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Outline

I Trace languages, a model for concurrent behaviors. No
justification needed for this distinguished audience

I The algebraic approach to recognizability is an essential tool
for word languages; is it also the case for trace languages?

I the basic definitions: do trace languages have a syntactic
monoid? how are varieties defined?

I why have these definitions not given rise to a full-fledge
theory as for word languages?

I we propose a new tool to discuss trace languages (built on the
old framework of the syntactic monoid), we see how it allows
us to give a robust framework of the classification of
recognizable trace languages, and we give a first set of
applications

I this is on-going work (still rough around the edges. . . )
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Traces: a classical model

I Independence alphabet (A, I ): A is a finite alphabet, I an
irreflexive and symmetric relation on A

I the trace monoid M(A, I ) is the quotient of A∗ by the
congruence generated by ab = ba whenever (a, b) ∈ I

I traces are one of the most important models used to represent
concurrent behavior

I Each trace is naturally represented as a poset. If A = {a, b, c}
and I = {(a, b), (b, a)}, then abacb is represented by

a a

c b

b
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Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.
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Recognizable trace languages: a classical notion

Let µ : A∗ −→ M(A, I )

I A trace language L ⊆ M(A, I ) is recognizable if its set of
linearizations is recognizable, that is, if µ−1(L) is recognizable.

I Equivalent to the monoid-theoretic notion: L is recognizable if
there exists ϕ : M(A, I ) → M into a finite monoid such that
L = ϕ−1ϕ(L). Trace languages have a syntactic monoid.

I Recognizability is equivalent with MSO-definability (Thomas,
1989)

I Automata: see the notion of diamond property in automata;
equivalence with a beautiful model of automata which
captures the notion of independence: Zielonka’s automata

I Rational expressions: there is a problem. If a, b are
independent letters, then (ab)∗ is not recognizable, see
Ochmański’s concurrent rational expressions.
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A classification of recognizable trace languages?

I So we seem to be in a similar situation to word languages: the
algebraic properties of the syntactic monoid should be useful
to characterize and to decide significant classes of
recognizable trace languages, in a framework similar to
Eilenberg’s variety theory.
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A classification of recognizable trace languages?

I So we seem to be in a similar situation to word languages: the
algebraic properties of the syntactic monoid should be useful
to characterize and to decide significant classes of
recognizable trace languages, in a framework similar to
Eilenberg’s variety theory.

I and indeed Guaiana, Restivo, Salemi showed that star-free
trace languages are characterized by the aperiodicity of their
syntactic monoid. Ebinger, Muscholl showed that this class
coincides with FO-definable trace languages.

I But that is essentially the only example of such a
correspondence (until Kufleitner’s 2006 result). There has
been no satisfactory Eilenberg-like statement,. . . Why?

Pascal Weil Recognizable trace languages



So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence
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So what goes on in words?

I Schützenberger’s result on star-free vs. aperiodic, is an
instance of a general correspondence

I Variety of languages: a class of recognizable languages closed
under Boolean operations, left and right residuals and inverse
morphisms

I Pseudovariety of monoids: a class of finite monoids closed
under submonoids, homomorphic images and finite direct
products.

I Eilenberg’s theorem: (a) the languages whose syntactic
monoid lies in a given pseudovariety of monoids V form a
variety of languages V; (b) the correspondence V 7→ V is
one-to-one and onto between pseudovarieties and varieties

I a conceptual framework for many famous results: Simon on
piecewise testable languages; Simon and McNaughton on
locally testable languages; many others. . .
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Extensions and applications (for word languages)

I Eilenberg’s theory extends to operations on varieties of
languages

I Variants: semigroups instead of monoids; ordered monoids
and positive varieties; C-varieties

I Let V 7→ V , let PolV be the class of unions of products of the
form L0a1L1 · · · akLk , where k ≥ 0, the ai are letters and the
Li are in V. And let UPolV be be the class of unions of
unambiguous products of the same form

I Then UPolV is a variety of languages, and the corresponding
pseudovariety of monoids is LI ©m V (computable, decidable if
V is, etc). And PolV is a positive variety and the
corresponding pseudovariety of ordered monoids is
[[xωyxω ≤ xω]] ©m V.

Pascal Weil Recognizable trace languages



And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).
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And the results on traces?

I Except for the result on star-free trace languages (1992), no
result until Kufleitner’s dissertation (2006).

I Kufleitner shows an analogue of the results on V 7→ V vs
PolV 7→ [[xωyxω ≤ xω]] ©m V but only when V consists only of
commutative monoids

I and an analogue of the results on V 7→ V vs UPolV 7→ LI ©m V
but only when V = J1 (idempotent and commutative
monoids)

I In fact, there is no notion of variety of trace languages with
an Eilenberg-like theorem, to provide a clean framework
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Why doesn’t the theory extend (smoothly) to trace

languages?

I Proofs on recognizable trace languages that mimick the proofs
on word languages, usually stumble on elementary technical
lemmas, that are obvious for morphisms defined on A∗ and
fail on M(A, I ).
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Why doesn’t the theory extend (smoothly) to trace

languages?

I Proofs on recognizable trace languages that mimick the proofs
on word languages, usually stumble on elementary technical
lemmas, that are obvious for morphisms defined on A∗ and
fail on M(A, I ).

I Our idea is that the monoid-theoretic framework is not
sufficient to deal with trace languages,

I that the trace monoids have more than a monoid structure:
they also have an independence structure.
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Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

Pascal Weil Recognizable trace languages



Independent traces: not a new idea

I Given (A, I ) an independence alphabet (I irreflexive and
symmetric), extend I to M(A, I ) by saying that traces u and v

are independent if alph(u) × alph(v) ⊆ I . Then

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.
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We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.
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I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

I It has been considered several times in the literature (Diekert,

Gastin, Muscholl, Petit, . . . ), to transfer this alphabetic
information onto the finite monoids recognizing trace
languages: if ϕ : M(A, I ) → M recognizes L, then so does
ϕ′ : M(A, I ) → M × 2A, where ϕ′(u) = (ϕ(u), alph(u))
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that it yields is intrinsically alphabet-dependent.
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We propose to abstract out this notion

I On M(A, I ), all the information on the independence relation
is contained in the alphabetic information.

I It has been considered several times in the literature (Diekert,

Gastin, Muscholl, Petit, . . . ), to transfer this alphabetic
information onto the finite monoids recognizing trace
languages: if ϕ : M(A, I ) → M recognizes L, then so does
ϕ′ : M(A, I ) → M × 2A, where ϕ′(u) = (ϕ(u), alph(u))

I in certain technical situation, this idea helps, but it increases
the size of the recognizing monoid, and the algebraic structure
that it yields is intrinsically alphabet-dependent.

I To have a proper algebraic framework, abstract that out!
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I An independence monoid, or I -monoid is a pair (M, I ) such
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Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

I Morphisms of I -monoids: ϕ : (M, I ) → (N, J) is an
I -morphism if ϕ : M → N is a monoid morphism, and if
(u, v) ∈ I =⇒ (ϕ(u), ϕ(v)) ∈ J

Already considered for morphisms between trace monoids (Bruyère,

de Felice, Guaiana)
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Independence monoids: definition

I An independence monoid, or I -monoid is a pair (M, I ) such
that M is a monoid and I is a symmetric relation satisfying

I (u, v) ∈ I =⇒ uv = vu

I (u, vw) ∈ I ⇐⇒ (u, v) ∈ I and (u,w) ∈ I

I (u, u) ∈ I iff u = 1. And (u, 1) ∈ I for each u.

I Morphisms of I -monoids: ϕ : (M, I ) → (N, J) is an
I -morphism if ϕ : M → N is a monoid morphism, and if
(u, v) ∈ I =⇒ (ϕ(u), ϕ(v)) ∈ J

Already considered for morphisms between trace monoids (Bruyère,

de Felice, Guaiana)

I Also consider strong I -morphisms, where
(u, v) ∈ I ⇐⇒ (ϕ(u), ϕ(v)) ∈ J.
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Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )
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Free I -monoids and skeleton monoids

I An I -monoid (M, J) is generated (resp. strongly generated)
by (A, I ) if there exists a map ψ : A → M such that ψ(A)
generates M and ψ(I ) ⊆ J (resp. and in addition ψ−1(J) ⊆ I )

I There is a largest I -monoid generated by (A, I ), and it is
M(A, I ) (an initial object in the category of (A, I )-generated
I -monoids)

I Every I -monoid (M, I ) has a well-defined least strong
homomorphic image S(M, I ), called its skeleton

I Skeleton monoids are idempotent and commutative, and they
encapsulate some fundamental information on the
independence structure of the I -monoid
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With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.
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I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)
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Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

I But a recognizable trace language L ⊆ M(A, I ) has a
syntactic I -monoid that may be different from its usual
syntactic monoid.

I Syntactic congruence of L. Let u ∼L v iff
xuy ∈ L ⇐⇒ xvy ∈ L for all x , y ∈ M(A, I )
(x , u) ∈ I ⇐⇒ (x , v) ∈ I for all x ∈ M(A, I )
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With morphisms comes recognizability

Let (M, I ) be an I -monoid and L ⊆ M.

I L is recognizable if L = ϕ−1ϕ(L) for a monoid morphism ϕ
into a finite monoid, I -recognizable if ϕ is an I -morphism,
strongly I -recognizable if ϕ is a strong I -morphism.

I For finitely generated I -monoids, and in particular for the
trace monoid M(A, I ), these 3 notions are equivalent (luckily!)

I But a recognizable trace language L ⊆ M(A, I ) has a
syntactic I -monoid that may be different from its usual
syntactic monoid.

I Syntactic congruence of L. Let u ∼L v iff
xuy ∈ L ⇐⇒ xvy ∈ L for all x , y ∈ M(A, I )
(x , u) ∈ I ⇐⇒ (x , v) ∈ I for all x ∈ M(A, I )

I the syntactic I -morphism M(A, I ) → M(A, I )/ ∼L is always a
strong I -morphism
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An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms
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I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
I -monoids closed under taking sub-I -monoids, finite direct
products and images under strong I -morphisms. We also
require that V contains all skeleton monoids
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An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
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An Eilenberg theorem for trace languages

Let us (re)define varieties in a now natural fashion

I Let a variety of trace languages be a collection
V = (V(A, I ))(A,I ) of recognizable trace languages closed
under Boolean operations, left and right residuals and inverse
I -morphisms

I Let a pseudovariety of I -monoids be a class V of finite
I -monoids closed under taking sub-I -monoids, finite direct
products and images under strong I -morphisms. We also
require that V contains all skeleton monoids

I If V is a pseudovariety, let V = all trace languages recognized
by an I -monoid in V. Then V = all trace languages whose
syntactic I -monoid is in V and

I V 7→ V is a one-to-one and onto correspondence between
varieties of trace languages and pseudovarieties of I -monoids
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Identities for pseudovarieties of I -monoids

I Pseudovarieties of I -monoids can be defined by sequences of
identities (and probably pseudo-identities in the profinite
completion)
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Identities for pseudovarieties of I -monoids

I Pseudovarieties of I -monoids can be defined by sequences of
identities (and probably pseudo-identities in the profinite
completion)

I Example: [[yxyzy = yzyxy ]], which is in fact equal to [[xz = zx ]]

I but also [[yxyzy = yzyxy ]](x ,z)∈I , which is a different
pseudoidentity
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Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)
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I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

I Let V be a pseudovariety of monoids (containing J1) and V
the corresponding variety of word languages. Let Vind be class
of all I -monoids (M, I ) such that M ∈ V and let V ind be the
corresponding variety of trace languages
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Varieties of word languages vs varieties of trace languages

I A word language L ⊆ A∗ is a particular case of a trace
language (over (A, I ) with I = ∅)

I Say that a variety W of trace languages is independence-blind

if L ∈ W(A, I ) iff µ−1(L) ∈ W(A, ∅), where µ : A∗ → M(A, I )

I Let V be a pseudovariety of monoids (containing J1) and V
the corresponding variety of word languages. Let Vind be class
of all I -monoids (M, I ) such that M ∈ V and let V ind be the
corresponding variety of trace languages

I Then L ∈ V ind iff µ−1(L) ∈ V

I V 7→ Vind maps injectively the lattice of pseudovarieties of
monoids into the lattice of pseudovarieties of I -monoids, and
the corresponding map V 7→ V ind is onto the
independence-blind varieties of trace languages
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What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind
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I More examples can be derived, and we have concentrated on
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discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

I On-going work on wreath products

Pascal Weil Recognizable trace languages



What can we hope to do with this theory?

I Of course, this variety-theoretic framework is appropriate to
account for the known correspondence Star-free =
FO[<]-definable trace languages = Apind

I More examples can be derived, and we have concentrated on
discussing operations on trace language varieties

I The hope is that all the (algebraic) hard work has already
been done in the theory of word languages, and we can re-use
the same concepts, techniques and proofs for trace languages

I On-going work on wreath products

I Some positive results on Malcev products
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It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)
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I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following
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consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following

I a monoid M is in W ©m V if there exists a relational morphism
τ : M → N with N ∈ V and τ−1(e) ∈ W for each
e = e2 ∈ N. . .
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It works for Malcev products and polynomial closure! (1/2)

I Let V be a variety of trace languages, and let PolV(A, I )
consist of all unions of products of the form L0a1L1 · · · anLn

(as in the word case)

I in the word/monoid case, PolV is a positive variety, and the
corresponding ordered pseudovariety is described by a Malcev
product. Recall the following

I a monoid M is in W ©m V if there exists a relational morphism
τ : M → N with N ∈ V and τ−1(e) ∈ W for each
e = e2 ∈ N. . .

I . . . and a relational morphism τ : M → N is a relation such
that graph(τ) is a submonoid of M × N whose first projection
is onto M
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It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J
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I Then we get the exact same statement as in the word case,
with essentially the same proof ideas
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It works for Malcev products and polynomial closure! (2/2)

I If (M, I ) and (N, J) are I -monoids, define a relational
I -morphism τ : (M, I ) → (N, J) to be a relational morphism
such that (u, v) ∈ I implies τ(u) × τ(v) ⊆ J

I and if V,W are pseudovarieites of (ordered) I -monoids, let
(M, I ) be an element of W ©m V if there exists a relational
I -morphism τ : (M, I ) → (N, J) with (N, J) ∈ V and
(τ−1(e), I ) ∈ W for each e = e2 ∈ N

I Then we get the exact same statement as in the word case,
with essentially the same proof ideas

I If V 7→ V, then PolV 7→ [[xωyxω ≤ xω]] ©m V
generalizing Kufleitner’s earlier results (only for V
commutative)
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As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas
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As in the word case, logical consequences

I Let Σn[E ] be the class of first-order formulas in normal prenex
form, with n blocks of quantifier, starting with a block of
existential quantifiers — where E is the edge relation in the
dependence graph of a trace. Let Σn[E ] also denote the class
of trace languages definable by such formulas

I Then Σn[E ] is a positive variety of trace languages,
Bool(Σn[E ]) is a variety of trace languages, and
Σn+1 = PolBool(Σn[E ])

I Moreover and if Vn,BVn are the corresponding pseudovarieties
of (ordered) I -monoids, then Vn+1 = [[xωyxω ≤ xω]] ©m BVn

I Decidability results for the lower levels (up to V2) should
follow
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Thank you for your attention!
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