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Overview

Message Sequence Charts

! Visual formalism for specifying scenarios.

! Part of the UML Standard

! Has a rich and well understood theory.

! Timing constraints are natural for scenario specifications

! If acknowledgment is not received within a reasonable amount
of time, retransmit . . .

Can we extend the analysis techniques to the timed setting?

Unfortunately, most of the results are negative.
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MSCs as Partial Orders

Two clients and a server, and a partial order
representation
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! All channels are assumed to be FIFO.

! An MSC can be regenerated from any one sequentialization.
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A1

p q r

A2

p q r

A1 ◦ A2

p q r

p!r p!q q?p q!r r?q p!q q?p r?p

is a sequentialization of of A1 ◦ A2.
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Boundedness

A sequentialization of an MSC is B-bounded if no channel has
more than B messages at any point.

p q r

The linearization

p!q q?p p!r p!q q?p q!r r?q p!q q?p r?p

is 1-bounded while the linearization

p!q p!r p!q p!q q?p q?p p!r q?p r?q r?p

is 3-bounded.
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p q r

An existentially 1-bounded and universally 3-bounded MSC.
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Boundedness ...

An MSG is existentially bounded if there exists a B such that every
MSC it generates is existentially B-bounded.

q0

An MSG is universally bounded if there exists a B such that every
MSC it generates is B-bounded.
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Deciding Boundedness

! Every MSG is existentially B-bounded for some B .

! Checking whether an MSG is existentially B-bounded for a
given B is decidable.

! Checking whether an MSG is universally B-bounded for a
given B is decidable.

! Checking whether an MSG is bounded is decidable.
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Communication graph of an MSC

Nodes are the processes. An edge from p to q if there is a message
from p to q.

p q r p q r

An MSG is bounded if and only if every the MSC generated by
every loop has a communication graph that is a disjoint union of
SCCs.
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Adding time to scenarios

! Time constrained MSCs

! MSCs with timing constraints between events

! Time constrained Message Sequence Graphs

! Generate infinite families of time constrained MSCs



MSCs with time constraints

User ATM Server
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card

card-data
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pin-request
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Time Constrained MSCs

! Associate time interval constraints with pairs of events

! If (e, e′) !→ [l , u], then the time between occurrence of e and
e′ must be between l and u

! Intervals may be open, closed, half-open

! Simplifying assumptions

! Interval constraints are local to a process . . .

! Both e and e
′ lie on same process line

! . . . or across a single message

! e is p!q(m) and e
′ is corresponding receive q?p(m)



A timed behaviour

User ATM Server

(u1, 0)

(u2, 3.9)

(a1, 0)

(a2, 1)

(a3, 3.3)

(a4, 3.9)

(s1, 1)

(s2, 2.3)

card

card-data

card-OK

pin-request



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events

! Linearizations of timed MSCs are timed words



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events

! Linearizations of timed MSCs are timed words

! Again, a single linearization suffices to reconstruct a timed
MSC



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events

! Linearizations of timed MSCs are timed words

! Again, a single linearization suffices to reconstruct a timed
MSC

! A timed MSC covers a TC-MSC if for each constraint
(e, e′) $→ [l , u], l ≤ τ(e′) − τ(e) ≤ u



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events

! Linearizations of timed MSCs are timed words

! Again, a single linearization suffices to reconstruct a timed
MSC

! A timed MSC covers a TC-MSC if for each constraint
(e, e′) $→ [l , u], l ≤ τ(e′) − τ(e) ≤ u

! Replace ≤ by <, as appropriate, for open, half-open intervals



Timed MSCs

! Add timestamps to events on MSC, τ : E → R≥0

! All timestamps refer to same global time

! Order of timestamps respects partial order on events

! Linearizations of timed MSCs are timed words

! Again, a single linearization suffices to reconstruct a timed
MSC

! A timed MSC covers a TC-MSC if for each constraint
(e, e′) $→ [l , u], l ≤ τ(e′) − τ(e) ≤ u

! Replace ≤ by <, as appropriate, for open, half-open intervals

! TC-MSC T ⇒ L(T ), set of timed MSCs that cover T
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TC-MSCs and Timed MSCs

! The set of timed MSCs covering a TC-MSC may be empty.
! A TC-MSC is said to be realizable if it is covered by atleast

one timed MSC.

r s
m1 [0,3]

m2

m3

[0,2] [3,4]
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! States labelled by time constrained MSCs

! Local constraints for each process along edges

! Legal paths in the automaton generate time constrained MSCs

⇓
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m3
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([0,2],[1,1]) ((2,3],[1,1])
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Time Constrained Message Sequence Graphs

! States labelled by time constrained MSCs

! Local constraints for each process along edges

! Legal paths in the automaton generate time constrained MSCs

⇓

r sm1

[0,3]

r sm2

m3

r sm2

([0,2],[1,1]) ((2,3],[1,1])

r sm1 [0,3]

m2

m3

[0,2] [1,1]

r s
m1 [0,3]

m2

m1 [0,3]

m2

m3

(2,3]

[0,2]

[1,1]

[1,1]



Reachability



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)



Reachability

Given a TC-MSG G and a state q in G , does there exist a path
q0q1 . . . qk = q from an initial state q0 such that the TC-MSG
generated by this path is realizable ?

(The control state reachability problem for TC-MSGs.)

This problem is trivial for ordinary MSGs.
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p q
0

p q

1, a + 1

1, 1 p q

b + 1, 1

1, 1 p q
1

1, 1

! The first loop is to be executed k times and the second one l

times such that a.k − b.l = 1.

! Simple paths may not be realizable while those with loops
may be.
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Boundedness for Timed MSCs

! A timed MSC is universally B bounded if all its timed
linearizations are B bounded.

! A timed MSC is existentially B bounded if it has at least one
timed linearization that is B bounded.

! A TC-MSC is (universally/existentially) B bounded if all its
timed realizations are (universally/existentially) B bounded.

! A TC-MSG is (universally/existentially) bounded if there is a
B such that all the TC-MSCs realizing it are
(universally/existentially) B bounded.
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Undecidability of Reachability

We show that 2 counter machines can be simulated using
TC-MSGs.

! Each instruction is coded by a node in the TC-MSG.

! Each counter c is maintained using 2 processes pc and qc .

! In any run ending at a particular node, the difference between
the time-stamp on the last qc event and the last pc event
records the value of c .

pc qc
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! Increment the counter c .

p q

(1, 1)

1 2

c++
! Decrement the counter c .

p q

(1, 1)

2
1

c−−
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! Check if the counter is 0.

p q

(1, 1)

c
?
= 0

! Check if the counter is greater than 0.

p q

(1, 1)

2
1

1
2

c
?
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The Reduction ...

! The counter machine is assumed to be deterministic.

! It either has a finite run ending at the accept state or an
infinite run.

! The control state corresponding to the final state is reachable
if and only if the counter machine halts.

The control state reachability problem for TC-MSGs is
undecidable. The problem is undecidable even when there are no
timing constraints on messages.

The (language) emptiness problem for TC-MSGs is undecidable.
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! Add two new processes r and s.
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Reachability to Boundedess

! Add two new processes r and s.
! Augment the TC-MSC labelling each node with the following

two messages

r s

(1, )

2
10

! Label all the nonhalting states as accepting.

! If the counter machine halts then the language is finite and
hence bounded.

! If the counter machine does not halt then the language is not
even existentially bounded.

Checking boundedness for TC-MSGs is undecidable
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Are point intervals necessary to obtain undecidability?

Reachability and Boundedness are undecidable even when all
interval constraints are restricted to be open intervals.

! Use four processes pl , ql , pu and qu for each counter.

! One pair maintains a lower bound on the value of the counter
while the other maintains an upper bound.

! The value pl − ql is used to ensure that the C−− operation is
permissible only if the counter is nonzero.

! The value of pu − qu is used to check for 0.
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Initialize the counter to 0.

pl ql pu qu

> 1
< 2 < 1

> 2

Composition between Nodes

pl ql pu qu

(> 1, < 1) (< 1, > 1)
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The decrement instruction

pl ql pu qu

> 2
< 1 < 2

> 1



Open interval ...

Check for 0

pl ql pu qu

< 2

< 1
> 2
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What about the reachability problem for channel bounded
TC-MSGs?

The reachability problem for channel bounded TC-MSGs is also
undecidable.
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Single process as a time keeper

! Two processes are used to simulate a counter.

! Restrict constraints across nodes to only one fixed process
(across all transitions).

! A reasonable restriction.

A controller or scheduler process that dictates timing across
different phases of the protocol.

Even with the restriction that constraints across nodes are
permitted only on a fixed process, the reachability and
boundedness problems for TC-MSGs remain undecidable.
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More Undecidability – 3

Let p be the time-keeper. We use two processes q− and q+.

1. The time difference between the last events in p and q− is a
lower bound on the value of the clock.

2. The time difference between the last events in q+ and p is an
upper bound on the value of the clock.



More Undecidability - 3

Initialize

q−
c

p q+
c

2 2 2

Freeze

q−
c

p q+
c

2 2 2

0
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Increment

q−
c

p q+
c

1 2 3

0

Decrement

q−
c

p q+
c

3 2 1

0



More Undecidability – 3

Check for Zero

q−
c

p q+
c

2 2 2

0
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Locally synchronized MSGs

! Construct communication graph for an MSC
One node per process, edge p → q iff p sends a message to q

! For each loop, communication graph is one strongly
connected component plus isolated vertices

! In each loop, every message is “acknowledged”

m

m′

m m′

⇓

p q
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Locally Synchronized TC-MSGs

Every locally synchronized MSG generates a universally bounded
language.

! For locally synchronized TC-MSGs the boundedness problem
is trivially decidable.

! The reachability problem for locally synchronized TC-MSGs is
decidable.

! The untimed behaviour is regular.
! The number of active clocks is bounded.
! Associate clocks to event labels. A clock can be reset

everytime an associated event takes place.
! Works like an event-clock automaton (upto some extra

labelling).
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Conclusions and future directions

! Analyzing timed constrained MSGs is difficult.

! The culprit seems to be the use of a global time in the
semantics.

! Consider local time/clock drift/...

! Easier to formulate CFMs with local time.

! ... many undecidability results even with local time.

Thank you.
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Edge Constraint free TC-MSGs

Consider TC-MSGs where there are no time constraints associated
with transitions between nodes.

! The control state reachability problem is decidable. A path is
realizable if and only if each node in the path is realizable.

! The boundedness problem is still open. Time constraints can
enforce boundedness.


