
1/30

Some remarks on the control of
distributed automata

Anca Muscholl (joint work with I. Walukiewicz, M. Zeitoun)

LaBRI, Bordeaux

Chennai, January 2009

2/30

Asynchronous (Z-)automata, traces and
event structures informally

P1 P2 P3q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3 Representing executions

• As a word:
a1a2a3b1ca2d or a2a3a1b1ca2d

• As a trace.
• The set of all executions can

be represented as a tree,
• or as an event structure

(richer: concurrency).

2/30

Asynchronous (Z-)automata, traces and
event structures informally

P1 P2 P3q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3 Representing executions

• As a word:
a1a2a3b1ca2d or a2a3a1b1ca2d

• As a trace.
• The set of all executions can

be represented as a tree,
• or as an event structure

(richer: concurrency).

3/30

The synthesis problem

C

Σin

Σout

K ⊆ (ΣinΣout)∗

Centralized synthesis

• We are given a specification K .
• We want a finite automaton C with

L(C) ⊆ K
+ additional requirements (e.g.,
inputs are unconstrained).

Distributed synthesis

• Comes along with a distributed architecture (e.g., distributed (trace)
alphabet).

• In general undecidable (Peterson/Reif ’79, Pnueli/Rosner 90).
• Important: use adequate specifications (e.g. trace closed ones for

asynchronous automata).

4/30

Asynchronous automaton: example

P1 P2 P3q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3

Alphabet

• P: finite set of processes.
• Σ: finite set of letters.
• loc : Σ→ (2P \ ∅): distribution of

letters over processes.

loc(a1) = {P1}, loc(c) = {P1,P2}, . . .

4/30

Asynchronous automaton: example

P1 P2 P3q1 q2 q3

a1, b1, c a2, c, d a3, b3, d

a1

b1

c

a2

a2

d

a3

Alphabet

• P: finite set of processes.
• Σ: finite set of letters.
• loc : Σ→ (2P \ ∅): distribution of

letters over processes.

loc(a1) = {P1}, loc(c) = {P1,P2}, . . .

5/30

Asynchronous automata formally
Alphabet

• P: finite set of processes.
• Σ: finite set of letters.
• loc : Σ→ (2P \ ∅): distribution of letters over processes.

A (deterministic) asynchronous automaton

A = 〈{Sp}p∈P, sin, {δa}a∈Σ〉

• Sp states of process p
• sin ∈

∏
p∈P Sp is a (global) initial state,

• δa :
∏

p∈loc(a) Sp
·→
∏

p∈loc(a) Sp is a transition relation.

6/30

Language of an asynchronous automaton

The language of the automaton

The (regular) language of the product automaton.

Independence/Dependence

• Function loc : Σ→ (2P \ ∅) implies an independence relation on letters:

(a, b) ∈ I iff loc(a) ∩ loc(b) = ∅

• So the language is closed under commuting independent letters (trace
closed):

vabw ∈ L(A) implies vbaw ∈ L(A)

• Dependence relation D = (Σ× Σ) \ I . We will express it graphically:

a − c − b

7/30

Traces: an example

Dependence relation

a1

b1

a2

c

a3

d
b3

A trace
a1

b1

c

a2

a2

d

a3

8/30

Structure on traces

Prefix relation on traces

• The prefix relation on traces < is defined similarly as for words.
• Differently from words, a trace may have two prefixes that are themselves

<-incomparable.

t1, t2 < t but t1 6< t2 and t1 6< t2

For example: a and b are both prefixes of abc when (a, b) ∈ I .
• We write t1#t2 if the two traces do not have a common extension.

For example: ac#aac when (a, c) /∈ I .

9/30

Event structures
From words to trees
A prefix-closed language L ⊆ Σ∗ defines a Σ-labeled tree:

• nodes are elements of L,
• the tree order is given by the prefix relation <.
• the label of w ∈ L is the last letter in L.

ε

a b

a b

From traces to event structures
A prefix-closed language L ⊆ Tr(Σ) defines a Σ-labeled event structure:

• nodes are prime traces from L.
• the partial order is given by the prefix relation <.
• relation # is called conflict relation.
• the label of t is the label of the maximal element of t.

ES(A)

We denote by ES(A) the (trace) event structure of the language L(A).

10/30

Event structures: examples
From traces to event structures
A prefix-closed language L ⊆ Tr(Σ) defines a Σ-labeled event structure:

• nodes are prime traces from L.
• the partial order is given by the prefix relation <.
• relation # is called conflict relation.
• the label of t is the label of the maximal element of t.

Σ = {a, b}, independent
a

a

a

b

b

b

Σ = {a, b, c}, D : a − c − b
c

a

a

a

b b b

c c

c c

11/30

Specifying event structures
Logics for event structures

First-order logic (FOL) over the signature ≤, #, Pa for a ∈ Σ:

x ≤ x ′ | x#x ′ | Pa(x) | ¬ϕ | ϕ ∨ ψ | ∃x.ϕ(x).

Monadic second-order logic (MSOL)

. . . x ∈ Z | ∃Z .ϕ(Z).

Monadic trace logic (MTL): quantification restricted to conflict free sets.

Theorem (Madhusudan)

The problem if a given formula holds in a given trace event structure is
decidable for FOL and MTL.

Remark
There are trace event structures with undecidable MSOL theory (grid).

12/30

Part 1
Controlling asynchronous automata

• Process and action-based control.
• Reduction from process-based to action-based control.
• Encoding into MSOL theory of event structures.

13/30

Controlling an asynchronous automaton:
an example

a0, a1 b0, b1

c0, c1

Example specifications

1 aibjck with k = i.
2 aibjck with k = i · j .

Two methods of control

• Process-based [Madhusudan et al.]: Process decides what actions it can
do.

• Action-based [Gastin et al.]: Actions decide whether they can execute.

14/30

Process-based control
Plant over P, loc : Σ→ (2P \ ∅) and Σ = Σsys ∪ Σenv

A deterministic asynchronous automaton.

Views for a process p ∈ P

• Let viewp(t) be the smallest prefix of t containing all p-actions.
• Let Playsp(A) = {viewp(t) : t ∈ L(A)}.

Strategy

• A strategy is a tuple of functions fp : Playsp(A)→ 2Σsys
for p ∈ P.

• Plays respecting σ = {fp}p∈P. Assume u ∈ Plays(A, σ).
• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, σ).
• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, σ) provided that

a ∈ fp(viewp(u)) for all p ∈ loc(a).

15/30

Process-based control

Requirements

• We are given asynchronous automaton A and a regular trace language K .
• A strategy σ = {fp}p∈P gives us a set of traces Playsω(A, σ).
• A strategy is non-blocking if every trace in Plays(A, σ) that has an

extension in Plays(A), also has an extension in Plays(A, σ).

The control problem

Given A and K , decide if there is a non-blocking strategy σ such that
Playsω(A, σ) ⊆ K .

16/30

Action-based control

Process based Action based

viewp(t) viewa(t) =
⋃
{viewp(t) : p ∈ loc(a)}

Playsp(A) Playsa(A) = {viewa(t) : t ∈ L(A)}

fp : Playsp(A)→ 2Σsys ga : Playsa(A)→ {tt,ff }

σ = {fp}p∈P ρ = {ga}a∈Σsys

Playsω(A, ρ)

• if a ∈ Σenv and ua ∈ Plays(A) then ua is in Plays(A, ρ).
• if a ∈ Σsys and ua ∈ Plays(A) then ua ∈ Plays(A, ρ) provided that
ga(viewa(u)) = tt.

17/30

Reduction “process-based” to
“action-based”

Observation 1

If there is a process-based controller then there is an action-based controller.

Observation 2

This does not in principle imply that process-based control is easier than
action-based control (nor vice-versa).

Fact
For every asynchronous automaton A and MSOL specification α, one can
construct A and α such that:

process-based controller for (A, α) exists
iff

action-based controller for (A, α) exists.

18/30

Reduction: example

P1 P2 P3q1 q2 q3

a1,B1, c A2, c, d a3,B3, d

a1

B1

c

A2

A2

d

a3
{a1}
{a1, c}

{a1, c}

{a1, c}

{c, d}
{c}

{c, d}

{c, d}

{c, d}

{a3}
{a3, d}

{a3, d}

Process-based strategy

Σsys = {a1, a3, c, d}
• P1: a1 always possible, c only after
a1

• P2: c always possible, d after c or
if no A2 before

• P3: a3 always possible, d only
after a3

19/30

Reduction: example (cont.)

P1 P2 P3q1 q2 q3

a1,B1, c A2, c, d a3,B3, d

a1

B1

c

A2

A2

d

a3
{a1}
{a1, c}

{a1, c}

{a1, c}

{c, d}
{c}

{c, d}

{c, d}

{c, d}

{a3}
{a3, d}

{a3, d}

New arena for
action-based strategy

• New (local) system
actions:
>, {a1}, {a1, c}, {c, d}, {c}, . . .

• New (local) environment
actions:
⊥, (a,P1), (c,P1), (d,P2), . . .

• > winning and ⊥ losing
(for system)

20/30

Reduction: example (cont.)

P1 P2 P3q1 q2 q3

a1,B1, c A2, c, d a3,B3, d

a1

B1

c

A2

A2

d

a3
{a1}
{a1, c}

{a1, c}

{a1, c}

{c, d}
{c}

{c, d}

{c, d}

{c, d}

{a3}
{a3, d}

{a3, d}

New arena for
action-based strategy

• System proposes its set of
local actions in form of
new actions
(process-wise),
e.g. {a1, c}, {c}. If
proposed sets have empty
∩ (although actions are
possible) then ⊥ is
possible.

• Environment chooses one
of the proposed actions
(process-wise). If it
chooses maliciously
(e.g. (a1,P1), (c,P2)) then
> is possible.

21/30

Encoding process-based control

MSOL encoding (Madhusudan et al.)

For a MSOL specification α there is a MSOL formula ϕα such that ES(A) � ϕα
iff the process-based control problem for (A, α) has a solution.

Remark
The same can be done for action-based control.

22/30

Writing the formula ϕα

Encoding strategies

• Take σ = {fp}p∈P where each fp : Playsp(A)→ 2Σsys
.

• Encode σ with the help of variables Za
p for a ∈ Σsys and p ∈ P.

for every e ∈ ES(A) e ∈ Za
p iff a ∈ fp(e)

Encoding action-based control

• Write a formula π(X ,Za
p , . . .) defining Plays(A, σ).

• Write a formula πω(X ,Za
p , . . .) defining Playsω(A, σ).

• Say that all paths in Playsω(A, ρ) satisfy the specification:
∀X . πω(X ,Za

p , . . .)⇒ α(X).
• The required formula is: ∃Za

p . . . ∀X . πω(X ,Za
p , . . .)⇒ α(X).

23/30

Decidability of MSOL is not necessary

Definition
A trace alphabet is a co-graph if it does not contain the induced subgraph
a − b − c − d.

Theorem (Gastin, Lerman, Zeitoun)

The action-based control problem is decidable for automata over co-graph
trace alphabets.

Remark
Alphabet Σ = {a, b, c} with a − c − b is a co-graph. There is A over this
alphabet whose ES(A) has undecidable MSOL theory.

24/30

Part 2
MSOL and Thiagarajan’s conjecture

• Thiagarajan’s conjecture
• Co-graph dependence alphabets

25/30

(Latest?) Thiagarajan’s conjecture
Synchronizing automata

An automaton A is not synchronizing if there are traces x, u, v, y such that

• u, v are nonempty and independent from each other.
• xuvy is a prime trace.
• xu∗v∗y ⊆ L(A).

x
u
v

y

Remark
If A is not synchronizing then ES(A) has undecidable MSOL theory.

Conjecture

If A is synchronizing then the MSOL theory of ES(A) is decidable.

26/30

Strongly strongly-synchronizing automata

Strongly synchronizing automaton

An asynchronous automaton A is strongly synchronizing if in every prime trace
of L(A), each of its events has at most |A| many concurrent events.

Theorem (Madhusudan, Thiagarajan, Yang)

If A is strongly synchronizing then the MSOL theory of ES(A) is decidable.

Corollary

Both process- and action-based control are decidable for strongly
synchronizing automata.

27/30

Strongly synchronizing are too strong
Remark
There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Example: Σ = {a, b, c}, D : a − c − b, L(A) = a∗ba∗c + c

• This event structure is not strongly synchronizing
• It has decidable MSOL theory.

a

a

a
...

b
c

c

c

c
...

• Encode prime trace [ambc] by the word
ambc, etc.

• Translate MSOL over event structure
into MSOL over {a, b, c}-tree.

• Ex: partial order [an] < [anbc]
translates to an < anbc (word prefix).

• Rem: encoding [anbc] by banc does
not work, since an and ban far apart in
the tree.

27/30

Strongly synchronizing are too strong
Remark
There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Example: Σ = {a, b, c}, D : a − c − b, L(A) = a∗ba∗c + c

• This event structure is not strongly synchronizing
• It has decidable MSOL theory.

a

a

a
...

b
c

c

c

c
...

• Encode prime trace [ambc] by the word
ambc, etc.

• Translate MSOL over event structure
into MSOL over {a, b, c}-tree.

• Ex: partial order [an] < [anbc]
translates to an < anbc (word prefix).

• Rem: encoding [anbc] by banc does
not work, since an and ban far apart in
the tree.

28/30

Towards a solution: co-graphs
Trace normal form
We look for trace normal forms nf (t) that behave well w.r.t. prefix relation:

for all traces t < t ′ there are words p, s, s′ s.t.
nf (t′) = ps′, nf (t) = ps and s is small

Co-graphs

a

b

c

∆t(a, b)

∆t(b, a)

• In trace t: a ‖ b and a↑ ∩ b↑ 6= ∅.
• For co-graphs (and A sychronizing) there

is no extension t ′ of t such that
∆t′(a, b) > ∆t(a, b) or ∆t′(b, a) > ∆t(b, a) .

29/30

Normal form
Dynamical lexicographic form

• Enforce more order to the trace partial order:
For a ‖ b let a ≺ b if |∆t(a, b)| > N , N = |A|.

• Trace partial order t plus ≺ is acyclic: t≺.
• The priority normal form is the lexicographic normal form of t≺.
• If A is strongly synchronizing then it coincides with the lexicographic

normal form.

Priority normal form and reduction

• Priority normal form has the desired property:
for all traces t < t ′ there are words p, s, s′ s.t.
nf (t ′) = ps′, nf (t) = ps and s is small

• Reduction of MSOL over ES(A) to MSOL over Σ-tree works by identifying
t with word p in the tree and checking that small s fits correctly into s′.

29/30

Normal form
Dynamical lexicographic form

• Enforce more order to the trace partial order:
For a ‖ b let a ≺ b if |∆t(a, b)| > N , N = |A|.

• Trace partial order t plus ≺ is acyclic: t≺.
• The priority normal form is the lexicographic normal form of t≺.
• If A is strongly synchronizing then it coincides with the lexicographic

normal form.

Priority normal form and reduction

• Priority normal form has the desired property:
for all traces t < t ′ there are words p, s, s′ s.t.
nf (t ′) = ps′, nf (t) = ps and s is small

• Reduction of MSOL over ES(A) to MSOL over Σ-tree works by identifying
t with word p in the tree and checking that small s fits correctly into s′.

30/30

Conclusions

• While traces are relatively well understood, event structures are much
less.

• From the synthesis point of view, event structures are more fundamental
than traces.

• Thiagarajan’s conjecture is an important milestone in understanding the
decidability frontier.

• Thiagarajan’s conjecture is true for co-graphs. The general case remains
open.

• It may well be the case that action based control is decidable for all
asynchronous automata.

