
On recognizable trace languages

Pascal Weil
(joint work with M. Kufleitner, Stuttgart)

LaBRI, Université de Bordeaux and CNRS

Computer Science and Engineering Department, IIT Delhi

Chennai, January 2009

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

I the basic definitions: do trace languages have a syntactic
monoid? how are varieties defined?

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

I the basic definitions: do trace languages have a syntactic
monoid? how are varieties defined?

I why have these definitions not given rise to a full-fledge
theory as for word languages?

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

I the basic definitions: do trace languages have a syntactic
monoid? how are varieties defined?

I why have these definitions not given rise to a full-fledge
theory as for word languages?

I we propose a new tool to discuss trace languages (built on the
old framework of the syntactic monoid), we see how it allows
us to give a robust framework of the classification of
recognizable trace languages, and we give a first set of
applications

Pascal Weil Recognizable trace languages



Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

I the basic definitions: do trace languages have a syntactic
monoid? how are varieties defined?

I why have these definitions not given rise to a full-fledge
theory as for word languages?

I we propose a new tool to discuss trace languages (built on the
old framework of the syntactic monoid), we see how it allows
us to give a robust framework of the classification of
recognizable trace languages, and we give a first set of
applications

I this is on-going work (still rough around the edges. . . )

Pascal Weil Recognizable trace languages



Traces: a classical model

I Independence alphabet (A, I ): A is a finite alphabet, I an
irreflexive and symmetric relation on A

Pascal Weil Recognizable trace languages



Traces: a classical model

I Independence alphabet (A, I ): A is a finite alphabet, I an
irreflexive and symmetric relation on A

I the trace monoid M(A, I ) is the quotient of A∗ by the
congruence generated by ab = ba whenever (a, b) ∈ I

Pascal Weil Recognizable trace languages



Traces: a classical model

I Independence alphabet (A, I ): A is a finite alphabet, I an
irreflexive and symmetric relation on A

I the trace monoid M(A, I ) is the quotient of A∗ by the
congruence generated by ab = ba whenever (a, b) ∈ I

I traces are one of the most important models used to represent
concurrent behavior

Pascal Weil Recognizable trace languages



Traces: a classical model

I Independence alphabet (A, I ): A is a finite alphabet, I an
irreflexive and symmetric relation on A

I the trace monoid M(A, I ) is the quotient of A∗ by the
congruence generated by ab = ba whenever (a, b) ∈ I

I traces are one of the most important models used to represent
concurrent behavior

I Each trace is naturally represented as a poset. If A = {a, b, c}
and I = {(a, b), (b, a)}, then abacb is represented by

a a

c b

b

Pascal Weil Recognizable trace languages



Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

Pascal Weil Recognizable trace languages



Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

I Equivalent to the monoid-theoretic notion: L is recognizable if
there exists ϕ : M(A, I ) → M into a finite monoid such that
L = ϕ−1ϕ(L). Trace languages have a syntactic monoid.

Pascal Weil Recognizable trace languages



Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

I Equivalent to the monoid-theoretic notion: L is recognizable if
there exists ϕ : M(A, I ) → M into a finite monoid such that
L = ϕ−1ϕ(L). Trace languages have a syntactic monoid.

I Recognizability is equivalent with MSO-definability (Thomas,
1989)

Pascal Weil Recognizable trace languages



Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

I Equivalent to the monoid-theoretic notion: L is recognizable if
there exists ϕ : M(A, I ) → M into a finite monoid such that
L = ϕ−1ϕ(L). Trace languages have a syntactic monoid.

I Recognizability is equivalent with MSO-definability (Thomas,
1989)

I Automata: see the notion of diamond property in automata;
equivalence with a beautiful model of automata which
captures the notion of independence: Zielonka’s automata

Pascal Weil Recognizable trace languages



Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

I Equivalent to the monoid-theoretic notion: L is recognizable if
there exists ϕ : M(A, I ) → M into a finite monoid such that
L = ϕ−1ϕ(L). Trace languages have a syntactic monoid.

I Recognizability is equivalent with MSO-definability (Thomas,
1989)

I Automata: see the notion of diamond property in automata;
equivalence with a beautiful model of automata which
captures the notion of independence: Zielonka’s automata

I Rational expressions: there is a problem. If a, b are
independent letters, then (ab)∗ is not recognizable, see
Ochmański’s concurrent rational expressions.

Pascal Weil Recognizable trace languages



A classification of recognizable trace languages?

I So we seem to be in a similar situation to word languages: the
algebraic properties of the syntactic monoid should be useful
to characterize and to decide significant classes of
recognizable trace languages, in a framework similar to
Eilenberg’s variety theory.

Pascal Weil Recognizable trace languages



A classification of recognizable trace languages?

I So we seem to be in a similar situation to word languages: the
algebraic properties of the syntactic monoid should be useful
to characterize and to decide significant classes of
recognizable trace languages, in a framework similar to
Eilenberg’s variety theory.

I and indeed Guaiana, Restivo, Salemi showed that star-free
trace languages are characterized by the aperiodicity of their
syntactic monoid. Ebinger, Muscholl showed that this class
coincides with FO-definable trace languages.

Pascal Weil Recognizable trace languages



A classification of recognizable trace languages?

I So we seem to be in a similar situation to word languages: the
algebraic properties of the syntactic monoid should be useful
to characterize and to decide significant classes of
recognizable trace languages, in a framework similar to
Eilenberg’s variety theory.

I and indeed Guaiana, Restivo, Salemi showed that star-free
trace languages are characterized by the aperiodicity of their
syntactic monoid. Ebinger, Muscholl showed that this class
coincides with FO-definable trace languages.

I But that is essentially the only example of such a
correspondence (until Kufleitner’s 2006 result). There has
been no satisfactory Eilenberg-like statement,. . . Why?

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

I Variety of languages: a class of recognizable languages closed
under Boolean operations, left and right residuals and inverse
morphisms

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

I Variety of languages: a class of recognizable languages closed
under Boolean operations, left and right residuals and inverse
morphisms

I Pseudovariety of monoids: a class of finite monoids closed
under submonoids, homomorphic images and finite direct
products.

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

I Variety of languages: a class of recognizable languages closed
under Boolean operations, left and right residuals and inverse
morphisms

I Pseudovariety of monoids: a class of finite monoids closed
under submonoids, homomorphic images and finite direct
products.

I Eilenberg’s theorem: (a) the languages whose syntactic
monoid lies in a given pseudovariety of monoids V form a
variety of languages V; (b) the correspondence V 7→ V is
one-to-one and onto between pseudovarieties and varieties

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

I Variety of languages: a class of recognizable languages closed
under Boolean operations, left and right residuals and inverse
morphisms

I Pseudovariety of monoids: a class of finite monoids closed
under submonoids, homomorphic images and finite direct
products.

I Eilenberg’s theorem: (a) the languages whose syntactic
monoid lies in a given pseudovariety of monoids V form a
variety of languages V; (b) the correspondence V 7→ V is
one-to-one and onto between pseudovarieties and varieties

I a conceptual framework for many famous results: Simon on
piecewise testable languages; Simon and McNaughton on
locally testable languages; many others. . .

Pascal Weil Recognizable trace languages



Extensions and applications (for word languages)

I Eilenberg’s theory extends to operations on varieties of
languages

Pascal Weil Recognizable trace languages



Extensions and applications (for word languages)

I Eilenberg’s theory extends to operations on varieties of
languages

I Variants: semigroups instead of monoids; ordered monoids
and positive varieties; C-varieties

Pascal Weil Recognizable trace languages



Extensions and applications (for word languages)

I Eilenberg’s theory extends to operations on varieties of
languages

I Variants: semigroups instead of monoids; ordered monoids
and positive varieties; C-varieties

I Let V 7→ V , let PolV be the class of unions of products of the
form L0a1L1 · · · akLk , where k ≥ 0, the ai are letters and the
Li are in V. And let UPolV be be the class of unions of
unambiguous products of the same form

Pascal Weil Recognizable trace languages



Extensions and applications (for word languages)

I Eilenberg’s theory extends to operations on varieties of
languages

I Variants: semigroups instead of monoids; ordered monoids
and positive varieties; C-varieties

I Let V 7→ V , let PolV be the class of unions of products of the
form L0a1L1 · · · akLk , where k ≥ 0, the ai are letters and the
Li are in V. And let UPolV be be the class of unions of
unambiguous products of the same form

I Then UPolV is a variety of languages, and the corresponding
pseudovariety of monoids is LI ©m V (computable, decidable if
V is, etc). And PolV is a positive variety and the
corresponding pseudovariety of ordered monoids is
[[xωyxω ≤ xω]] ©m V.

Pascal Weil Recognizable trace languages



And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).

Pascal Weil Recognizable trace languages



And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).

I Kufleitner shows an analogue of the results on V 7→ V vs
PolV 7→ [[xωyxω ≤ xω]] ©m V but only when V consists only of
commutative monoids

Pascal Weil Recognizable trace languages



And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).

I Kufleitner shows an analogue of the results on V 7→ V vs
PolV 7→ [[xωyxω ≤ xω]] ©m V but only when V consists only of
commutative monoids

I and an analogue of the results on V 7→ V vs UPolV 7→ LI ©m V
but only when V = J1 (idempotent and commutative
monoids)

Pascal Weil Recognizable trace languages



And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).

I Kufleitner shows an analogue of the results on V 7→ V vs
PolV 7→ [[xωyxω ≤ xω]] ©m V but only when V consists only of
commutative monoids

I and an analogue of the results on V 7→ V vs UPolV 7→ LI ©m V
but only when V = J1 (idempotent and commutative
monoids)

I In fact, there is no notion of variety of trace languages with
an Eilenberg-like theorem, to provide a clean framework

Pascal Weil Recognizable trace languages



Why doesn’t the theory extend (smoothly) to trace

languages?

I Proofs on recognizable trace languages that mimick the proofs
on word languages, usually stumble on elementary technical
lemmas, that are obvious for morphisms defined on A∗ and
fail on M(A, I ).

Pascal Weil Recognizable trace languages



Why doesn’t the theory extend (smoothly) to trace

languages?

I Proofs on recognizable trace languages that mimick the proofs
on word languages, usually stumble on elementary technical
lemmas, that are obvious for morphisms defined on A∗ and
fail on M(A, I ).

I Our idea is that the monoid-theoretic framework is not
sufficient to deal with trace languages,

Pascal Weil Recognizable trace languages



Why doesn’t the theory extend (smoothly) to trace

languages?

I Proofs on recognizable trace languages that mimick the proofs
on word languages, usually stumble on elementary technical
lemmas, that are obvious for morphisms defined on A∗ and
fail on M(A, I ).

I Our idea is that the monoid-theoretic framework is not
sufficient to deal with trace languages,

I that the trace monoids have more than a monoid structure:
they also have an independence structure.

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

Pascal Weil Recognizable trace languages



We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

Pascal Weil Recognizable trace languages



We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

I It has been considered several times in the literature (Diekert,

Gastin, Muscholl, Petit, . . . ), to transfer this alphabetic
information onto the finite monoids recognizing trace
languages: if ϕ : M(A, I ) → M recognizes L, then so does
ϕ′ : M(A, I ) → M × 2A, where ϕ′(u) = (ϕ(u), alph(u))

Pascal Weil Recognizable trace languages



We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

I It has been considered several times in the literature (Diekert,

Gastin, Muscholl, Petit, . . . ), to transfer this alphabetic
information onto the finite monoids recognizing trace
languages: if ϕ : M(A, I ) → M recognizes L, then so does
ϕ′ : M(A, I ) → M × 2A, where ϕ′(u) = (ϕ(u), alph(u))

I in certain technical situation, this idea helps, but it increases
the size of the recognizing monoid, and the algebraic structure
that it yields is intrinsically alphabet-dependent.

Pascal Weil Recognizable trace languages



We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

I It has been considered several times in the literature (Diekert,

Gastin, Muscholl, Petit, . . . ), to transfer this alphabetic
information onto the finite monoids recognizing trace
languages: if ϕ : M(A, I ) → M recognizes L, then so does
ϕ′ : M(A, I ) → M × 2A, where ϕ′(u) = (ϕ(u), alph(u))

I in certain technical situation, this idea helps, but it increases
the size of the recognizing monoid, and the algebraic structure
that it yields is intrinsically alphabet-dependent.

I To have a proper algebraic framework, abstract that out!

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

I Morphisms of I -monoids: ϕ : (M, I ) → (N, J) is an
I -morphism if ϕ : M → N is a monoid morphism, and if
(u, v) ∈ I =⇒ (ϕ(u), ϕ(v)) ∈ J

Already considered for morphisms between trace monoids (Bruyère,

de Felice, Guaiana)

Pascal Weil Recognizable trace languages



Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

I Morphisms of I -monoids: ϕ : (M, I ) → (N, J) is an
I -morphism if ϕ : M → N is a monoid morphism, and if
(u, v) ∈ I =⇒ (ϕ(u), ϕ(v)) ∈ J

Already considered for morphisms between trace monoids (Bruyère,

de Felice, Guaiana)

I Also consider strong I -morphisms, where
(u, v) ∈ I ⇐⇒ (ϕ(u), ϕ(v)) ∈ J.

Pascal Weil Recognizable trace languages



Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )

Pascal Weil Recognizable trace languages



Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )

I There is a largest I -monoid generated by (A, I ), and it is
M(A, I ) (an initial object in the category of (A, I )-generated
I -monoids)

Pascal Weil Recognizable trace languages



Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )

I There is a largest I -monoid generated by (A, I ), and it is
M(A, I ) (an initial object in the category of (A, I )-generated
I -monoids)

I Every I -monoid (M, I ) has a well-defined least strong
homomorphic image S(M, I ), called its skeleton

Pascal Weil Recognizable trace languages



Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )

I There is a largest I -monoid generated by (A, I ), and it is
M(A, I ) (an initial object in the category of (A, I )-generated
I -monoids)

I Every I -monoid (M, I ) has a well-defined least strong
homomorphic image S(M, I ), called its skeleton

I Skeleton monoids are idempotent and commutative, and they
encapsulate some fundamental information on the
independence structure of the I -monoid

Pascal Weil Recognizable trace languages



With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

Pascal Weil Recognizable trace languages



With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

Pascal Weil Recognizable trace languages



With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

I But a recognizable trace language L ⊆ M(A, I ) has a
syntactic I -monoid that may be different from its usual
syntactic monoid.

Pascal Weil Recognizable trace languages



With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

I But a recognizable trace language L ⊆ M(A, I ) has a
syntactic I -monoid that may be different from its usual
syntactic monoid.

I Syntactic congruence of L. Let u ∼L v iff
xuy ∈ L ⇐⇒ xvy ∈ L for all x , y ∈ M(A, I )
(x , u) ∈ I ⇐⇒ (x , v) ∈ I for all x ∈ M(A, I )

Pascal Weil Recognizable trace languages



With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

I But a recognizable trace language L ⊆ M(A, I ) has a
syntactic I -monoid that may be different from its usual
syntactic monoid.

I Syntactic congruence of L. Let u ∼L v iff
xuy ∈ L ⇐⇒ xvy ∈ L for all x , y ∈ M(A, I )
(x , u) ∈ I ⇐⇒ (x , v) ∈ I for all x ∈ M(A, I )

I the syntactic I -morphism M(A, I ) → M(A, I )/ ∼L is always a
strong I -morphism

Pascal Weil Recognizable trace languages



An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

Pascal Weil Recognizable trace languages



An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
I -monoids closed under taking sub-I -monoids, finite direct
products and images under strong I -morphisms. We also
require that V contains all skeleton monoids

Pascal Weil Recognizable trace languages



An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
I -monoids closed under taking sub-I -monoids, finite direct
products and images under strong I -morphisms. We also
require that V contains all skeleton monoids

I If V is a pseudovariety, let V = all trace languages recognized
by an I -monoid in V. Then V = all trace languages whose
syntactic I -monoid is in V and

Pascal Weil Recognizable trace languages



An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
I -monoids closed under taking sub-I -monoids, finite direct
products and images under strong I -morphisms. We also
require that V contains all skeleton monoids

I If V is a pseudovariety, let V = all trace languages recognized
by an I -monoid in V. Then V = all trace languages whose
syntactic I -monoid is in V and

I V 7→ V is a one-to-one and onto correspondence between
varieties of trace languages and pseudovarieties of I -monoids

Pascal Weil Recognizable trace languages



Identities for pseudovarieties of I -monoids

I Pseudovarieties of I -monoids can be defined by sequences of
identities (and probably pseudo-identities in the profinite
completion)

Pascal Weil Recognizable trace languages



Identities for pseudovarieties of I -monoids

I Pseudovarieties of I -monoids can be defined by sequences of
identities (and probably pseudo-identities in the profinite
completion)

I Example: [[yxyzy = yzyxy ]], which is in fact equal to [[xz = zx ]]

Pascal Weil Recognizable trace languages



Identities for pseudovarieties of I -monoids

I Pseudovarieties of I -monoids can be defined by sequences of
identities (and probably pseudo-identities in the profinite
completion)

I Example: [[yxyzy = yzyxy ]], which is in fact equal to [[xz = zx ]]

I but also [[yxyzy = yzyxy ]](x ,z)∈I , which is a different
pseudoidentity

Pascal Weil Recognizable trace languages



Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

Pascal Weil Recognizable trace languages



Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

Pascal Weil Recognizable trace languages



Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

I Let V be a pseudovariety of monoids (containing J1) and V
the corresponding variety of word languages. Let Vind be class
of all I -monoids (M, I ) such that M ∈ V and let V ind be the
corresponding variety of trace languages

Pascal Weil Recognizable trace languages



Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

I Let V be a pseudovariety of monoids (containing J1) and V
the corresponding variety of word languages. Let Vind be class
of all I -monoids (M, I ) such that M ∈ V and let V ind be the
corresponding variety of trace languages

I Then L ∈ V ind iff µ−1(L) ∈ V

Pascal Weil Recognizable trace languages



Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

I Let V be a pseudovariety of monoids (containing J1) and V
the corresponding variety of word languages. Let Vind be class
of all I -monoids (M, I ) such that M ∈ V and let V ind be the
corresponding variety of trace languages

I Then L ∈ V ind iff µ−1(L) ∈ V

I V 7→ Vind maps injectively the lattice of pseudovarieties of
monoids into the lattice of pseudovarieties of I -monoids, and
the corresponding map V 7→ V ind is onto the
independence-blind varieties of trace languages

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

I On-going work on wreath products

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

I On-going work on wreath products

I Some positive results on Malcev products

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following

I a monoid M is in W ©m V if there exists a relational morphism
τ : M → N with N ∈ V and τ−1(e) ∈ W for each
e = e2 ∈ N. . .

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following

I a monoid M is in W ©m V if there exists a relational morphism
τ : M → N with N ∈ V and τ−1(e) ∈ W for each
e = e2 ∈ N. . .

I . . . and a relational morphism τ : M → N is a relation such
that graph(τ) is a submonoid of M × N whose first projection
is onto M

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J

I and if V,W are pseudovarieites of (ordered) I -monoids, let
(M, I ) be an element of W ©m V if there exists a relational
I -morphism τ : (M, I ) → (N, J) with (N, J) ∈ V and
(τ−1(e), I ) ∈ W for each e = e2 ∈ N

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J

I and if V,W are pseudovarieites of (ordered) I -monoids, let
(M, I ) be an element of W ©m V if there exists a relational
I -morphism τ : (M, I ) → (N, J) with (N, J) ∈ V and
(τ−1(e), I ) ∈ W for each e = e2 ∈ N

I Then we get the exact same statement as in the word case,
with essentially the same proof ideas

Pascal Weil Recognizable trace languages



It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J

I and if V,W are pseudovarieites of (ordered) I -monoids, let
(M, I ) be an element of W ©m V if there exists a relational
I -morphism τ : (M, I ) → (N, J) with (N, J) ∈ V and
(τ−1(e), I ) ∈ W for each e = e2 ∈ N

I Then we get the exact same statement as in the word case,
with essentially the same proof ideas

I If V 7→ V, then PolV 7→ [[xωyxω ≤ xω]] ©m V
generalizing Kufleitner’s earlier results (only for V
commutative)

Pascal Weil Recognizable trace languages



As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas

Pascal Weil Recognizable trace languages



As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas

I Then Σn[E ] is a positive variety of trace languages,
Bool(Σn[E ]) is a variety of trace languages, and
Σn+1 = PolBool(Σn[E ])

Pascal Weil Recognizable trace languages



As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas

I Then Σn[E ] is a positive variety of trace languages,
Bool(Σn[E ]) is a variety of trace languages, and
Σn+1 = PolBool(Σn[E ])

I Moreover and if Vn,BVn are the corresponding pseudovarieties
of (ordered) I -monoids, then Vn+1 = [[xωyxω ≤ xω]] ©m BVn

Pascal Weil Recognizable trace languages



As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas

I Then Σn[E ] is a positive variety of trace languages,
Bool(Σn[E ]) is a variety of trace languages, and
Σn+1 = PolBool(Σn[E ])

I Moreover and if Vn,BVn are the corresponding pseudovarieties
of (ordered) I -monoids, then Vn+1 = [[xωyxω ≤ xω]] ©m BVn

I Decidability results for the lower levels (up to V2) should
follow

Pascal Weil Recognizable trace languages



Thank you for your attention!

Pascal Weil Recognizable trace languages


