
Counting multiplicity over infinite

alphabets

Amal Dev Manuel and R. Ramanujam

The Institute of Mathematical Sciences, Chennai, India

{amal,jam}@imsc.res.in

Summary

I Motivation for infinite data.

I We need good data models, amenable to decidable
verification.

I Crucial decision: operations and predicates on data.

I Our proposal: count data value occurrences (subject to
constraints).

I Decidable automaton model.

I Interesting connections to logics.

Indo-French Workshop CMI, January 29-31, 2009

Data in verification

I Semi-structured data: documents viewed as ranked /
unranked trees with labels from finite domain.

I Software verification:

I Control structures: Procedure calls, dynamic process
creation.

I Data structures: integers, lists, pointers.
I Communication channels: unbounded buffers.
I Parameters: Number of processes, communication

delays.

Indo-French Workshop CMI, January 29-31, 2009

A resourceful tale

Two processes: {ri , si , ti} for request, start and terminate.

I Local property: in any computation, the i -projection is of
the form: (risi ti)

∗.

I Global property: between any si and subsequent ti , there
is no sj or tj , where j 6= i .

What happens when the number of processes is either
unknown, or changes during computation ?

Indo-French Workshop CMI, January 29-31, 2009

Model checking infinite state systems

An active research area.

I A typical approach:

I Describe system states by finite objects (strings).
I Describe possible transitions by rewriting rules.
I Devise algorithms for checking reachability.

I Model checking of linear time properties possible in many
cases.

I Missing: reasoning about data across states (as above).

I Missing: A generic framework for branching time
properties.

Indo-French Workshop CMI, January 29-31, 2009

Decidability issues

I Parametrized verification: property refers to process
actions indexed by process ID: requires an infinite
alphabet.

I Apt and Kozen 1986: Parametrized verification is
undecidable.

I Decidability obtained using network invariants, regular
model checking.

Emerson, Namjoshi 2005: indexed processes in CTL∗:
decidability obtained by showing that the properties studied
have constant cutoffs, using symmetry arguments.

Indo-French Workshop CMI, January 29-31, 2009

Decidability issues

I Parametrized verification: property refers to process
actions indexed by process ID: requires an infinite
alphabet.

I Apt and Kozen 1986: Parametrized verification is
undecidable.

I Decidability obtained using network invariants, regular
model checking.

Emerson, Namjoshi 2005: indexed processes in CTL∗:
decidability obtained by showing that the properties studied
have constant cutoffs, using symmetry arguments.

Indo-French Workshop CMI, January 29-31, 2009

A uniform framework

Similar considerations in dealing with semistructured data.
Enhance finitely labelled structures by data.

I One or more relations per node.

I Parameters:

I Underlying structure.
I Amount and structure of data at each node.
I Operations and predicates on data.
I Expressiveness of specification language.

Indo-French Workshop CMI, January 29-31, 2009

Regular languages

Regular languages over finite alphabets: a robust notion.

I There does not seem to be a canonical notion of regular
data languages.

I But we can mimic the regular languages framework.

I Some automata models have been studied.

Indo-French Workshop CMI, January 29-31, 2009

Example languages

Some standard examples.

I No two a positions have same data value.

I There exist two a positions have same data value.

I For every a position, there exists a b position with the
same data value.

I A process has to consume one given resource before
requesting another.

I Every process requesting a resource is eventually granted.

I Only one process has the resource at any time.

Indo-French Workshop CMI, January 29-31, 2009

Need for a theory

I We look for a decent theory of regular-like word and tree
languages over infinite alphabets.

I Decent = decidable emptiness problem, with manageable
complexity.

I Better, equivalent logical / algebraic characterizations.

Only equality comparisons on the infinite alphabet.

Indo-French Workshop CMI, January 29-31, 2009

Data languages

I (Σ×D)-labelled words, where Σ is finite and D is infinite.

I Data word language L ⊆ Σ∗∼,

I Data trees: the same notion, over unranked ordered trees.

Since we have only equality tests on values, positions in data
words are partitioned into classes; similarly nodes in trees are
equated.

Indo-French Workshop CMI, January 29-31, 2009

Reasoning

I Books that have been re-edited:

∃y . (x .isbn = y .isbn ∧ x .year 6= y .year)

I Unary keys: attribute A has distinct values:

∀x , y . (x .A = y .A =⇒ x = y)

I Navigation: From node x we can access nodes y1, y2 via
paths of type p1, p2 ∈ R such that y1.B = y2.B .

Indo-French Workshop CMI, January 29-31, 2009

Register automata

k-register automata: upon reading (a, v) ∈ (Σ× D), one can
check in which register value v occurs, can store v into a
register.
Let L ⊆ Σ∗∼. Define:

Proj(L) = {a1 . . . an | ∃(a1, v1) . . . (an, vn) ∈ L}

I If L is recognized by a k-RA M , then Proj(L) is regular.

I From M one can construct a word automaton M ′ of size
|M |2O(k2).

I Proof idea: Consider the matrix {=, 6=}k×k for keeping
track of equal registers; guess (in)equalities on the fly.

Indo-French Workshop CMI, January 29-31, 2009

Example

All data values occurring with letter a are distinct.

q0

Σ→ 1
q1

Σ→ 2
qf

Σ→ 2

a, 1

(Σ, 1) (Σ, 2)

a, 1

(Σ, 1), (Σ, 2)

Indo-French Workshop CMI, January 29-31, 2009

Results

Non-emptiness for register automata is decidable.

I There are subtle differences between register automata
models. In some, data values can occur in more than one
register; in some they cannot.

I In the former, the problem is PSpace-complete; in the
latter it is NP-complete.

I The mode is not expressive: local properties, like every
projection is of the form (risi ti)

∗, cannot be expressed.

Indo-French Workshop CMI, January 29-31, 2009

Pebble automata

Upon reading (a, v) ∈ (Σ× D),

I check which pebbles are under the head;

I check which pebbles mark positions with v

I can lift highest pebble, with head reverting to previous
pebble, and place new pebble.

Indo-French Workshop CMI, January 29-31, 2009

Example

There are at least two positions with a having the same data
value.

q0 q→ q1 qf
1, a, ∅, ∅, ↓

1,Σ, ∅, ∅,→

2, a, {1}, {1},→

2,Σ, ∅, ∅,→

2, a, ∅, {1},→

2,Σ, ∗, ∗,→

Indo-French Workshop CMI, January 29-31, 2009

Data logics

FO(+1, <,⊕1,∼):

I atomic predicates Pa(x), for a ∈ Σ.

I +1 for successor position, < order on positions.

I ∼ same value relation, ⊕1 for class successor.

EMSO(+1, <,⊕1,∼), similarly.
Models: data words.

Indo-French Workshop CMI, January 29-31, 2009

Examples
Consider FO(+1, <,∼):

I Every position labelled with a has a distinct value:

∀x , y .(Pa(x) ∧ Pa(y) ∧ x 6= y) =⇒ ¬(x ∼ y)

.
I Complement of the language above: words containing

two positions labelled with a having the same data value:

∃x , y .(Pa(x) ∧ Pa(y) ∧ x 6= y ∧ x ∼ y)

.
I Inclusion dependence: every position labelled with a has a

value which appears under a position labelled with b:

∀x .∃y .(Pa(x) =⇒ (Pb(y) ∧ x ∼ y))

.
Indo-French Workshop CMI, January 29-31, 2009

Examples
Sequences over {0, 1} with the same subsequence of 0-values
and 1-values:

I All 0’s have distinct values; similarly for 1’s.

I There is a bijection between 0-values and 1-values.

I For every pair of 0-positions x < y and every 1-position z
with x ∼ z , there exists a 1-position z ′ such that z < z ′

and y ∼ z ′.

Needs 3 variables, accepted by 2-PA.
Earlier examples, plus:

∀x , y , z .(P0(x) ∧ P0(y) ∧ x < y ∧ P1(z) ∧ x ∼ z)

=⇒ (∃x .(P1(x) ∧ x ∼ y ∧ z < x))

.
Indo-French Workshop CMI, January 29-31, 2009

Undecidability

FO3(S ,∼) is undecidable (and therefore FO3(<,∼) since S is
definable from < when we can use 3 variables).

I PCP reduction: Given instance I over alphabet Σ, let Σ′

consist of two disjoint copies of Σ.

Regular ∩ EqualSequences

Indo-French Workshop CMI, January 29-31, 2009

Expressive power

I FO(+1, <,∼) is incomparable with register automata.

I FO(+1, <,∼) is strictly included in pebble automata.

I The two-variable fragment is a decidable fragment, but
almost all natural extensions are undecidable.

E.g. FO2(+1, <,∼,�) with a linear order on data values.

Indo-French Workshop CMI, January 29-31, 2009

Two variable FO

Why consider a two variable logic, at all ?

I More hope for decidability. Rich structure over words.

I Core XPath without attributes = FO(+1, <) over trees
[Gottlob et al ’02, Marx ’05].

I Core XPath with one attribute ⊇ FO(+1, <,∼).

Indo-French Workshop CMI, January 29-31, 2009

Two variable logics

I FO2 over graphs has finite model property [Mortimer ’75];
is NEXPTIME complete [Graedel, Otto ’99].

I Over words, FO2 is equivalent to:

I unary LTL and Σ2 ∩ Π2 [Etessami, Vardi Wilke ’02].
I the variety DA [Therien, Wilke ’98].
I 2-way partially ordered DFA [Schwentick, Therien,

Vollmer ’01].

and is NEXPTIME complete.

Indo-French Workshop CMI, January 29-31, 2009

Decidability

FO2(+1, <,∼) is decidable [Bojanczyk, Muscholl, Schwentick,
Segoufin, David ’06].

I For each formula φ construct a data automaton that
accepts L(φ).

I For each data automaton accepting L, construct a
multicounter automaton that recognizes str(L).

I 2-EXPTIME reduction.

Indo-French Workshop CMI, January 29-31, 2009

Data automata

Data automaton (A,B): A, the base automaton, is a
nondeterministic letter-to-letter transducer.
B , the class automaton, is an NFA.

I A outputs a word x over a finite alphabet.

I B checks, for each ∼-class, that the subword of x
corresponding to the class is accepted.

Indo-French Workshop CMI, January 29-31, 2009

Example

Every data value occurring under a is distinct.

q0

The
trans-
ducer

q0

The finite
automa-
ton

q1

Σ→ Σ

a

b b

Indo-French Workshop CMI, January 29-31, 2009

FO and data automata

Above, we saw that FO2 definable data languages are
recognizable by data automata.
But the converse does not hold.

I Consider the property: each class is of even length. This
is not FO-definable.

I A prefix of second order existential quantifiers helps.

I Still not good enough; describing an accepting run needs
a comparison of successive positions in the same class.

EMSO2(+1, <,∼,⊕1) = DA.

Indo-French Workshop CMI, January 29-31, 2009

FO to DA

Scott normal form: every formula equivalent to

∀x∀y .χ ∧
∧
i

∀x∃y .χi

where the χi and χ are quantifier free, but over an extended
signature with unary predicates.

I Hence equivalent to ∃R1 . . . ∃Rm followed by a Scott
formula.

I Careful rewriting to ensure that innermost conjuncts are
all of the form base type or x ∼ y , x 6= y , x < y etc.

I Then construct data automata for each case, and use
closure under intersection, union and renaming.

Indo-French Workshop CMI, January 29-31, 2009

Multicounter automata

Finite automata + positive counters.
Equivalent to Petri nets.

I No test for zero (except at the end).

I Acceptance by final state all counters = 0.

Emptiness decidable [Mayr, Kosaraju ’84].
Not known to be elementary.

Indo-French Workshop CMI, January 29-31, 2009

DA to multicounter automata

Show that Proj(L) can be obtained as Shuf (L′) ∩ R .

I When Proj(L){anbn|n ≥ 0}, each class contains one a
and one b to its right; i.e. Proj(L) = Shuf ({ab}) ∩ a∗b∗.

I Marked shuffle of n words: use n colours.

I When L is regular, Shuf (L) is recognized by a
multicounter automaton [Gischer ’81].

Indo-French Workshop CMI, January 29-31, 2009

Counter automata

Counter mechanisms in the context of unbounded data.

I Each ”event type” (occurrence of a data vaue, occurrence
of a letter - value pair, etc) needs its own counter.

I Hence we need unboundedly many counters.

I A restraint on counter operations: monotone counters.

I Can be incremented, reset or compared against constants.

Indo-French Workshop CMI, January 29-31, 2009

The proposal

An automaton model for counting multiplicity of data values.

I The automaton includes a bag of infinitely many
monotone counters, one for each possible data value.

I When it encounters a letter - data pair, say (a, d), the
multiplicity of d is checked against a given constraint,
and accordingly updated, the transition causing a change
of state, as well as possible updates for other data as well.

I A bag is like a hash table, with elements of D as keys,
and counters as hash values.

I Transitions depend only on hash values (subject to
constraints) and not keys.

Indo-French Workshop CMI, January 29-31, 2009

The model

I A constraint is a pair c = (op, e), where
op ∈ {<,=, 6=, >} and e ∈ N .

I Define a bag to be a map h : D → N .

I Inst = {↑+, ↓}, the set of instructions.

I CCA = (Q,∆, I ,F), where:
∆ ⊆ (Q × Σ× C × Inst × U × Q)), where U is a finite
subset of N.

Indo-French Workshop CMI, January 29-31, 2009

Behaviour

A configuration is a pair (q, h), where q ∈ Q and h ∈ B . The
initial configuration of A is given by (q0, h0), where
∀d ∈ D, h0[i](d) = 0 and q0 ∈ I .

I Given a data word w = (a1, d1), . . . (an, dn), a run of A on
w is a sequence γ = (q0, h0)(q1, h1) . . . (qn, hn) such that
q0 ∈ I and for all i , 0 ≤ i < n, there exists a transition
ti = (q, a, c , ι, n, q′) ∈ ∆ such that q = qi , q′ = qi+1,
a = ai+1 and:

I hi (di+1) |= c.
I hi+1 is given by:

hi+1 =

{
hi ⊕ (d , n′) if ι =↑+, n′ = hi (d) + n
hi ⊕ (d , n) if ι =↓ }

Indo-French Workshop CMI, January 29-31, 2009

Example

All data values under a are distinct.

q0 q1

a, x = 0, [+1]
b, x ≥ 0, [0]

a, x = 1, [0]

Σ, x ≥ 0, [0]

Indo-French Workshop CMI, January 29-31, 2009

Examples

I The language Lfd(a) = “Data values under a are all

distinct” is recognizable.

I The language “There exists a data value appearing at
least twice under a” is recognizable.

I The language “All data values under a occur at most n
times” is recognizable.

I The language “ There exists a data value appearing under
a occurring more than n times” is recognizable.

I The language L∀a,= n = “All data values under a occur
exactly n times” is not recognizable.

Indo-French Workshop CMI, January 29-31, 2009

Decidability

Theorem

The emptiness problem of class counting automata is
decidable.

I By reduction to the covering problem for Petri nets.

I The decision procedure runs in Expspace, and thus we
have elementary decidability.

I The problem is complete for Expspace, by an easy
reduction the other way as well.

CCA are closed under union and intersection, but not under
complementation.

Indo-French Workshop CMI, January 29-31, 2009

Extensions

The model admits many possible extensions.

I Instead of working with one bag of counters, the
automaton can use several bags of counters, much as
multiple registers are used in the register automaton.

I We can check for the presence of any counter (in each
bag) satisfying a given constraint and updating it.

I The language of constraints can be strengthened: any
syntax that can specify semilinear sets will do.

I Extensions like two-way movement and alternation lead to
undecidability.

Indo-French Workshop CMI, January 29-31, 2009

A comparison

I No two a positions have same data value: PA, DA, CCA,
FO2, but not RA.

I There exist two a positions having same data value: all
formalisms.

I For every a position, there exists a b position with the
same data value: PA, DA, CCA, FO2, but not RA.

I A process has to consume one given resource before
requesting another: PA, DA, CCA, FO2, but not RA.

I Every process requesting a resource is eventually granted:
PA, DA, CCA, FO2, but not RA.

I Between two successive accesses to the resource by the
same user, some other process has to access it: PA, DA,
RA, but not FO2 or CCA.

Indo-French Workshop CMI, January 29-31, 2009

Comparison

I Non-emptiness decidable for RA, CCA, DA and FO2, but
not PA.

I Inclusion decidable only for FO2.

I Membership efficient for RA, CCA, PA and FO2, but not
DA.

I PA and FO2 are closed under complementation, CCA, PA
and DA are not.

Indo-French Workshop CMI, January 29-31, 2009

Automata vs Logics

Mostly incomparability results; better behaviour for PA than
RA.

I No FO / MSO characterization for RA.

I 2-way APA = MSO; 2-way strong DPA = FO.

I Emptiness undecidable for weak 1-way PA.

Indo-French Workshop CMI, January 29-31, 2009

Many questions

Data words have many potential applications.

I Applications to verification of parametrized systems ?

I This approach orthogonal to reachability based
approaches.

I Ability to talk about data is very limited (no arithmetic).

I Find models with better complexities.

I Study the tradeoff between more expressive data access
and complexity / decidability.

Clear need for decidable automata models and logics over data
words and data trees.
A challenging topic with many potential applications in
databases and system verification.

Indo-French Workshop CMI, January 29-31, 2009

