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Preliminaries

Definition
An event structure ES is a tuple ES = (E, <, #) where <c E x E is
a partial order called the causality relation and # c E x E is the

conflict relation which is inherited. That is, for
e, €2, 63 € E, eifte; < e3 = ejtes.



An event structure:
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Preliminaries[2]



Preliminaries[3]

Definition

Two events ej, e; € E are said to be in minimal conflict denoted
ei#, ey if for any events e[, e; € E, e < ), e[#e; = e] = e and

e, < ey, erfte; = e = e;.

Definition
A configuration is a subset ¢ c E such that ¢ is prefix-closed and

for every ey, e; € ¢, —(er#e;). Cgs denotes the set of
configurations of ES.

Definition
For a configuration c, let #(c) denote the set of events that are

in conflict with the events and ¢ and #,(c) denote those in
minimal conflict.



Preliminaries[4]

Definition

An event e is enabled at a configuration c if e ¢ c and cu {e} is
also a configuration. The resulting configuration is denoted by
¢ 5. An event structure is boundedly enabled if there exists a
bound b such that at every configuration, the number of events
enabled is at most b.

Definition

« The residue of a configuration c is the set E \ (cu#(c)).
« ¢ and ¢’ are said to be right invariant, cRggc’ if their
residues are isomorphic.

« Given two residues in an Rgg class r, I¢ denotes the
restriction of the isomorphism to their minimal events.



Preliminaries[s]

Definition

« An event structure is recognisable if it has finitely many
Rgg equivalence classes.

« An event structure is regular if it is recognisable and
boundedly enabled.

Definition

A Z-labelled net consists of a tuple N = (P, T, ¢, pre, post, mg) of
disjoint finite sets P of places and T of transitions, which are
labelled, £: T — X, with two functions pre, post : T — 2F
specifying the pre and postconditions of a transitions and an
initial marking mo c P. A net is 1-safe if all reachable markings
are sets.



The Conjecture

Theorem (Thiagarajan)
The unfoldings of 1-safe nets are regular trace event structures.

Definition

A net N is called a folding of an event structure ES if the
unfolding of N is isomorphic to ES.

Conjecture (Thiagarajan)

Every regular event structure has a 1-safe folding.



The Conjecture[2]

Definition

A (Mazurkiewicz) trace alphabet is a pair M = (£,I) where X is
a finite non-empty set and I ¢ X x X is an irreflexive and
symmetric relation called the independence relation.

Definition
Let M = (Z,I) be a trace alphabet. An M-labelled event

structure LES = (ES, A) where ES = (E, <, #) is an event structure
and A: E — X is a labelling function which satisfies:

LES1 e#,e’ implies A(e) # A(e’).
LES2 e < e’ or e#,e’ implies (A(e),A(e’)) € D.
LES3 ecoe’ implies (A(e),A(e")) € 1.



The Conjecture(3]

Definition
ES is a trace event structure if and only if there exists a trace

alphabet M and an M-labelled event structure LES such that ES
is isomorphic to the underlying event structure of LES.

Conjecture (Thiagarajan)

Every regular event structure is also a regular trace event
structure.
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Proof

Let Eg, ={e | V' cc 5,e' <e= —(c'Rgsc)}

If e; < e; and e, satisfies the condition above, so does e.
Hence, Eg, is prefix-closed.

Take the closure of Eg, under one step of < and called the
restriction of ES to these events ESs,. ESj, remains prefix
closed.

Let the index of recognisability be n. Along any <-path,
after at most n events, a configuration containing the latest
event with residue isomorphic to one seen earlier will be
reached. Thus ESg, has atmost n events along any of its
path.

Since ES is boundedly enabled, ESg, is finite.



Proof]2]

Let lines be a minimal set of maximal <-chains that cover
ESgp.

Let cliques be the set of maximal #, cliques of ESg,.

Put = = zlines % chiquesl

Put ((a,b),(c,d))elifand only if anc=@ and bnd = @.
Thus ((a,b),(c,d))eDif and only if anc+@ or bnd + @.

For every e € ESg,, put A(e) = ({i | e lies on a chain i}, {j| e
lies on a clique j}).



Proof[3]

For e € ES \ ESgp:

Order the finite set of residues.

Suppose E; has already been labelled.

Let F; be the set of events that are enabled by some
configuration in E;.

For an event e € F;, consider the predecessors of e till along
every such path an event e’ is reached such that the
minimal configuration ¢ enabling that event has the same
residue as another configuration ¢y c ¢, ¢ € Ej_;.



Proof[4]

Let r be the minumum of these residues according to the
ordering and ¢ be a configuration with residue r. Let p be
the path from ¢ to e excluding e.

For every event e’ in p let ¢’ 5 ¢ be the minimum (w.r.t size
and residues) configuration enabling it.

Let ¢”" be such a configuration enabling e.

c is called the reference configuration and ¢”, the base
configuration of e.

Let po be the path of ¢y corresponding to p and c¢"y be the
configuration corresponding to c¢”.

r(c") =r(c") =" (say).



Proof[6]

Let ¢’ be the child of p’ that is I, equivalent to e.
Label e with that of e’.

Let E;;; =E; UF,.

The final labelled event structure ES = U;»q E;.
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Proof[8]

Definition

LES2a e < ¢’ implies (A(e),A(e")) € D.

« If e < ¢’ and both of them are in ESgy, then they share a
line. So (A(e),A(e")) € D.

« Otherwise, suppose e’ is labelled at the ith iteration and e
at the jth iteration such that i > j.

« Let the reference configuration and base configuration of e’
be ¢ and ¢’ respectively. Note that p may not contain e.

« By induction, we can find ¢y ¢ ESg, such that r(c") = r(cp).



Proof|[9]

By our procedure, e’ gets the same label as the e enabled
by ¢y which is I;(SC ) equivalent to e’.
Since ¢ is the minimum configuration that enables e’ and

e € ¢, the minimum configuration that enables e is a subset
of c.

Thus e had been labelled with the label of ey such that
eg < 66.

If e and e’ violate LES2a then so do ey and e.
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Proof[6]

Definition

LES3 ecoe’ implies (A(e),A(e")) € 1.

« If ecoe’ and both of them are in ESg, then they do not
share a line nor a #,-clique. Hence (A(e),A(e")) €.

« Otherwise, suppose e’ € ESfs, and e ¢ ESgy,.

« Let ¢ and ¢’ be respectively the reference and base
configurations of e.

« By induction we can find a configuration c; in ESg, such
that r(c") = r(cgp).



Proof[7]

« e was given the same label as the event ey enabled at ¢,
that is I;(SC ) equivalent to e.
o If egcoe’ then if e and e’ violate LES3, then so do ey and e’.

+ Otherwise the only case is that e’ = eg. But then there
exists an infinite antichain e, e, ... of events contradicting
the bounded enabling of ES.
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Proof[10]

Definition

LES1 e#,e’ implies A(e) # A(e").
LES2b e#,e’ implies (A(e),A(e")) € D.

o If e#,e’ and both of them are in ESgy, they share a
#,-clique and there are atleast two lines distinguishing
them. Hence A(e) # A(e’) and (A(e),A(e’)) € D.

« Otherwise, suppose ¢ and ¢’ are respectively the reference
and base configurations of e. By induction we find a
configuration ¢; in ESg, such that r(cy) = r(c’).



Proof[11]

« If ¢’ is the minimal configuration enabling e’ as well, then
we have events e, e, enabled by ¢{, eoI;(Sc,)e, e(')I;(SC,)e’ and
eote.

« If e and e’ violate LES1, LES2b then so do ey, €.

« If ¢’ is not enabled by ¢’ (this is the case of asymmetric
confusion), then we can again find an infinite sequence of
events e, e’,... and a configuration ¢” such that all of them
are enabled at ¢”’. But this contradicts the bounded
enabling of ES.
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