Some remarks on the control of
distributed automata

Anca Muscholl (joint work with |. Walukiewicz, M. Zeitoun)

LaBRI, Bordeaux

Chennai, January 2009

1/30

Asynchronous (Z-)automata, traces and
event structures informally

N
\@/
y

2/30

Asynchronous (Z-)automata, traces and
event structures informally

% Representing executions

b1 e As a word:
\ a1 a0 a3b1 casd OF asagay by casd

e As atrace.

e The set of all executions can
be represented as a tree,

e or as an event structure
(richer: concurrency).

&<—,§

2/30

The synthesis problem

Centralized synthesis

o We are given a specification K.
e We want a finite automaton C with
L(C)CK
+ additional requirements (e.g.,
inputs are unconstrained).

K g (Einzout)*

Distributed synthesis

e Comes along with a distributed architecture (e.g., distributed (trace)
alphabet).

¢ In general undecidable (Peterson/Reif '79, Pnueli/Rosner 90).

e Important: use adequate specifications (e.g. trace closed ones for
asynchronous automata).

3/30

Asynchronous automaton: example

AIphabet
b1
\ o P finite set of processes.

e X: finite set of letters.
e loc: % — (27 \ 0): distribution of
letters over processes.

&<—§

4/30

Asynchronous automaton: example

AIphabet
b1
\ o P finite set of processes.

e Y finite set of letters.

e loc: % — (27 \ 0): distribution of
letters over processes.

&<—§

loc(ay) = { Py}, loc(c) ={P1, Pa},...

4/30

Asynchronous automata formally
Alphabet

o P: finite set of processes.
o X finite set of letters.
e loc: X — (2% \ 0): distribution of letters over processes.

A (deterministic) asynchronous automaton
A= <{Sp}p€Pa Sin, {6a}a€§]>
e S5, states of process p
* sin € [L,ep Sp is @ (global) initial state,

* da [Tpctoc(ay Sp = peioe(a) Sv is @ transition relation.

5/30

Language of an asynchronous automaton

The language of the automaton

The (regular) language of the product automaton.

Independence/Dependence

e Function loc : ¥ — (2 \ 0)) implies an independence relation on letters:
(a,b) € I iff loc(a) N loc(b) =0

e So the language is closed under commuting independent letters (trace
closed):
vabw € L(A) implies wvbaw € L(A)

e Dependence relation D = (X x X) \ I. We will express it graphically:

a—c—b

6/30

Traces:

Dependence relation

a as

an example

A trace
ap a
| /
by
\
~

ag
|
d

7/30

Structure on traces

Prefix relation on traces

e The prefix relation on traces C is defined similarly as for words.

o Differently from words, a trace may have two prefixes that are themselves
C-incomparable.

t1,0 C t but 1 i to and t ¢ to

For example: a and b are both prefixes of abc when (a,) € I.

o We write ¢, #t; if the two traces do not have a common extension.
For example: ac#aac when (a,c) ¢ I.

8/30

Event structures e
From words to trees \
A prefix-closed language L C ¥* defines a X-labeled tree:
e nodes are elements of L, a b

o the tree order is given by the prefix relation . / \
o the label of w € L is the last letter in L. a b

From traces to event structures
A prefix-closed language L C Tr(X) defines a X-labeled event structure:

e nodes are prime traces from L.

o the partial order is given by the prefix relation .

e relation # is called conflict relation.

e the label of ¢ is the label of the maximal element of .

ES(A)
We denote by ES(A) the (trace) event structure of the language L(A).

9/30

Event structures: examples

From traces to event structures
A prefix-closed language L C Tr(X) defines a X-labeled event structure:

e nodes are prime traces from L.

e the partial order is given by the prefix relation C.

e relation # is called conflict relation.

e the label of ¢ is the label of the maximal element of .

Y. ={a, b}, independent c b b — b

QL
[e N

10/30

Specifying event structures
Logics for event structures

First-order logic (FOL) over the signature <, #, P, for a € X:
z <o | o#a’ | Pa(z) |~ | @V o | Fz.0(a).
Monadic second-order logic (MSOL)
€ Z|3Z.0(Z).

Monadic trace logic (MTL): quantification restricted to conflict free sets.

Theorem (Madhusudan)
The problem if a given formula holds in a given trace event structure is
decidable for FOL and MTL.

Remark

There are trace event structures with undecidable MSOL theory (grid).

11/30

Part 1
Controlling asynchronous automata
e Process and action-based control.

e Reduction from process-based to action-based control.
e Encoding into MSOL theory of event structures.

12/30

Controlling an asynchronous automaton:
an example

Example specifications

Q azbjcy, with k = 1.
e aibjck with k = 7-7.

Two methods of control

e Process-based [Madhusudan et al.]: Process decides what actions it can
do.

e Action-based [Gastin et al.]: Actions decide whether they can execute.

13/30

Process-based control
Plant over P, loc : ¥ — (27 \ 0) and © = Xvs U Bem

A deterministic asynchronous automaton.

Views for a process p € P

o Let view,(t) be the smallest prefix of ¢ containing all p-actions.
o Let Plays,(A) = {view,(t) : t € L(A)}.

Strategy

« Astrategy is a tuple of functions f, : Plays,(A) — 2= for p € P.

e Plays respecting o = {f, },cp. Assume u € Plays(A, o).
e if a € X" and ua € Plays(A) then ua is in Plays(A, o).
o if a € ¥°% and ua € Plays(A) then ua € Plays(A, o) provided that
a € fy(viewp(uw)) for all p € loc(a).

14/30

Process-based control

Requirements

e We are given asynchronous automaton A and a regular trace language K.
o A strategy o = {f,} e gives us a set of traces Plays“ (A, o).

o A strategy is non-blocking if every trace in Plays(.A, o) that has an
extension in Plays(A), also has an extension in Plays(A, o).

The control problem

Given A and K, decide if there is a non-blocking strategy o such that
Plays“(A,0) C K.

15/30

Action-based control

Process based

Action based

view, (1) view, () = U{view (1) : p € loc(a)}
Plays,(A) Plays,(A) = {viewy(t) : t € L(A)}
fp : Plays,(A) — 27" ga : Plays,(A) — {tt, ff}

0 = {o}lper p = {ga}acs

Plays* (A, p)

e if a € " and ua € Plays(A) then ua is in Plays(A, p).
e if a € X% and ua € Plays(A) then ua € Plays(.A, p) provided that

Ja(view, (u)) = tt.

16/30

Reduction “process-based” to
“action-based”

Observation 1

If there is a process-based controller then there is an action-based controller.

Observation 2

This does not in principle imply that process-based control is easier than
action-based control (nor vice-versa).

Fact

For every asynchronous automaton .A and MSOL specification «, one can
construct A and @ such that:

process-based controller for (A,) exists
iff
action-based controller for (A, @) exists.

17/30

Reduction: example

{a} {c, d} {as}
{alac}l {C} {a3)

; }Bl Process-based strategy
ai, ¢
' \ ¥ = {ay, as, ¢, d}
{ar,c} {ﬁ’\d{ ° Zl: a; always possible, c only after
{ d}A2 e P,: c always possible, d after ¢ or
& | if no A, before

d e P3: a3 always possible, d only
{c, d} {as, d} after as

18/30

Reduction: example (cont.)

. . New arena for
action-based strategy

{a} {c, d} {as}

{a, c} 1 c} {az, d o Neyv (local) system
actions:

T, {a}, {a, c}, {ec, d}, {c},...

ai, c .
ta } \ e New (local) environment
actions:

{ay, ¢} {c,\c{ 1,(a,P),(c, P1),(d,Ps),...

Ao e T winning and L losing
{e, d}l (for system)

ey’ (o d)

19/30

a1;317 a A2a cC, 37B3a
() () ()
@ - & &
{a} {c, d} {as}
3
{alac} C}/ {a’37d
{alac} \
{a1, ¢} {C
{Cvd}l
et (and)

Reduction: example (cont.)

New arena for

action-based strategy

System proposes its set of
local actions in form of
new actions
(process-wise),

eg. {a,c},{c}. If
proposed sets have empty
N (although actions are
possible) then | is
possible.

Environment chooses one
of the proposed actions
(process-wise). If it
chooses maliciously

(e.g. (a1, P1), (¢, P2)) then
T is possible.

20/30

Encoding process-based control

MSOL encoding (Madhusudan et al.)

For a MSOL specification « there is a MSOL formula ¢, such that ES(A) E ¢,
iff the process-based control problem for (A, «) has a solution.

Remark

The same can be done for action-based control.

21/30

Writing the formula ¢,

Encoding strategies

o Take o = {f,}pcr Where each f, : Plays,(A) — 25"

e Encode o with the help of variables Z; for a € ¥°° and p € P.

for every e € ES(A) e€ z, iff ac€ fy(e)

Encoding action-based control

e Write a formula (X, Z7, ...) defining Plays(A, o).

o Write a formula 7 (X, Z¢, . ..) defining Plays” (A, o).

) P)
e Say that all paths in Plays” (A, p) satisfy the specification:
VX.7m¥(X,Z%...) = a(X).

) D

e The required formulais: 377 ... VX.7*(X, Z7,...) = a(X).

? P

22/30

Decidability of MSOL is not necessary

Definition

A trace alphabet is a co-graph if it does not contain the induced subgraph
a—b—c—d.

Theorem (Gastin, Lerman, Zeitoun)

The action-based control problem is decidable for automata over co-graph
trace alphabets.

Remark

Alphabet X = {a, b, ¢} with a — ¢ — b is a co-graph. There is A over this
alphabet whose ES(A) has undecidable MSOL theory.

23/30

Part 2
MSOL and Thiagarajan’s conjecture

e Thiagarajan’s conjecture
e Co-graph dependence alphabets

24/30

(Latest?) Thiagarajan’s conjecture
Synchronizing automata

An automaton A is not synchronizing if there are traces z, u, v, y such that

e u, v are nonempty and independent from each other.
e zuvyis a prime trace.
o zu*v*y C L(A

———

Remark
If A is not synchronizing then ES(.A) has undecidable MSOL theory.

Conjecture
If A is synchronizing then the MSOL theory of ES(.A) is decidable.

25/30

Strongly strongly-synchronizing automata

Strongly synchronizing automaton

An asynchronous automaton A is strongly synchronizing if in every prime trace
of L(.A), each of its events has at most |.4| many concurrent events.
Theorem (Madhusudan, Thiagarajan, Yang)

If A is strongly synchronizing then the MSOL theory of ES(A) is decidable.
Corollary

Both process- and action-based control are decidable for strongly
synchronizing automata.

26/30

Stronalv svnchronizina are too strona
Remark

There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Example: ¥ = {a,b,¢c}, D: a—c—b, L(A) = a*ba*c+ ¢

e This event structure is not strongly synchronizing
e It has decidable MSOL theory.

27/30

Stronalv svnchronizina are too strona
Remark

There are automata A that are not strongly synchronizing but still MSOL
theory of ES(A) is decidable.

Example: ¥ = {a,b,¢c}, D: a—c—b, L(A) = a*ba*c+ ¢

e This event structure is not strongly synchronizing
e It has decidable MSOL theory.

e Encode prime trace [a™bc] by the word

a b m

~. a™bc, etc.
J ¢ o Translate MSOL over event structure
a ~ into MSOL over {a, b, c}-tree.
l ¢ e Ex: partial order [a"] < [a"bc]
a ~ translates to a™ < a™bc (word prefix).
: c e Rem: encoding [a™bc] by ba™c does

not work, since «™ and ba™ far apart in
the tree. 730

Towards a solution: co-graphs
Trace normal form

We look for trace normal forms nf(t) that behave well w.r.t. prefix relation:

for all traces t < ¢’ there are words p, s, s’ s.t.
nf(t') = ps’, nf(t) = ps and s is small

Co-graphs
a e Intrace t: a || band al NbT #0.
e For co-graphs (and A sychronizing) there
c is no extension ¢’ of ¢ such that

Ay(a,b) > Ai(a,b) or Ay (b, a) > Ay(b, a) .

28/30

Normal form
Dynamical lexicographic form

Enforce more order to the trace partial order:
Fora | bleta<bif|Ai(a,b)] > N, N=|A|.

Trace partial order ¢ plus < is acyclic: t«.
The priority normal form is the lexicographic normal form of ¢.

If A is strongly synchronizing then it coincides with the lexicographic
normal form.

Priority normal form and reduction

e Priority normal form has the desired property:

for all traces ¢ < ¢’ there are words p, s, s’ s.t.
nf(t") = ps’, nf(t) = ps and s is small

29/30

Normal form
Dynamical lexicographic form

Enforce more order to the trace partial order:
Fora | bleta<bif|Ai(a,b)] > N, N=|A|.

Trace partial order ¢ plus < is acyclic: t«.
The priority normal form is the lexicographic normal form of ¢.

If A is strongly synchronizing then it coincides with the lexicographic
normal form.

Priority normal form and reduction

e Priority normal form has the desired property:
for all traces ¢ < ¢’ there are words p, s, s’ s.t.
nf(t") = ps’, nf(t) = ps and s is small

e Reduction of MSOL over ES(.A) to MSOL over X-tree works by identifying
t with word p in the tree and checking that small s fits correctly into s'.

29/30

Conclusions

While traces are relatively well understood, event structures are much
less.

From the synthesis point of view, event structures are more fundamental
than traces.

Thiagarajan’s conjecture is an important milestone in understanding the
decidability frontier.

Thiagarajan’s conjecture is true for co-graphs. The general case remains
open.

It may well be the case that action based control is decidable for all
asynchronous automata.

30/30

