
Tree Pattern Rewriting Systems

B. Genest♦ A. Muscholl♠ O. Serre♣ M. Zeitoun♠

♦
IRISA, Univ. Rennes 1 & CNRS

♠
LaBRI, Univ. Bordeaux & CNRS

♣
LIAFA, Univ. Paris 7 & CNRS. Deserves credit for the slides!

ACTS, Chennai, 2009/31/1

Outline

1 Reasoning about active documents

2 Tree rewriting systems: patterns and queries

3 Verification problems

Outline

1 Reasoning about active documents

2 Tree rewriting systems: patterns and queries

3 Verification problems

Active documents [Abiteboul & co]

Document trees
◮ XML: unranked, unordered, (finitely) labelled finite trees.

◮ Active XML (AXML): extended by service nodes. Implicit data representation

AXML trees

cat

book

title

HP7

author

JKR

ISBN

207-. . .

translations

french korean

sales

3 Mio.

upd@publishers

book . . .

upd@publishers: update translations and number of sold items.

Objectives

Capture Service Calls
◮ Query information on a document tree on given peer (example: service upd

on peer publishers),

◮ Add query result (= forest) to the original tree at a designated node
(materialization of service call).

Objectives

Capture Service Calls
◮ Query information on a document tree on given peer (example: service upd

on peer publishers),

◮ Add query result (= forest) to the original tree at a designated node
(materialization of service call).

Remark
◮ We consider here wlog. a single peer (i.e., a single document tree).

◮ Query result may contain itself service nodes (recursion). Order in which
services are called can be relevant.

Objectives

Capture Service Calls
◮ Query information on a document tree on given peer (example: service upd

on peer publishers),

◮ Add query result (= forest) to the original tree at a designated node
(materialization of service call).

Remark
◮ We consider here wlog. a single peer (i.e., a single document tree).

◮ Query result may contain itself service nodes (recursion). Order in which
services are called can be relevant.

Examples of properties to verify
◮ Termination: is there an infinite sequence of service calls?

◮ Reachability: given documents d1, d2, can d2 be reached from d1?

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

v1[Amazon.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[Peanuts]

v22[e25]

v19[HP7] v20[e10]

v23[e10]

v17[day] v18[day]

v8[Cart]

v14[HP7]

v21[e10]

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog

CustomerCustomer ProductProduct

Ordered Ordered Posted Name Price

LOTR Peanuts

e25

HP7 e10

e10

day day

Cart

HP7

e10

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog

CustomerCustomer ProductProduct

Ordered Ordered Posted Name Price

LOTR Peanuts

e25

HP7 e10

e10

day day

Cart

HP7

e10

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog

CustomerCustomer ProductProduct

Ordered Ordered Posted Name Price

LOTR Peanuts

e25

HP7 e10

e10

day day

Cart

HP7

e10

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog

CustomerCustomer ProductProduct

Ordered Ordered Posted Name Price

LOTR Peanuts

e25

HP7 e10

e10

day day

Cart

HP7

e10

Order service on Amazon.com: (add-product + delete-product)∗checkout.

Abstract Model

Tree document: unranked, unordered, (finitely) labelled tree.

Example: Amazon.com database

Amazon.com

MailOrder Catalog

CustomerCustomer ProductProduct

Ordered Ordered Posted Name Price

LOTR Peanuts

e25

HP7 e10

e10

day day

Cart

HP7

e10

Examples of actions to model: add a new customer, add a product to the cart of a
customer, delete a product from the cart. . .

Outline

1 Reasoning about active documents

2 Tree rewriting systems: patterns and queries

3 Verification problems

Tree Rewriting Rules: Informal Description

Left pattern Right pattern

Tree Rewriting Rules: Informal Description

Left pattern Right pattern

Document tree

Tree Rewriting Rules: Informal Description

Left pattern Right pattern

Document tree New document tree

Patterns and Matchings

Definition + Example
◮ Pattern: Tree P with

◮ node labels from Tags ∪ Var ,
◮ child edges
◮ descendant edges (marked ∗).

◮ Match a pattern P against a document T : injective mapping from P into T ,
from the root, label-preserving on Tags.

w1[Amazon.com]

w2[Ordered]

w3[X]

w4[Y]

∗

Pattern

Patterns and Matchings

Definition + Example
◮ Pattern: Tree P with

◮ node labels from Tags ∪ Var ,
◮ child edges
◮ descendant edges (marked ∗).

◮ Match a pattern P against a document T : injective mapping from P into T ,
from the root, label-preserving on Tags.

w1[Amazon.com]

w2[Ordered]

w3[X]

w4[Y]

∗

Pattern

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v5[Ordered]

v6[LOTR]

v7[e25]

Doc

Patterns and Matchings

Definition + Example
◮ Pattern: Tree P with

◮ node labels from Tags ∪ Var ,
◮ child edges
◮ descendant edges (marked ∗).

◮ Match a pattern P against a document T : injective mapping from P into T ,
from the root, label-preserving on Tags.

w1[Amazon.com]

w2[Ordered]

w3[X]

w4[Y]

∗

Pattern

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v5[Ordered]

v6[LOTR]

v7[e25]

Doc

f

f

f

f

Patterns and Matchings

Definition + Example
◮ Pattern: Tree P with

◮ node labels from Tags ∪ Var ,
◮ child edges
◮ descendant edges (marked ∗).

◮ Match a pattern P against a document T : injective mapping from P into T ,
from the root, label-preserving on Tags.

w1[Amazon.com]

w2[Ordered]

w3[X]

w4[Y]

∗

Pattern

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v5[Ordered]

v6[LOTR]

v7[e25]

Doc

f

f

f

f

Rewriting

Tree Pattern Rewriting Rule

Rewriting rule (left, right):

◮ left, right: tree patterns + nodes ids w1,w2,. . .

Example: processing an order
left right

w1[Amazon.com]

w5[Customer]

w3[X]

w4[Y]

w2[Ordered]

w1[Amazon.com]

w5[Customer]

w6[Processed]

w7[Bill]

w8[Name] w9[Price]

w3[X] w4[Y]

∗ ∗

Rewriting

Tree Pattern Rewriting Rule

Rewriting rule (left, right):

◮ left, right: tree patterns + nodes ids w1,w2,. . .

Example: processing an order
left right

w1[Amazon.com]

w5[Customer]

w3[X]

w4[Y]

w2[Ordered]

w1[Amazon.com]

w5[Customer]

w6[Processed]

w7[Bill]

w8[Name] w9[Price]

w3[X] w4[Y]

∗ ∗
◮ nodes both in left and right:

will be kept.

◮ nodes in left but not in right:
will be deleted.

◮ nodes in right but not in left:
will be created.

Rewriting

Tree Pattern Rewriting Rule

Rewriting rule (left, right):

◮ left, right: tree patterns + nodes ids w1,w2,. . .

Example: processing an order
left right

w1[Amazon.com]

w5[Customer]

w3[X]

w4[Y]

w2[Ordered]

w1[Amazon.com]

w5[Customer]

w6[Processed]

w7[Bill]

w8[Name] w9[Price]

w3[X] w4[Y]

∗ ∗

original doc

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v5[Ordered]

v6[LOTR]

v7[e25]

Rewriting

Tree Pattern Rewriting Rule

Rewriting rule (left, right):

◮ left, right: tree patterns + nodes ids w1,w2,. . .

Example: processing an order
left right

w1[Amazon.com]

w5[Customer]

w3[X]

w4[Y]

w2[Ordered]

w1[Amazon.com]

w5[Customer]

w6[Processed]

w7[Bill]

w8[Name] w9[Price]

w3[X] w4[Y]

∗ ∗

original doc

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v5[Ordered]

v6[LOTR]

v7[e25]

rewritten doc

v2[MailOrder]

v3[Customer] v4[Customer]

v1[Amazon.com]

v8[Processed]

v9[Bill]

v10[Name] v11[Price]

v6[LOTR] v7[e25]

Rewriting

Tree Pattern Rewriting Rule

Rewriting rule (left, right):

◮ left, right: tree patterns + nodes ids w1,w2,. . .

Application of a Rule

1. Match document with left.

2. Keep those nodes (and related ones) matched with nodes in left ∩ right.

3. Delete those nodes (and related ones) matched with nodes in left \ right.

4. Create nodes induced by right \ left.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

v1[Amazon.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[Peanuts]

v22[e25]

v19[HP7] v20[e10]

v23[e10]

v17[day] v18[day]

v8[Cart]

v14[HP7]

v21[e10]

Add a new customer.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

rightleft

w1[Amazon.com]

w2[MailOrder]

w1[Amazon.com]

w2[MailOrder]

w3[Customer]

w4[Cart]

Add a new customer.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

v1[Amazon.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[Peanuts]

v22[e25]

v19[HP7] v20[e10]

v23[e10]

v17[day] v18[day]

v8[Cart]

v14[HP7]

v21[e10]

Delete a product from the cart.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

rightleft

w1[Amazon.com]

w2[Cart]

w3[X]

w4[Y]

∗

w1[Amazon.com]

w2[Cart]

∗

Delete a product from
the cart.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

v1[Amazon.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[Peanuts]

v22[e25]

v19[HP7] v20[e10]

v23[e10]

v17[day] v18[day]

v8[Cart]

v14[HP7]

v21[e10]

Add a product to the cart of a customer.

Expresivity of Tree Pattern Rewriting Rules

Back to the Amazon.com Database: What Can you Model?

rightleft

w1[Amazon.com]

w7[Cart] w2[Product]

w3[Name]

w4[X]

w5[Price]

w6[Y]

∗∗

w1[Amazon.com]

w7[Cart] w2[Product]

w3[Name]

w4[X]

w5[Price]

w6[Y]

w8[X]

w9[Y]

∗∗

Add a product to the
cart of a customer.

Tree Pattern Queries

Tree Pattern Queries (TPQ)

TPQ query : Q P :

◮ Q: tree pattern.

◮ P : tree possibly using variables appearing in Q.

Tree Pattern Queries

Tree Pattern Queries (TPQ)

TPQ query : Q P :

◮ Q: tree pattern.

◮ P : tree possibly using variables appearing in Q.

Each matching of a tree T with Q leads an instance of P in which variables are
replaced by the tag implied by the matching.

Result of a TPQ query : Q P on a tree T : forest query(T) of all instantiations
of P by matching between Q and T .

Tree Pattern Queries

Example query : Q P

[Amazon.com]

[Ordered]

X

Y

∗

Q P

[Bill]

[Name] [Price]

X Y

Tree Pattern Queries

Result of query : Q P on Amazon.com:

v1[Amazon.com]

v2[MailOrder] v3[Catalog]

v5[Customer]v4[Customer] v7[Product]v6[Product]

v9[Ordered] v10[Ordered] v11[Posted] v12[Name] v13[Price]

v15[LOTR] v16[Peanuts]

v22[e25]

v19[HP7] v20[e10]

v23[e10]

v17[day] v18[day]

v8[Cart]

v14[HP7]

v21[e10]

Tree Pattern Queries

Result of query : Q P on Amazon.com:

[Bill]

[Name] [Price]

[LOTR] [e25]

[Bill]

[Name] [Price]

[Peanuts] [e10]

Adding Tree Pattern Queries to rules

Actually Rewriting Rules Might Be Richer. . .

Rewriting rule (left, right,query, guard):

◮ left, right: tree patterns. TP right might contain special nodes marked by $.

◮ query: tree pattern query.

◮ guard: set of forests.

Adding Tree Pattern Queries to rules

Actually Rewriting Rules Might Be Richer. . .

Rewriting rule (left, right,query, guard):

◮ left, right: tree patterns. TP right might contain special nodes marked by $.

◮ query: tree pattern query.

◮ guard: set of forests.

Application of a rule to a tree T

1. Match T with left via some embedding f .

2. The rule is enabled for f iff queryf (T) ∈ guard.

3. Then everything is as before except that one attach to any node marked $ a
copy of queryf (T)

What Can You Express Now?

Guards
◮ If after 21 days a posted parcel is still not received the customer can require a

payback.

◮ Cancel some approvisioning from the manufacturer for some product when
the stock is greater than some threshold.

Plug results from TPQ
◮ Produce a bill.

◮ Give the list of all articles in all carts.

Outline

1 Reasoning about active documents

2 Tree rewriting systems: patterns and queries

3 Verification problems

Verification

Tree Pattern Rewriting Systems (TPRS)

TPRS (T ,R): initial tree T , finite set R of rewriting rules.
In general, a TPRS is an infinite-state system.

Questions on input (T ,R):
◮ Termination.

◮ Finite-state property.

◮ Reachability.

◮ Pattern reachability (or coverability).

◮ Confluence from reachable T1 and T2.

◮ Weak confluence: for any reachable T1, T2, do some T ′
1, T

′
2 exist with

T1
∗
→ T ′

1, T2
∗
→ T ′

2 and T ′
1 subsumed by T ′

2?

TPRS are too powerful :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine
stops iff the TPRS terminates.

Sketch.
q

c1 c2

i

...

i

⊥

i

...

i

⊥

x
y

Coding configuration
(q, x , y).

TPRS are too powerful :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine
stops iff the TPRS terminates.

Sketch.

rightleft

w1[q]

w2[c1]

w3[i]

w4[X]

w5[c2]

w6[⊥]

w1[q
′]

w2[c1]

w4[X]

w5[c2]

w7[i]

w6[⊥]

In state q with c1 6= 0
and c2 = 0 go to q′,
decrement c1 and
increment c2.

TPRS are too powerful :-(

Theorem

Any two-counter machine can be simulated by a TPRS such that the machine
stops iff the TPRS terminates.

Undecidability causes
◮ Deletion?

◮ Ability to copy subtrees?

◮ Unbounded depth?

A Tool for Decidability: Well-Structured Transition Systems

Well-quasi-ordering

Well-quasi-ordering on a set X : quasi-ordering � such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, ’96]

◮ Well-quasi-ordering � on the set of configurations.

◮ Upwards compatibility. T1 T ′
1

T2

∗

�

A Tool for Decidability: Well-Structured Transition Systems

Well-quasi-ordering

Well-quasi-ordering on a set X : quasi-ordering � such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, ’96]

◮ Well-quasi-ordering � on the set of configurations.

◮ Upwards compatibility. T1 T ′
1

T2

∗

�

T ′
2�

∗

∃

A Tool for Decidability: Well-Structured Transition Systems

Well-quasi-ordering

Well-quasi-ordering on a set X : quasi-ordering � such that every infinite sequence
of elements from X contains an infinite increasing subsequence.

WSTS [Finkel/Schnoebelen, Abdulla/Jonsson, ’96]

◮ Well-quasi-ordering � on the set of configurations.

◮ Upwards compatibility. T1 T ′
1

T2

∗

�

T ′
2�

∗

∃

Theorem [Finkel/Schnoebelen, Abdulla/Jonsson, ’96]

Termination and coverability are decidable for WSTS (requires some additional
effectiveness properties).

Decidability Issues for Depth-bounded TPRS

Three restrictions

◮ Strict TPRS: no deletion allowed (all node in left are in right).

◮ Depth-bounded TPRS: for some constant K , every T ′ with T
∗
→ T ′ is of

depth at most K .

◮ Guards are upward closed.

Decidability Issues for Depth-bounded TPRS

Three restrictions

◮ Strict TPRS: no deletion allowed (all node in left are in right).

◮ Depth-bounded TPRS: for some constant K , every T ′ with T
∗
→ T ′ is of

depth at most K .

◮ Guards are upward closed.

Term. FS Reach. P-reach. Confl. W-confl.
Strict U U D U U U

Strictness is not enough

Simulating a 2-counter machine still works (instead of deleting, move to some
garbage node).

Decidability Issues for Depth-bounded TPRS

Three restrictions

◮ Strict TPRS: no deletion allowed (all node in left are in right).

◮ Depth-bounded TPRS: for some constant K , every T ′ with T
∗
→ T ′ is of

depth at most K .

◮ Guards are upward closed.

Term. FS Reach. P-reach. Confl. W-confl.
Strict U U D U U U
Depth-Bounded D U U D U U

Decidability
◮ Def. A tree T ′ subsumes a tree T iff there is an injective embedding of T

into T ′ preserving the root, the labelling and the parent relation.

◮ Lemma. For any K ≥ 0, the subsumed relation is a well-quasi order over
unordered trees of depth at most K .

◮ Techniques from WSTS yield decidability.

Decidability Issues for Depth-bounded TPRS

Three restrictions

◮ Strict TPRS: no deletion allowed (all node in left are in right).

◮ Depth-bounded TPRS: for some constant K , every T ′ with T
∗
→ T ′ is of

depth at most K .

◮ Guards are upward closed.

Term. FS Reach. P-reach. Confl. W-confl.
Strict U U D U U U
Depth-Bounded D U U D U U

Undecidability
◮ Simulate a reset Petri net (depth 2 is enough).

◮ FS property and reachability are undecidable for reset Petri nets
[Dufour/Finkel/Schnoebelen ’98].

◮ One can reduce reachability to (weak) confluence.

Decidability Issues for Depth-bounded TPRS

Three restrictions

◮ Strict TPRS: no deletion allowed (all node in left are in right).

◮ Depth-bounded TPRS: for some constant K , every T ′ with T
∗
→ T ′ is of

depth at most K .

◮ Guards are upward closed.

Term. FS Reach. P-reach. Confl. W-confl.
Strict U U D U U U
Depth-Bounded D U U D U U
Depth-B. Strict D D D D U U

Decidability
◮ Reachability is easy: exploration of a finite set.

◮ FS property comes from the fact that one has a strict WSTS.

Lower Bounds

Remark. Decidability is implicitly based on non-constructive proofs coming from
Higman’s Lemma.

Lower Bounds

Remark. Decidability is implicitly based on non-constructive proofs coming from
Higman’s Lemma.

Theorem

The following problems have at least non-elementary complexity:

◮ Input: A pattern P , a TPRS (T ,R) and an integer k such that the depth of
(T ,R) is bounded by k .

◮ Problem 1: Is the pattern P reachable in (T ,R)?

◮ Problem 2: Does (T ,R) terminate?

Lower Bounds

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.
◮ Simulate a run of M , a n 7→ tower(k , n)-space bounded TM on input x by a

linear size depth-bounded TPRS.

◮ Encode each configuration of M by a tree.

◮ Build TPRS to enforce transitions of M .

◮ Use counters to distinguish tape positions.

◮ At depth K , one can count up to tower(K , 2).

Lower Bounds

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

Encoding of counters as in [Walukiewicz ’98]
A level 2 counter encoding 13:

[1] [1] [0] [1]

[0] [0] [0] [1] [1] [0] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

Lower Bounds

Theorem

Pattern reachability and termination are non-elementary decidable.

Sketch.

Encoding the tape b b q b a :
[M]

[b] [b, ∗] [b, q] [a] [c0,true] [c1,cmp-compare-bits] [c2,check-suc3]

[0] [0] [0] [1] [1] [0, ∗1] [1] [1]

[0] [1] [0] [1] [0] [1] [0] [1]

[1] [1] [0, ∗′1]

[0] [1]

Undirected TPRS

Undirected TPRS
◮ No more restriction on the depth.

◮ TP used in left and in query cannot use the parent relation (only ancestor
relation).

Undirected TPRS

Undirected TPRS
◮ No more restriction on the depth.

◮ TP used in left and in query cannot use the parent relation (only ancestor
relation).

Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded
TPRS.

Theorem

Termination and pattern reachability have at least non primitive recursive
complexity for undirected TPRS.

Undirected TPRS

Theorem

For undirected TPRS one gets the same decidability results as for depth-bounded
TPRS.

Theorem

Termination and pattern reachability have at least non primitive recursive
complexity for undirected TPRS.

Proof: encode a LCS

[LCS]

[q1] [C1] [C2] [q2]

[a]

[c]

w
1

[end]

[b]

[a]

w
2

[end]

Related work

AC term rewriting

Essential difference: term rewriting is about ranked trees. Unclear how to simulate
TPRS rewriting on the ranked version of a tree.

Regular ground tree rewriting systems [Löding ’02]

◮ Rules L → R , with L, R regular sets of trees (subtrees from L can be replaced
by any element in R).

◮ Decidability: Reachability (pre∗-operator preserves regularity).

◮ Extension to unranked, ordered trees [Löding/Spelten ’07].

Guarded AXML [Abiteboul/Segoufin/Vianu ’08]

◮ Infinite data allowed. Uses Boolean combinations of tree patterns as guards
and temporal logics over tree patterns for property specification.
Decidable case: no recursion in calls.

Thank you!

	Reasoning about active documents
	Tree rewriting systems: patterns and queries
	Verification problems

