitive recursive complexity for undirected TPRS.



Related work

AC term rewriting

Essential difference: term rewriting is about ranked trees. Unclear how to simulate TPRS rewriting on the ranked version of a tree.

Regular ground tree rewriting systems [Löding '02]

- Rules L → R, with L, R regular sets of trees (subtrees from L can be replaced by any element in R).
- Decidability: Reachability (pre*-operator preserves regularity).
- Extension to unranked, ordered trees [Löding/Spelten '07].

Guarded AXML [Abiteboul/Segoufin/Vianu '08]

 Infinite data allowed. Uses Boolean combinations of tree patterns as guards and temporal logics over tree patterns for property specification. Decidable case: no recursion in calls.

Thank you!