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@ Reasoning about active documents

© Tree rewriting systems: patterns and queries

© Verification problems



OUTLINE

@ Reasoning about active documents



ACTIVE DOCUMENTS |ABITEBOUL & CO]

Document trees
» XML: unranked, unordered, (finitely) labelled finite trees.
> Active XML (AXML): extended by service nodes. Implicit data representation

AXML trees
cat
\
book book Ioc
\\
title author 4!\1/ tﬁslations sales  upd@publishers
HP7 JKR 207-. .. frenc/h érean 3 Mio.

upd@publishers: update translations and number of sold items.




OBJECTIVES

Capture Service Calls

» Query information on a document tree on given peer (example: service upd
on peer publishers),

» Add query result (= forest) to the original tree at a designated node
(materialization of service call).
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> Query result may contain itself service nodes (recursion). Order in which
services are called can be relevant.




OBJECTIVES

Capture Service Calls

» Query information on a document tree on given peer (example: service upd
on peer publishers),

» Add query result (= forest) to the original tree at a designated node
(materialization of service call).

Remark
> We consider here wlog. a single peer (i.e., a single document tree).

> Query result may contain itself service nodes (recursion). Order in which
services are called can be relevant.

Examples of properties to verify
» Termination: is there an infinite sequence of service calls?

» Reachability: given documents dy, d>, can d» be reached from d;?




ABSTRACT MODEL

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

vi[Amazon.com]

v2[MailOrder] v3[Catalog]
m[Custom{ \\@,[Customer] vﬁ[Prodé w\[Product]
vg[Cart] vo[Ordered]  vyo[Ordered] vi1[Posted] vi2[Name]  vq3[Price]
v14[l‘-IP7] v15[L‘OTR] v16[Pe‘anuts] viz [dzé }g[day] vlg[l‘-IP7] V20 [‘€10]

V21[€10] V22[€25] V23 [€10]
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ABSTRACT MODEL

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog
VRN
Customer Customer Product Product
Vo RN
Cart Ordered Ordered Posted Name Price
| | | /N | |
H.‘D7 LO‘TR Pea‘nuts day day HP7 €10
€10 €25 €10

Order service on Amazon.com: (add-product + delete-product )*checkout.



ABSTRACT MODEL

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog
VRN
Customer Customer Product Product
Vo RN
Cart Ordered Ordered Posted Name Price
| | | /N | |
H.‘D7 LO‘TR Pea‘nuts day day HP7 €10
€10 €25 €10

Examples of actions to model: add a new customer, add a product to the cart of a
customer, delete a product from the cart. ..



OUTLINE

© Tree rewriting systems: patterns and queries



TREE REWRITING RULES: INFORMAL DESCRIPTION

Left pattern Right pattern
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TREE REWRITING RULES: INFORMAL DESCRIPTION

Left pattern Right pattern

Document tree New document tree



PATTERNS AND MATCHINGS

Definition + Example

> Pattern: Tree P with
» node labels from Tags U Var,
» child edges
> descendant edges (marked ).

> Match a pattern P against a document T: injective mapping from P into T,

from the root, label-preserving on Tags.

wi[Amazon.com]

w;[Ordered]

[
p
[

wa[Y]




PATTERNS AND MATCHINGS

Definition + Example

> Pattern: Tree P with
» node labels from Tags U Var,
» child edges
> descendant edges (marked ).

> Match a pattern P against a document T: injective mapping from P into T,

from the root, label-preserving on Tags.

vi[Amazon.com]

v2[MailOrder]
~ N\
vz[Customer] va[Customer]
|
vs[Ordered]

Doc v6[LOTR]

vr[€25]

wi[Amazon.com]

w;[Ordered]
|
.
|
wa[Y]




PATTERNS AND MATCHINGS

Definition + Example

» Pattern: Tree P with

» node labels from Tags U Var,
» child edges
> descendant edges (marked ).

> Match a pattern P against a document T: injective mapping from P into T,
from the root, label-preserving on Tags.

vi[Amazon.com] £ wi[Amazon.com]
v2[MailOrder]
e AN *
vz[Customer] va[Customer]
! f
vs[Ordered] <————  w,[Ordered]
|
Doc ve[LOTR] £ ws[X]
| |
wl€25] i wa[Y]




PATTERNS AND MATCHINGS

Definition + Example

» Pattern: Tree P with

» node labels from Tags U Var,
» child edges
» descendant edges (marked x).

» Match a pattern P against a document T: injective mapping from P into T,
from the root, label-preserving on Tags.

f

wi[Amazon.com]
v2[MailOrder]

(va [Customer]) (V4 [Custc')mer])

f w;[Ordered]
|
R
|
f wa[Y]




REWRITING

Tree Pattern Rewriting Rule
Rewriting rule (left, right):
> left, right: tree patterns + nodes ids wy,wy,. ..

Example: processing an order

left right
wi[Amazon.com] -------- wi [Amazon.com]
* *
ws[Customer] ---s-smsseees ws[Customer]
| |
w;[Ordered] we[Processed]
| |
wsX] wiBill
| /N
wa[Y] ... wg[Name]  wy[Price]




REWRITING

Tree Pattern Rewriting Rule
Rewriting rule (left, right):

> left, right: tree patterns + nodes ids wy,wy,. ..

Example: processing an order
left right

nodes both in left and right:
will be kept.

nodes in left but not in right:
will be deleted.

nodes in right but not in left:
will be created.




REWRITING

Tree Pattern Rewriting Rule
Rewriting rule (left, right):

> left, right: tree patterns + nodes ids wy,wy,. ..

Example: processing an order
original doc left right

vi[Amazon.com]

v2[MailOrder]

~ N\
vs[Customer] v4[Customer]
|
vs[Ordered]
|
v6[LOTR]

v7[€25]




REWRITING

Tree Pattern Rewriting Rule
Rewriting rule (left, right):

> left, right: tree patterns + nodes ids wy,wy,. ..

Example: processing an order

original doc left right rewritten doc

vi[Amazon.com] ~——{ ws[Amazon.com] )--------

v2[MailOrder]

vi[Amazon.com]

v2[MailOrder]

~ N\ N
vs[Customer] v4[Customer] ~—({ ws[Customer] )------------- vs[Customer] v4[Customer]
| |
vs[Ordered] vg[Processed)]
| |
v[LOTR] o[Bill]
| N\
vr[€25]

vig[Name] vy [Price]

Ve[LOTR]




REWRITING

Tree Pattern Rewriting Rule
Rewriting rule (left, right):
> left, right: tree patterns + nodes ids wy,wy,. ..

Application of a Rule
1. Match document with left.

2. Keep those nodes (and related ones) matched with nodes in left N right.
3. Delete those nodes (and related ones) matched with nodes in left \ right.
4. Create nodes induced by right \ left.




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

vi[Amazon.com]

v2[MailOrder] v3[Catalog]
w[Custom{ \w,[Customer] Ve[PI’OdQ w\[Product]
Vg [Cart]/vQ[Ordered] vio[Ordered] vi1[Posted] vio[Name]  vi3[Price]
\/14[,“-IP7] v15[L‘OTR] \/16[Pe‘anuts] vi7 [d;é v\lg[day] V19[/"IP7] Voo ["€10]
vz1[‘€10] vzz[‘€25] V23 [‘€10]

Add a new customer.




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

wi [Amazon.com] w1 [Amazon.com]
wz[MailOrder] wz[MailOrder]
|
ws[Customer] Add a new customer.
\
wy[Cart]

left right




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

vi[Amazon.com]

v2[MailOrder] v3[Catalog]
w[Custom{ \w,[Customer] Ve[PI’OdQ w\[Product]
Vg [Cart]/vQ[Ordered] vio[Ordered] vi1[Posted] vio[Name]  vi3[Price]
\/14[,“-IP7] v15[L‘OTR] \/16[Pe‘anuts] vi7 [d;é v\lg[day] V19[/"IP7] Voo ["€10]
vz1[‘€10] vzz[‘€25] V23 [‘€10]

Delete a product from the cart.




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

wi [Amazon.com] w1 [Amazon.com]
K K
ws[Cart] wa[Cart]
|
wslX] Delete a product from
| the cart.
wa[Y]

left right




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

vi[Amazon.com]

v2[MailOrder] v3[Catalog]
m[Custom{ \w,[Customer] Ve[PrOdQ w\[Product]
Vg [Cart]/vQ[Ordered] vio[Ordered] vi1[Posted] vio[Name]  vi3[Price]
\/14[,“-IP7] v15[L‘OTR] \/16[Pe‘anuts] vi7 [d;é v\lg[day] V19[/"IP7] Voo [‘€10]
vz1[‘€10] vzz[‘€25] V23 [‘€10]

Add a product to the cart of a customer.




EXPRESIVITY OF TREE PATTERN REWRITING RULES

Back to the Amazon.com Database: What Can you Model?

w1 [Amazon.com] wi[Amazon.com]|
wy[Cart]  ws[Product] wy[Cart] wa[Product]
VAN \ VRN
ws[Name]  ws|[Price] wg[X] ws[Name]  ws[Price] Add a pl’OdUCt to the
| | | | | cart of a customer.
wa[X] we[Y] wo[Y] wa[X] we[Y]

left right




TREE PATTERN QUERIES

Tree Pattern Queries (TPQ)
TPQ query : Q ~ P:
> @: tree pattern.
> P: tree possibly using variables appearing in Q.




TREE PATTERN QUERIES

Tree Pattern Queries (TPQ)
TPQ query : Q ~ P:
> Q: tree pattern.
> P: tree possibly using variables appearing in Q.
Each matching of a tree T with Q leads an instance of P in which variables are

replaced by the tag implied by the matching.

Result of a TPQ query : @ ~~ P on a tree T: forest query(T) of all instantiations
of P by matching between @ and T.




TREE PATTERN QUERIES
Example query : Q ~» P

[Amazon.com] [Bill]

| /\

[Ordered] [Name] [Price]
X X Y
Y




TREE PATTERN QUERIES

Result of query : Q ~» P on Amazon.com:

vi[Amazon.com]

v2[MailOrder] v3[Catalog]
m[Custom{ \w,[Customer] Ve[PrOdQ w\[Product]
Vg [Cart]/vQ[Ordered] vio[Ordered] vi1[Posted] vio[Name]  vi3[Price]
\/14[,“-IP7] v15[L‘OTR] \/16[Pe‘anuts] vi7 [d;é v\lg[day] V19[/"IP7] Voo [‘€10]

V21 [€10] V22[€25] V23 [€10]




TREE PATTERN QUERIES

Result of query : Q ~» P on Amazon.com:

[Bill] [Bill]

RN RN

[Name] [Price] [Name] [Price]

[LOTR] [€25] [Peanuts] [€10]




ADDING TREE PATTERN QUERIES TO RULES

Actually Rewriting Rules Might Be Richer. ..

Rewriting rule (left, right, query, guard):
> left, right: tree patterns. TP right might contain special nodes marked by $.
> query: tree pattern query.
» guard: set of forests.




ADDING TREE PATTERN QUERIES TO RULES

Actually Rewriting Rules Might Be Richer. ..

Rewriting rule (left, right, query, guard):
> left, right: tree patterns. TP right might contain special nodes marked by $.
> query: tree pattern query.
> guard: set of forests.

Application of a rule to a tree T
1. Match T with left via some embedding f.
2. The rule is enabled for f iff query;(T) € guard.

3. Then everything is as before except that one attach to any node marked $ a
copy of query;(T)




WHAT CAN YOou EXPRESS Now?

Guards
» |If after 21 days a posted parcel is still not received the customer can require a
payback.
» Cancel some approvisioning from the manufacturer for some product when
the stock is greater than some threshold.

Plug results from TPQ

» Produce a bill.
» Give the list of all articles in all carts.




OUTLINE

© Verification problems



VERIFICATION

Tree Pattern Rewriting Systems (TPRS)

TPRS (T, R): initial tree T, finite set R of rewriting rules.
In general, a TPRS is an infinite-state system.

Questions on input (T, R):

>

vVvyVvVvTYyysyw

Termination.

Finite-state property.

Reachability.

Pattern reachability (or coverability).
Confluence from reachable T; and T>.

Weak confluence: for any reachable Ty, T», do some T, T} exist with
T1 5 T{, T» = Tj and T{ subsumed by T3?




TPRS ARE TOO POWERFUL :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine
stops iff the TPRS terminates.

Sketch.

q

/N

1 (¢}

Coding configuration
y (q7X7.y)'




TPRS ARE TOO POWERFUL :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine

stops iff the TPRS terminates.

Sketch.

wi[q]

/N

Wo [Cl] W5[C2]

ws|i] we[L]
\

Wy [X]

left

wi[q]
/N
W2[C1] W5[C2]
walX] wili]

W6[J_]

right

In state g with ¢; # 0
and ¢ =0 go to ¢/,
decrement ¢; and
increment c.




TPRS ARE TOO POWERFUL :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine
stops iff the TPRS terminates.

Undecidability causes
» Deletion?
> Ability to copy subtrees?
» Unbounded depth?




A TooL FOR DECIDABILITY: WELL-STRUCTURED TRANSITION SYSTEMS

Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering < such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, '96]

» Well-quasi-ordering < on the set of configurations.
» Upwards compatibility. . < T

|

T
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Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering < such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, '96]

» Well-quasi-ordering < on the set of configurations.

» Upwards compatibility. . < T
T. = T; 3




A TooL FOR DECIDABILITY: WELL-STRUCTURED TRANSITION SYSTEMS

Well-quasi-ordering

Well-quasi-ordering on a set X: quasi-ordering < such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, '96]

» Well-quasi-ordering < on the set of configurations.
» Upwards compatibility. . < T

Theorem [Finkel/Schnoebelen, Abdulla/Jonsson, '96]

Termination and coverability are decidable for WSTS (requires some additional
effectiveness properties).




DECIDABILITY ISSUES FOR DEPTH-BOUNDED TPRS

Three restrictions
» Strict TPRS: no deletion allowed (all node in left are in right).

» Depth-bounded TPRS: for some constant K, every T’ with T = T’ is of
depth at most K.

» Guards are upward closed.



DECIDABILITY ISSUES FOR DEPTH-BOUNDED TPRS

Three restrictions
» Strict TPRS: no deletion allowed (all node in left are in right).

» Depth-bounded TPRS: for some constant K, every T’ with T = T’ is of
depth at most K.

» Guards are upward closed.

Term. | FS | Reach. | P-reach. | Confl. | W-confl.
|Strict U U D u U U

Strictness is not enough

Simulating a 2-counter machine still works (instead of deleting, move to some
garbage node).




DECIDABILITY ISSUES FOR DEPTH-BOUNDED TPRS

Three restrictions
» Strict TPRS: no deletion allowed (all node in left are in right).

» Depth-bounded TPRS: for some constant K, every T’ with T = T’ is of
depth at most K.

» Guards are upward closed.

Term. | FS | Reach. | P-reach. | Confl. | W-confl.
Strict u u D u U U
Depth-Bounded D U U D U U
Decidability

» Def. A tree T’ subsumes a tree T iff there is an injective embedding of T
into T’ preserving the root, the labelling and the parent relation.

» Lemma. For any K > 0, the subsumed relation is a well-quasi order over
unordered trees of depth at most K.

» Techniques from WSTS yield decidability.




DECIDABILITY ISSUES FOR DEPTH-BOUNDED TPRS

Three restrictions
» Strict TPRS: no deletion allowed (all node in left are in right).

» Depth-bounded TPRS: for some constant K, every T’ with T = T’ is of
depth at most K.

» Guards are upward closed.

Term. | FS | Reach. | P-reach. | Confl. | W-confl.
Strict u u D u U U
Depth-Bounded D U U D U U

Undecidability

> Simulate a reset Petri net (depth 2 is enough).

» FS property and reachability are undecidable for reset Petri nets
[Dufour/Finkel/Schnoebelen '98].

» One can reduce reachability to (weak) confluence.




DECIDABILITY ISSUES FOR DEPTH-BOUNDED TPRS

Three restrictions

» Strict TPRS: no deletion allowed (all node in left are in right).

» Depth-bounded TPRS: for some constant K, every T’ with T = T’ is of
depth at most K.

» Guards are upward closed.

Term. | FS | Reach. | P-reach. | Confl. | W-confl.
Strict u u D u u u
Depth-Bounded D U U D U U
Depth-B. Strict D D D D u u

Decidability

» Reachability is easy: exploration of a finite set.

> FS property comes from the fact that one has a strict WSTS.



LOWER BOUNDS

Remark. Decidability is implicitly based on non-constructive proofs coming from
Higman's Lemma.



LOWER BOUNDS

Remark. Decidability is implicitly based on non-constructive proofs coming from
Higman's Lemma.

Theorem
The following problems have at least non-elementary complexity:
» Input: A pattern P, a TPRS (7, R) and an integer k such that the depth of
(T,R) is bounded by k.
» Problem 1: Is the pattern P reachable in (7, R)?
» Problem 2: Does (T, R) terminate?




LOWER BOUNDS

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

» Simulate a run of M, a n+— tower(k, n)-space bounded TM on input x by a
linear size depth-bounded TPRS.

» Encode each configuration of M by a tree.

» Build TPRS to enforce transitions of M.

» Use counters to distinguish tape positions.

> At depth K, one can count up to tower(K, 2).




LOwWER BOUNDS

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

Encoding of counters as in [Walukiewicz '98]
A level 2 counter encoding 13:
[1] (1] (0] (1]
/ N\ / N\ / N\ / N\
© fop o [l [ [0 @ [l
L e (R I
© [ [ [ o [ oo [




LOwWER BOUNDS

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.
Encoding the tape b b g b a :

_ /[M] N

[b] [, %] [b, q] [a] [co.true]  [c1,cmp-compare-bits] [c2,check-suc3]

/ N\ / N\ / N\ / N\ | /N
N N 1 4 A B R ) o) [ [0, 4]

I e | |
T RO R ! R A R 0 [ [




UNDIRECTED TPRS

Undirected TPRS

» No more restriction on the depth.

» TP used in left and in query cannot use the parent relation (only ancestor
relation).




UNDIRECTED TPRS

Undirected TPRS

» No more restriction on the depth.

» TP used in left and in query cannot use the parent relation (only ancestor
relation).

Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded
TPRS.

Theorem

Termination and pattern reachability have at least non primitive recursive
complexity for undirected TPRS.




Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded

TPRS.

UNDIRECTED TPRS

Theorem

Termination and pattern reachability have at least non primitive recursive
complexity for undirected TPRS.

Proof: encode a LCS

[LCS]

] [C‘ 1] [€2] a2]

|
[ 0]
>§ >§
[d [4
| |

[end] [end]




RELATED WORK

AC term rewriting

Essential difference: term rewriting is about ranked trees. Unclear how to simulate
TPRS rewriting on the ranked version of a tree.

Regular ground tree rewriting systems [Loding '02]

> Rules L — R, with L, R regular sets of trees (subtrees from L can be replaced
by any element in R).

» Decidability: Reachability (pre*-operator preserves regularity).
> Extension to unranked, ordered trees [Loding/Spelten '07].

Guarded AXML [Abiteboul/Segoufin/Vianu '08]

» Infinite data allowed. Uses Boolean combinations of tree patterns as guards
and temporal logics over tree patterns for property specification.
Decidable case: no recursion in calls.




Thank youl
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