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Timed Systems

Evolution of system state with time

Specified used temporal logics [Puneli 77]

Modelled using Automata

Decision Problems: Validity Checking, Model Checking.

Metric Time

Logics: Metric Temporal Logic MTL [Koy90],
Duration Calculus [ZHR91]

Automata: Timed Automata [Alur-Dill 1990]

Issue: Different notions of times,
Decidability varies based on nature of time.

Paritosh Pandya @ TWIM 2008 – p. 2



Timed Behaviours

Pvar observable propositions.
Behaviour θ(p) : Time→ {0, 1}

b e

P

Continuous Time T = ℜ0.

Finitely Variable Behaviours: Finitely many state
changes in finite interval.

Right Continuous Behaviours: No Glitches.
∀t∃δ > 0 s.t. θ(P ) is constant in interval [t : t+ δ).
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Other Time Structures

Sampled Time

Countable set of real-valued time points where the
state is recorded.

(s0, 0), (s1, 2.3), (s3, π), (s4, 5.7), . . .

Timed words model [Alur-Dill].

Close connection to Timed/Hybrid Automata.

Discrete Time Natural numbered sampling points.

Useful describing for clocked circuits, synchronous
systems, qualitative behaviour.

Digital (finite precision) clocks.
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On Discretely Being Dense

Morphisms between behaviours with different time
structures.
Translations between logics with different time structures.

Continuous Time −→ Sampled Time −→ Discrete Time

Preserve either models or counter-models or both.

Provide a partial technique for the Verification of
Continuous Time Logic Formulae by reduction to
Discrete Time Formulae.
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Frames and Behaviours

A behaviour is (F, θ).

Frame F – sequence of convex intervals “covering” ℜ0.
F = (F1, F2, . . .) such that ր Fi =տ Fi+1 and
(∪iFi) = ℜ0.

dom(F) the indices of sequence F.
Valuation θ ∈ dom(F) → 2Pvar

Example A behaviour (F, θ) is given below.
F = [0,1.5) [1.5,2.4) [2.4] [2.4] [2.4,3) [3,4.3) [4.3,∞)
θ = ¬P , P , ¬P , P , ¬P , P , ¬P

Here, dom(F) = {1, 2, . . . , 7} and θ(1) = ¬P .
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Points

Given frame F = (F1, F2, . . .), a time point is (t, i) with t ∈ Fi.
Here t is the time stamp and i is the phase number.

Points(F)
def
= {(t, i) | t ∈ Fi}

Time points are linearly ordered:
(t1, i1) ≤ (t2, i2) ⇐⇒ (t1 ≤ t2) ∧ (i1 ≤ i2).

distance d(b, e) between time points:
d((t, i), (t′, i′)) = |t− t′|.

We use b, e, z for points. Initial point is 0 = (0, 1).
Example Points (0.5, 1) < (2.4, 3) < (2.4, 4) < (2.4, 5) < (3, 6)

F = [0,1.5) [1.5,2.4) [2.4] [2.4] [2.4,3) [3,4.3) [4.3,∞)
θ = ¬P , P , ¬P , P , ¬P , P , ¬P

State θ̂(2.4, 3) = ¬P and θ̂(2.4, 4) = P and θ̂(2.4, 5) = ¬P .
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Observable Points

Only a subset S of points points(F) can be observable.
Initial point 0 ∈ S.

S must be time divergent, i.e for t ∈ ℜ0 there exists
(t′, i′) ∈ S with t′ > t.

(S,F, θ) is called o-behaviour.

M denotes given collection of o-behaviours.

Example

Strictly monotonic time: Mst
def
=

{(S,F, θ) ∈Mct | for all (i+1) ∈ dom(F). Fi∩Fi+1 = ∅}.

We can generically define MTL over class of behaviours M

Paritosh Pandya @ TWIM 2008 – p. 8



Metric Temporal Logic

Let I = 〈i, j〉 denote interval with integral end points
i, j ∈ ℵ. j = ∞ is also allowed for right open interval.

Interval is non-empty but can be closed, open or
half-open and also singular.
E.g. [2, 3], (2, 3], (2, 3), [2, 2], [2,∞).

Let k + 〈i, j〉 denote 〈k + i, k + j〉.

Syntax of MTL

⊤ | p | φ ∧ ψ | ¬φ | φSIψ | φUIΨ

φUIψ holds at point b provided ψ holds at some e ≥ b s.t.
d(b, e) ∈ I and φ holds for all z : b ≤ z < e.
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Semantics

Given o-behaviour (S,F, θ) and b ∈ S, define S,F, θ, b |= φ

S,F, θ, b |= p iff p ∈ θ(i) where b = (t, i)

S,F, θ, b |= φUIψ iff for some e ∈ S : b ≤ e.

d(b, e) ∈ I and S,F, θ, e |= ψ and
for all z ∈ S : b ≤ z < e. S,F, θ, z |= φ

S,F, θ, b |= φSIψ iff for some e ∈ S : e ≤ b.

d(e, b) ∈ I and S,F, θ, e |= ψ and
for all z ∈ S : e < z ≤ b. S,F, θ, z |= φ

Note that UI and SI are relativized to the set of observable
points.
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Satisfiability

MTL[M ] denotes that formulae are interpreted over
o-behaviours from M .

Model is (S,F, θ, b)

Anchored validity: S,F, θ |= φ iff S,F, θ, 0 |= φ

M |= φ iff S,F, θ |= φ for all (S,F, θ) ∈M

φ ∈MTL[M ] is satisfiable if for some (S,F, θ) ∈M we
have S,F, θ |= φ.
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Continuous TimeMTLct

Time is continuous but finitely variable

Time is weakly monotonic

For any F all points are observable: S = points(F)

Mct
def
= {(Points(F),F, θ) | F ∈ FRAM, θ ∈ BEH(F)}.

MTLct = MTL[Mct].

Theorem[Alur-Henzinger93] Satisfiability of MTLct formulae
is undecidable.
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Sampled Timed Behaviours

Let Ch(F) set of beginning point of each phase

Set of observable points SF is adequate for F if
Ch(F) ⊆ SF,
SF is countably infinite and time divergent.

Logic MTLpt is given by MTL[Mpt].
Mpt = {(SF,F, θ) | SF is adequate}.

Example
[0,                  3.2) [3.2,           *)F

0 3.2Ch(F)

2.7 3.2 4.1  6.1  8.1 ...S(F) 0
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Approach

Continuous time logic is more natural for specification.
♦[2,3]φ ⇒ ♦[1,1](♦[1,2]φ).

Sampled Time Logic is easier to analyse algorithmically.

Approach Specify in Continuous time and verify in Sampled
time.
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Well Sampled IDL

Given F define WS(F) the set of well sampling points with
1-oversampling.

[0,                  3.2) [3.2,           *)F

0 3.2Ch(F)

0 1Int(F) 32 4 5 6 7 ...

Mid(F) 0.5 1.5 2.5 3.1 4.5 5.5 6.5 7.53.6 .

WS(F) = Ch(F) ∪ Int(F) ∪Mid(F)

Mws = {(WS(F),F, θ)}

MTLws
def
= MTL[Mws]
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Sampling Approximation

f : ℜ0 → WS(F).
f(b) = b if b ∈ WS(F)
f(b) maps to midpoint otherwise.

Properties of f

f is Onto and Weakly order preserving:
b ≤ e ⇒ f(b) ≤ f(e)

f is not strictly order preserving: b < e 6⇒ f(b) < f(e)

State does not change in closed interval [f(b), b].

d(f(b), b) < 0.5

Bounded Sampling Error −1 < d(b, e) − d(f(b), f(e)) < 1.
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Sampling of Models and Errors

Approximate continuous time model (Points(F),F, θ, b) to a
canonical sampled-time model (WS(F),F, θ, f(b)).

Error bounds −1 < d(b, e) − d(f(b), f(e)) < 1

Idea: Relax the constants (intervals) in the formulae to
account for sampling errors.

Given a (open, closed or half-open) interval I = 〈i, j〉 let

I+ be (i− 1, j + 1) if i− 1 ≥ 0 and be [0, j + 1) otherwise.

I− be [i+ 1, j − 1] if i+ 1 ≥ j − 1, and be undefined
otherwise.
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Sampling Abstraction

Translations Let α+ and α− : MTLct →MTLws.

Example: α+(pU[2,4]q) = pU(1,5)q and
α−(pU[2,4]q) = pU[3,3]q.

Theorem [Sampling Abstraction]

1. F, θ, b |=ct φ ⇒ F, θ, f(b) |=ws α
+(φ).

2. F, θ, b |=ct φ ⇐ F, θ, f(b) |=ws α
−(φ)

Corollary

1. |=ws α
−(φ) ⇒ |=ct φ,

2. F, θ, f(b) 6|=ws α
+(φ) ⇒ F, θ, b 6|=ct φ.
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Sampling Abstraction Definition

α+(p) = α−(p) = p.

α+(φ ∧ ψ) = α+(φ) ∧ α+(ψ) and
α−(φ ∧ ψ) = α−(φ) ∧ α−(ψ).

α+(¬φ) = ¬α−(φ) and α−(¬φ) = ¬α+(φ).

α+(φUIψ) = α+(φ) UI+ α+(ψ).

α−(φUIψ) = α−(φ) UI− α−(ψ).

α+(φSIψ) = α+(φ) SI+ α+(ψ).

α−(φSIψ) = α−(φ) SI− α−(ψ).

α−(φUIψ) and α−(φSIψ) are false when I− is
undefined.
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Decidability and Model checking

Theorem The Satisfiability of MTLpt is undecidable [AH93].
The satisfiability of MTLws is also undecidable.

Special cases are known to be decidable. E.g. MTLpt

without SI over finite timed words [Ouaknine-Worrell].

Standard automata theory of timed and hybrid systems
is based on sampled time models.

Several partial techniques such as bounded model
checking can be used.
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Integer Time

A frame F is called discrete if Ch(F) ⊆ Int(F). In discrete
frames state changes only at integer times.

Integer Timed MTL

The set of sampling points is exactly the set of points
with integer time stamps. Behaviours are discrete

MZF
def
= {(Int(F),F, θ, b) | F is discrete}

MTLZF
def
= MTL[MZF ]

Theorem [AH93,Hen98] Satisfiability of MTLZF is
decidable and EXPSPACE-complete (assuming binary
encoding of integer constants).
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Digitization

Transforms Sampled time model into discrete time model
[HMP93].

Example: F = [0, 1.5)[1.5, 4.35)[4.35,∞).
Then, [F] ↓ 0.4 = [0, 2)[2, 4)[4,∞),
and [F] ↓ 0.6 = [0, 1)[1, 4)[4,∞).

The set of digitizations
Z((S,F, θ, b)) = {(S,F, θ, b) ↓ ǫ | 0 ≤ ǫ < 1}.

In digitization, the number and ordering of phases
remains same.

The end points of the phases and sampling points are
shifted to nearby integer points.

Digitizationn causes quantization error in distance
measurement.
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Digitization Abstraction

Given an interval I

I ↑ be the smallest closed interval containing I

I ↓ be the largest open interval contained in I.

If I is singleton closed interval [i, i] then I ↓ is undefined.

Example: [2, 4) ↑ = [2, 4] and [2, 4) ↓ = (2, 4).

Translations β+ and β− : MTLws →MTLZF .

Example β+(pU[2,4)q) = pU[2,4]q and
β−(pU[2,4)q) = pU(2,4)q.
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Digitization Abstraction

Translations β+ and β− : MTLws →MTLZF .

Theorem[Digitization abstraction]

1. S,F, θ, b |=ws φ ⇒ Z(S,F, θ, b) |=Z β+(φ),

2. S,F, θ, b |=ws φ ⇐ Z(S,F, θ, b)) |=Z β−(φ).

Corollary

1. |=Z β−(φ) ⇒ |=ws φ,

2. S,F, θ, b 6|=Z β+(φ) ⇒ S,F, θ, b 6|=ws φ.
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Digitization Reduction

β+(p) = β−(p) = p.

β+(φ ∧ ψ) = β+(φ) ∧ β+(ψ) and
β−(φ ∧ ψ) = β−(φ) ∧ β−(ψ).

β+(¬φ) = ¬β−(φ) and β−(¬φ) = ¬β+(φ).

β+(φUIψ) = β+(φ) UI↑ β
+(ψ).

β−(φUIψ) = β−(φ) UI↓ β
−(ψ).

β+(φSIψ) = β+(φ) SI↑ β
+(ψ).

β−(φSIψ) = β−(φ) SI↓ β
−(ψ).

β−(φUIψ) and β−(φSIψ) are false when I ↓ is
undefined.
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Approach to Validity Checking MTLct

Give Continuous time MTLct formula φ

Compute φ− def
= β−(α−(φ)). Check the validity of φ−.

By theorems, |=ZF φ− then |=ct φ. If not valid, proceed
below.

Compute φ+ def
= β+(α+(φ)). Check for

counter-example. By theorems, if F, θ, b 6|=ZF φ+ then
r(F, θ, b) 6|=ct φ.

If φ− is not valid and φ+ is valid, the method fails to give
any result. In this case scaling theorem can be applied.
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Scaling Theorem

Theorem S,F, θ, b |=ct φ iff k · S, k · F, θ, k · b |=dc φk

where

φk is φ with each constant c replaced by c · k,

k · F obtained by replace each phase [i, j) by [k · i, k · j).

k · S obtained by replacing each point (t, i) ∈ S by point
(t · k, i)

Corollary |=ct φ iff |=ct φk
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Duration Calculus

Rich real-time logic for safety and time-bounded
liveness property.

Includes notion of “accumutated duration” of state
∫
P .

Sampling and digtization approximations have been
applied to DC to give strong and weak reduction to
Discrete Duration Calculus DDC.

Provides a partial but pratical technique.

Claim Sampling and digitization of MTLct can be practically
useful.

Paritosh Pandya @ TWIM 2008 – p. 28



Gas Burner in DC

Concl In any interval of a seconds the accumulated
duration of Leak is at most b.

�(ℓ ≤ a ⇒
∫
Leak ≤ b).

Des1 Leak lasts at most d seconds at a stretch.
�(⌈⌈Leak⌉ ⇒ ℓ ≤ d)

Des2 Between any two leaks at least c sec.
�(⌈⌈Leak⌉⌢⌈⌈¬Leak⌉⌢⌈⌈Leak⌉ ⇒ ℓ > c).

G(c, d, a, b)
def
= Des1 ∧Des2 ⇒ Concl.

Correctness: show that |= G for given value of parameters.
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Experimental Results

Gas Burner: check |= G(c, d, a, b) for given parameters.

Parameters DCVALID Parameters DCVALID DCVALID

(hh:mm:ss) strong weak

(hh:mm:ss) (hh:mm:ss)

Gas Burner: Valid Cases Gas Burner: Cases with counter examples

(4,8,30,18) 02.91s (2,4,99,6) 1.25s 1m 22s

(20,40,120,50) 2m 28.43s (3,3,150,36) 18m 37s 19m 31.53s

(1,4,20,12) 1.50s (20,40,200,75) 33m 29.54s 6m 27.55s

(1,4,60,32) 14.95s (2,4,500,15) 2h 5m 3.75s 2h 4m 8.91s

(2,4,100,53) 1m 1.62s (5,5,350,25) 2h 13m 53s 2h 14m 12s

(2,4,300,250) 20m 39.22s (7, 3, 175, 27) 33m 37.47s 32m 57s

In all cases dc2qddc translation time is 0.3sec
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Experimental Results (continued)

For G(2, 6, 15, 7) the method failed to give answer.
Instance was scaled to G(4, 12, 30, 14) which was proved
valid showing also that the original instance is also
valid.

Other Examples: Minepump control, Lift Control, Small
Delay Insensitive Circuits.
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Conclusions

Continuous time seems more natural when specifying
real-time behaviours.

There is general lack of tools for continuous time
logics/automata.

Sampling: a technique to approximate continous time
logic by sampled time logic.

Digitization: a technique to approximate sampled time
logic by discrete time logic.

Interesting but partial approach to validity (model)
checking of real-time logics.

Ongoing work: Other sampling schemes.
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Thank You

Questions?
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