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Timed Systems

- N

# Evolution of system state with time

o Specified used temporal logics [Puneli 77]

# Modelled using Automata

o Decision Problems: Validity Checking, Model Checking.

Metric Time

# Logics: Metric Temporal Logic MTL [Koy90],
Duration Calculus [ZHR91]

# Automata: Timed Automata [Alur-Dill 1990]

Issue: Different notions of times,
Decidability varies based on nature of time.

o |
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Timed Behaviours

Pvar observable propositions. T
Behaviour 6(p) : Time — {0,1}

P 4 eoe teoveeeoeece

b 2
Continuous Time T = RV.

# Finitely Variable Behaviours: Finitely many state
changes In finite interval.

# Right Continuous Behaviours: No Glitches.
Vt3é > 0 s.t. 6(P) Is constant in interval [t : ¢ + 9).

o |
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Other Time Structures

-

Sampled Time

# Countable set of real-valued time points where the
state is recorded.

(50,0),(s1,2.3), (s3,7),(84,5.7), ...
# Timed words model [Alur-Dill].

# Close connection to Timed/Hybrid Automata.

Discrete Time Natural numbered sampling points.

o Useful describing for clocked circuits, synchronous
systems, qualitative behaviour.

# Digital (finite precision) clocks.

o |
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Morphisms between behaviours with different time

On Discretely Being Dense
-

structures.
Translations between logics with different time structures.

<

9

X

Continuous Time — Sampled Time — Discrete Time
Preserve either models or counter-models or both.

Provide a partial technique for the Verification of
Continuous Time Logic Formulae by reduction to
Discrete Time Formulae.

|
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Frames and Behaviours
fA behaviour is (F, 6). T

# Frame F — sequence of convex intervals “covering” RV.
= (Fl, s, .. ) such that 7 F; =~ Fiiq and
(Uin'> — R,

# dom(IF) the Iindices of sequence F.
Valuation 0 € dom(F) — 2Fvar

Example A behaviour (I, #) is given below.
I [0,1.5) [1.5,2.4) [2.4] [2.4] [2.4,3) [3,4.3) [4.3,)
0 -P, P, -P, P, -P, P, - P

Here, dom(F) = {1,2,...,7} and (1) = = P.

o |
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Points
| -

Given frame F = (7, F»,...), atime pointis (¢,7) with ¢t € F;.
Here ¢ iIs the time stamp and ¢ is the phase number.
® Points(F) ot {(t,7) | t € F;}
# Time points are linearly ordered:
(tl,il) < (tz,iz) < (tl < tz) /\ (il < ig).
# distance d(b, e) between time points:
d((t,4), (t,7)) = [t = 1'].
® We use b, ¢, z for points. Initial pointis 0 = (0, 1).

Example Points (0.5,1) < (2.4,3) < (2.4,4) < (2.4,5) < (3,6)
IF [0,1.5) [1.5,2.4) [2.4] [2.4] [2.4,3) [3,4.3) [4.3,0)
0 -P, P, -P, P, —-P, P, - P

~ State 0(2.4,3) = —P and 0(2.4,4) = P and 6(2.4,5) = —P. |
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Observable Points

-

Only a subset S of points points(IF) can be observable.
Initial point 0 € S.

-

® S must be time divergent, i.e for t € RV there exists
(t',i") € S with t' > t.

® (S,F,0)is called o-behaviour.
# )/ denotes given collection of o-behaviours.

Example

& Strictly monotonic time: My, def

{(S,F,0) € My | forall (i+1) e dom(F). F;NFi11 =0}

We can generically define MT L over class of behaviours M

o |
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Metric Temporal Logic

-

® Let [ = (i,5) denote interval with integral end points
1,7 € N. j = oo Is also allowed for right open interval.

# Interval iIs non-empty but can be closed, open or
half-open and also singular.
E.g. [2,3], (2,3], (2,3), [2,2], [2,00).

® lLetk+ (i,7) denote (k + i,k + j).
Syntax of MTL

Tlpl oAy | =o | oSy | oUr¥

oUry holds at point b provided ¢ holds at some ¢ > b s.t.
d(b,e) € I and ¢ holds forall z: b < z < e.

o |
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Semantics

-

Given o-behaviour (S, F,0) and b € S, define S|, 0,b = ¢
S,F,0,b=p iff pe (i) where b= (t,1)

S,F,0,b = oUry Iff forsome e S:b<e.
d(b,e) e I and S,F,0, e = and
forall e S:b<z<e S0 zEq¢

S,F,0,b = ¢Sy iff forsome e S:e <b.
d(e,b) € I and S,F,0,e =y and
forall 2z S:e<2<b. S,F, 0,z ¢

LNote that Z/; and S; are relativized to the set of observable
points.
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Satisfiabllity
-

MTL[M] denotes that formulae are interpreted over
0-behaviours from M.

#® Modelis (S,F,0,b)
® Anchored validity: S,F,0 = ¢ iff S,F,0,0 = ¢
® MEoiff SF OEo¢forall (S,F,0)e M

® ¢ c MTL[M] is satisfiable if for some (S,F,6) € M we
have S, F, 0 = ¢.

-

o |
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Continuous Time M'T'L..

- N

# Time Is continuous but finitely variable
# Time is weakly monotonic
# For any F all points are observable: S = points(IF)

My ¥ {(Points(F),F,0) | Fe FRAM, 6 € BEH(F)).

MT Ly = MTL[Mg).

Theorem|Alur-Henzinger93] Satisfiability of MT'L.; formulae
IS undecidable.

o |

Paritosh Pandya @ TWIM 2008 — p. 12



Sampled Timed Behaviou

-

® Let Ch(IF) set of beginning point of each phase
# Set of observable points Sy Is adequate for [ if
s Ch(F) C S,
» S Is countably infinite and time divergent.

® Logic MT Ly Isgiven by MTL|{My|.
My = {(SF,F,0) | Sr Is adequate}.

I'S

-

Example
E [0, 3.2)[3.2, *)
Ch(F) 0 3.2
S(F) 0 2.7 3.2 41 6.1 8.1...

o

|
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Approach

- N

# Continuous time logic Is more natural for specification.
Opa3® = On1(On9)-

# Sampled Time Logic is easier to analyse algorithmically.

Approach Specify in Continuous time and verify in Sampled
time.

o |
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Well Sampled IDL
-

Given F define W S(IF) the set of well sampling points with
1-oversampling.

-

. [0, 32)[32, %)
Ch(F) 0 3.2
Int(F) 01 2 3{ l\4 5 6 7 -
Mid(F) 05 15 25 31 36 45 556575

® WS(F) = Ch(F)U Int(F) U Mid(F)
®» Mys= {(WS(IF)vF?H)}

® MTLys & MTL[M,s]

o |
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Sampling Approximation

- N

R — WS(F).

f(b)y=01fb e WS(F)

f(b) maps to midpoint otherwise.
Properties of f

# fis Onto and Weakly order preserving:
b<e = f(b) < f(e

# fis not strictly order preserving: b <e # f(b) < f(e)
# State does not change in closed interval |f(b), b].

® d(f(b),b) <0.5

Bounded Sampling Error —1 < d(b,e) — d(f(b), f(e)) < 1.

o |
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Sampling of Models and Errors

-

Approximate continuous time model (Points(F),[F,0,0) to a
canonical sampled-time model (W S(F),[F, 0, f(b)).

-

Error bounds —1 < d(b,e) —d(f(b), f(e)) < 1

ldea: Relax the constants (intervals) in the formulae to
account for sampling errors.

Given a (open, closed or half-open) interval I = (i, j) let

® [Tbe(i—1,7+1)ifi—1>0andbe[0,j+ 1) otherwise.

® [~ beli+1,5—1]ifi+1>75—1, and be undefined
otherwise.

o |
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Sampling Abstraction

fTranslations LetaT and o= : MT L. — MTL,s. T

Example: o™ (pUys 419) = pUn 59 and
o~ (pUp.419) = PU3 314

Theorem [Sampling Abstraction]
1. Fa (97 b —ct Qb = Fa (97 f(b) ‘:’LUS Oé—l_(qb)'
2. F.0b=ce ¢ <= F,0,f(b) Fus @ (¢)

Corollary

1. }:ws Oé_(gb) = |:Ct ¢’
2. F,0, f(b) l?éws o["(gb) = F,0,0 \#ct P.

o |
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°

°

© o o o o o

Sampling Abstraction Definition

at(p)=a"(p) =p.
at(pAp)=aT(¢) AaT () and
a” (pAY) =a () Ao ()
at(=¢) =—a"(¢) and a” (=¢) = ~a"(¢)
at(@Ury) = at(¢) Ur+ o™ ().
a” (pUry) = o (@) U- o= ().
a(@Sry) = at(¢) Sr+ aT(¢).
a (¢S1y) = a () Sp- a” (¥).
a” (eUryp) and a~ (¢Sry) are false when I~ 1S

undeﬂned



Decidability and Model checking
-

Theorem The Satisfiability of MTL,; i1s undecidable [AH93].
The satisfiability of MT'L,,s Is also undecidable.

-

# Special cases are known to be decidable. E.g. MT'L,,
without S; over finite timed words [Ouaknine-Worrell].

# Standard automata theory of timed and hybrid systems
IS based on sampled time models.

o Several partial techniques such as bounded model
checking can be used.

o |
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Integer Time

-

A frame F Is called discrete if Ch(FF) C Int(F). In discrete
frames state changes only at integer times.

Integer Timed MT'L

# The set of sampling points is exactly the set of points
with integer time stamps. Behaviours are discrete

o Mypr ¥ {(Int(F),F,0,b) | Fis discrete}

-

® MTLzr ¥ MTLIMyp)

Theorem [AH93,Hen98] Satisfiability of MT L g IS
decidable and EXPSPACE-complete (assuming binary
encoding of integer constants).

o |
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Transforms Sampled time model into discrete time model

Digitization

-

[HMP93].

Example: F = [0,1.5)[1.5,4.35)[4.35, 00).
Then, [F] | 0.4 = [0,2)[2,4)[4, c0),

and [F] | 0.6 = [0,1)[1,4)[4, c0).

The set of digitizations
Z((S,F,0,b)) = {(S,F,0,b) e | 0<e<1}.

<

\—..

In digitization, the number and ordering of phases
remains same.

The end points of the phases and sampling points are
shifted to nearby integer points.

Digitizationn causes gquantization error in distance J
measurement.
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Digitization Abstraction
s -

Iiven an interval
# [ 7 be the smallest closed interval containing I
#® | | be the largest open interval contained in 1.
o |If I is singleton closed interval [z,i] then I | is undefined.

Example: [2,4) T = [2,4]and [2,4) | = (2,4).

Translations 5" and 3~ : MTLys — MTLyp.
Example 6% (pU 4q) = pUjp 499 and
87 (pUp.aq) = pUo a4

o |
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Digitization Abstraction

-

Translations 8" and 3~ : MT L,,s — MTLp.

Theorem[Digitization abstraction]
1. S,F,0,b=ws ¢ = Z(S,F,0,0) =z 67 (¢),
2. SF.0.bEws o <= Z(S,F,0,b) =z 8 (9).

Corollary

1. }ZZ ﬁ_(gb) = |:w8 P,
2. S7F797b \#Z ﬂ—i_(gb) = S,F,H,b I?'éws Qb

o



Digitization Reduction
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Approach to Validity Checking MT'L,,
- -

Give Continuous time MT L. formula ¢

® Compute o= @ 5-(a(¢)). Check the validity of ¢~

By theorems, =, ¢~ then =, ¢. If not valid, proceed
below.

® Compute ¢+ < 57 (a™(¢)). Check for

counter-example. By theorems, if F,0,b £, ¢ then
’I“(F, 9, b) \#ct qb

o If ¢~ is not valid and ¢ is valid, the method fails to give
any result. In this case scaling theorem can be applied.

o |
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Scaling Theorem

-

Theorem S,F,0,b =y ¢ iff k-S,k-F,0,k-b =4 ok
where

® ¢ 1S ¢ with each constant ¢ replaced by ¢ - £,
® [ - [F obtained by replace each phase [i, 7) by [k - i,k - 7).

® [ - S obtained by replacing each point (z,7) € S by point
(t ) kv Z)

Corollary = ¢ iff |=a ¢

o |
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Duration Calculus

-

# Rich real-time logic for safety and time-bounded
liveness property.

# Includes notion of “accumutated duration” of state [P.

# Sampling and digtization approximations have been
applied to DC to give strong and weak reduction to
Discrete Duration Calculus DDC.

# Provides a partial but pratical technique.

Claim Sampling and digitization of M1 L.; can be practically
useful.

o |
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Gas Burner in DC
-

# (Concl In any interval of a seconds the accumulated
duration of Leak is at most b.
O <a = [Leak <b).

® Desl Leak lasts at most d seconds at a stretch.
O([[ Leak] = ¢ <d)

#® Des2 Between any two leaks at least ¢ sec.
(|| Leak ] ~[[—Leak]| ~[| Leak] = £ > c).

® G(c,d,a,b) © Desl A Des2 = Conel.

Correctness: show that = G for given value of parameters.

o

-

|

Paritosh Pandya @ TWIM 2008 — p. 29



-

G

Experimental Results

as Burner: check = G(c,d, a,b) for given parameters.

Parameters

DCVALID

(hh:mm:ss)

Parameters

DCVALID
strong

(hh:mm:ss)

DCVALID
weak

(hh:mm:ss)

Gas Burner: Valid Cases

Gas Burner: Cases with counter examples

(4,8,30,18) 02.91s (2,4,99,6) 1.25s 1m 22s
(20,40,120,50) | 2m 28.43s (3,3,150,36) 18m 37s 19m 31.53s
(1,4,20,12) 1.50s (20,40,200,75) | 33m 29.54s 6m 27.55s
(1,4,60,32) 14.95s (2,4,500,15) 2h 5m 3.75s | 2h4m 8.91s
(2,4,100,53) 1m 1.62s (5,5,350,25) 2h 13m 53s | 2h 14m 12s
(2,4,300,250) | 20m 39.22s (7,3,175,27) | 33m 37.47s 32m 57s

In all cases dc2qgddc translation time is 0.3sec

o

|

Paritosh Pandya @ TWIM 2008 — p. 30



Experimental Results (continued)

- N

® For G(2,6,15,7) the method failed to give answer.
Instance was scaled to (4,12, 30, 14) which was proved
valid showing also that the original instance is also
valid.

# Other Examples: Minepump control, Lift Control, Small
Delay Insensitive Circuits.

o |
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Conclusions

-

Continuous time seems more natural when specifying
real-time behaviours.

There is general lack of tools for continuous time
logics/automata.

Sampling: a technique to approximate continous time
logic by sampled time logic.

Digitization: a technique to approximate sampled time
logic by discrete time logic.

Interesting but partial approach to validity (model)
checking of real-time logics.

Ongoing work: Other sampling schemes.

|
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Thank You
-

Questions?
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