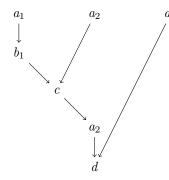
Some remarks on the control of distributed automata

Anca Muscholl (joint work with I. Walukiewicz, M. Zeitoun)

LaBRI, Bordeaux

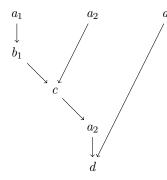
Chennai, January 2009

Asynchronous (Z-)automata, traces and event structures informally



^{a3} Representing executions

Asynchronous (Z-)automata, traces and event structures informally



^{*a*₃} Representing executions

- As a word: $a_1 a_2 a_3 b_1 c a_2 d$ or $a_2 a_3 a_1 b_1 c a_2 d$
- As a trace.
- The set of all executions can be represented as a tree,
- or as an event structure (richer: concurrency).

The synthesis problem

$\begin{array}{c} \sum_{in} \\ \hline C \\ \downarrow \Sigma_{out} \end{array} \quad K \subseteq (\Sigma_{in} \Sigma_{out})^*$

Centralized synthesis

- We are given a specification *K*.
- We want a finite automaton C with $L(C) \subseteq K$ + additional requirements (e.g., inputs are unconstrained).

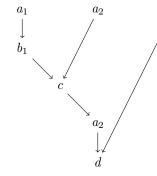
Distributed synthesis

- Comes along with a distributed architecture (e.g., distributed (trace) alphabet).
- In general undecidable (Peterson/Reif '79, Pnueli/Rosner 90).
- Important: use adequate specifications (e.g. trace closed ones for asynchronous automata).

Asynchronous automaton: example

 P_1

 a_3



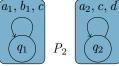
Alphabet

- P: finite set of processes.
- Σ: finite set of letters.
- $loc: \Sigma \to (2^{\mathbb{P}} \setminus \emptyset)$: distribution of letters over processes.

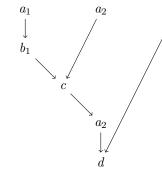
 $loc(a_1) = \{P_1\}, \ loc(c) = \{P_1, P_2\}, \dots$

Asynchronous automaton: example

 P_1



 a_3



 q_2

Alphabet

- P: finite set of processes.
- Σ: finite set of letters.
- $loc: \Sigma \to (2^{\mathbb{P}} \setminus \emptyset)$: distribution of letters over processes.

 $loc(a_1) = \{P_1\}, \ loc(c) = \{P_1, P_2\}, \ldots$

Asynchronous automata formally

Alphabet

- P: finite set of processes.
- Σ: finite set of letters.
- $loc: \Sigma \to (2^{\mathbb{P}} \setminus \emptyset)$: distribution of letters over processes.

A (deterministic) asynchronous automaton

$$\mathcal{A} = \langle \{S_p\}_{p \in \mathbb{P}}, s_{in}, \{\delta_a\}_{a \in \Sigma} \rangle$$

- S_p states of process p
- $s_{in} \in \prod_{p \in \mathbb{P}} S_p$ is a (global) initial state,
- $\delta_a : \prod_{p \in loc(a)} S_p \xrightarrow{\cdot} \prod_{p \in loc(a)} S_p$ is a transition relation.

Language of an asynchronous automaton

The language of the automaton

The (regular) language of the product automaton.

Independence/Dependence

• Function $loc: \Sigma \to (2^{\mathbb{P}} \setminus \emptyset)$ implies an independence relation on letters:

$$(a,b) \in I$$
 iff $loc(a) \cap loc(b) = \emptyset$

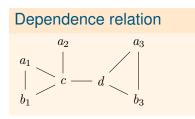
• So the language is *closed* under commuting independent letters (trace closed):

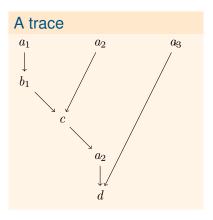
 $vabw \in L(\mathcal{A})$ implies $vbaw \in L(\mathcal{A})$

• Dependence relation $D = (\Sigma \times \Sigma) \setminus I$. We will express it graphically:

$$a-c-b$$

Traces: an example





Structure on traces

Prefix relation on traces

- Differently from words, a trace may have two prefixes that are themselves □-incomparable.

 $t_1, t_2 \sqsubset t$ but $t_1 \not\sqsubset t_2$ and $t_1 \not\sqsubset t_2$

For example: *a* and *b* are both prefixes of *abc* when $(a, b) \in I$.

• We write *t*₁#*t*₂ if the two traces do not have a common extension. For example: *ac*#*aac* when (*a*, *c*) ∉ *I*.

Event structures

From words to trees

A prefix-closed language $L \subseteq \Sigma^*$ defines a Σ -labeled tree:

- nodes are elements of L,
- the tree order is given by the prefix relation □.
- the label of $w \in L$ is the last letter in L.

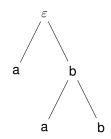
From traces to event structures

A prefix-closed language $L \subseteq Tr(\Sigma)$ defines a Σ -labeled event structure:

- nodes are prime traces from L.
- the partial order is given by the prefix relation □.
- relation # is called conflict relation.
- the label of t is the label of the maximal element of t.

$ES(\mathcal{A})$

We denote by ES(A) the (trace) event structure of the language L(A).

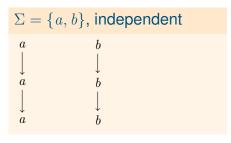


Event structures: examples

From traces to event structures

A prefix-closed language $L \subseteq Tr(\Sigma)$ defines a Σ -labeled event structure:

- nodes are prime traces from L.
- the partial order is given by the prefix relation □.
- relation # is called conflict relation.
- the label of t is the label of the maximal element of t.



$$\Sigma = \{a, b, c\}, D: a - c - b$$

$$c \qquad b \longrightarrow b \longrightarrow b$$

$$a \implies c \qquad \downarrow \\a \implies c \qquad \downarrow \\a \implies c \qquad c \qquad \downarrow$$

$$a \implies c \qquad c \qquad \downarrow$$

Specifying event structures

Logics for event structures

First-order logic (FOL) over the signature \leq , #, P_a for $a \in \Sigma$:

 $x \leq x' \mid x \# x' \mid P_a(x) \mid \neg \varphi \mid \varphi \lor \psi \mid \exists x. \varphi(x).$

Monadic second-order logic (MSOL)

 $\dots x \in Z \mid \exists Z.\varphi(Z).$

Monadic trace logic (MTL): quantification restricted to conflict free sets.

Theorem (Madhusudan)

The problem if a given formula holds in a given trace event structure is decidable for FOL and MTL.

Remark

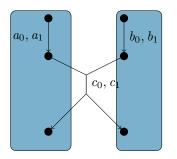
There are trace event structures with undecidable MSOL theory (grid).

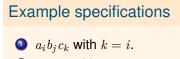
Part 1

Controlling asynchronous automata

- Process and action-based control.
- Reduction from process-based to action-based control.
- Encoding into MSOL theory of event structures.

Controlling an asynchronous automaton: an example





2
$$a_i b_j c_k$$
 with $k = i \cdot j$.

Two methods of control

- Process-based [Madhusudan et al.]: Process decides what actions it can do.
- Action-based [Gastin et al.]: Actions decide whether they can execute.

Process-based control

Plant over \mathbb{P} , $loc : \Sigma \to (2^{\mathbb{P}} \setminus \emptyset)$ and $\Sigma = \Sigma^{sys} \cup \Sigma^{env}$

A deterministic asynchronous automaton.

Views for a process $p \in \mathbb{P}$

- Let $view_p(t)$ be the smallest prefix of t containing all p-actions.
- Let $Plays_p(\mathcal{A}) = \{view_p(t) : t \in L(\mathcal{A})\}.$

Strategy

- A strategy is a tuple of functions f_p : Plays_p(A) → 2^{Σ^{sys}} for p ∈ P.
- Plays respecting $\sigma = \{f_p\}_{p \in \mathbb{P}}$. Assume $u \in Plays(\mathcal{A}, \sigma)$.
 - if $a \in \Sigma^{env}$ and $ua \in Plays(\mathcal{A})$ then ua is in $Plays(\mathcal{A}, \sigma)$.
 - if a ∈ Σ^{sys} and ua ∈ Plays(A) then ua ∈ Plays(A, σ) provided that a ∈ f_p(view_p(u)) for all p ∈ loc(a).

Process-based control

Requirements

- We are given asynchronous automaton A and a regular trace language K.
- A strategy $\sigma = \{f_p\}_{p \in \mathbb{P}}$ gives us a set of traces $Plays^{\omega}(\mathcal{A}, \sigma)$.
- A strategy is non-blocking if every trace in *Plays*(A, σ) that has an extension in *Plays*(A), also has an extension in *Plays*(A, σ).

The control problem

Given A and K, decide if there is a non-blocking strategy σ such that $Plays^{\omega}(A, \sigma) \subseteq K$.

Action-based control

Process based	Action based
$view_p(t)$	$view_a(t) = \bigcup \{view_p(t) : p \in loc(a)\}$
$Plays_p(\mathcal{A})$	$Plays_{a}(\mathcal{A}) = \{view_{a}(t) : t \in L(\mathcal{A})\}$
$f_p: Plays_p(\mathcal{A}) \to 2^{\Sigma^{sys}}$	$g_a: Plays_a(\mathcal{A}) \to \{tt, ff\}$
$\sigma = \{f_p\}_{p \in \mathbb{P}}$	$\rho = \{g_a\}_{a \in \Sigma^{sys}}$

 $Plays^{\omega}(\mathcal{A},\rho)$

- if $a \in \Sigma^{env}$ and $ua \in Plays(\mathcal{A})$ then ua is in $Plays(\mathcal{A}, \rho)$.
- if $a \in \Sigma^{sys}$ and $ua \in Plays(\mathcal{A})$ then $ua \in Plays(\mathcal{A}, \rho)$ provided that $g_a(view_a(u)) = tt$.

Reduction "process-based" to "action-based"

Observation 1

If there is a process-based controller then there is an action-based controller.

Observation 2

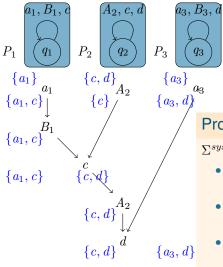
This does not in principle imply that process-based control is easier than action-based control (nor vice-versa).

Fact

For every asynchronous automaton A and MSOL specification α , one can construct \overline{A} and $\overline{\alpha}$ such that:

process-based controller for (\mathcal{A}, α) exists iff action-based controller for $(\overline{\mathcal{A}}, \overline{\alpha})$ exists.

Reduction: example

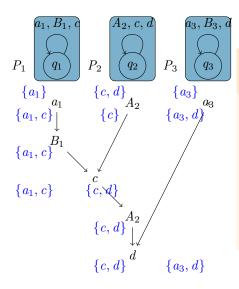


Process-based strategy

$$\Sigma^{sys} = \{a_1, a_3, c, d\}$$

- *P*₁: *a*₁ always possible, *c* only after *a*₁
- *P*₂: *c* always possible, *d* after *c* or if no *A*₂ before
- *P*₃: *a*₃ always possible, *d* only after *a*₃

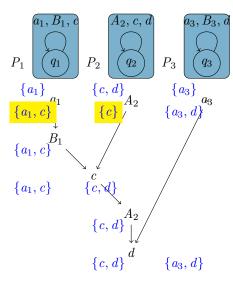
Reduction: example (cont.)



New arena for action-based strategy

- New (local) system actions: ⊤, {a₁}, {a₁, c}, {c, d}, {c},...
 - New (local) environment actions:
 - $\perp, (a, P_1), (c, P_1), (d, P_2), \ldots$
 - ⊤ winning and ⊥ losing (for system)

Reduction: example (cont.)



New arena for action-based strategy

- System proposes its set of local actions in form of new actions (process-wise), e.g. {a₁, c}, {c}. If proposed sets have empty ∩ (although actions are possible) then ⊥ is possible.
- Environment chooses one of the proposed actions (process-wise). If it chooses maliciously (e.g. (a₁, P₁), (c, P₂)) then ⊤ is possible.

Encoding process-based control

MSOL encoding (Madhusudan et al.)

For a MSOL specification α there is a MSOL formula φ_{α} such that $ES(\mathcal{A}) \models \varphi_{\alpha}$ iff the process-based control problem for (\mathcal{A}, α) has a solution.

Remark

The same can be done for action-based control.

Writing the formula φ_{α}

Encoding strategies

- Take $\sigma = \{f_p\}_{p \in \mathbb{P}}$ where each $f_p : Plays_p(\mathcal{A}) \to 2^{\Sigma^{sys}}$.
- Encode σ with the help of variables Z_p^a for $a \in \Sigma^{sys}$ and $p \in \mathbb{P}$.

for every $e \in ES(\mathcal{A})$ $e \in Z_p^a$ iff $a \in f_p(e)$

Encoding action-based control

- Write a formula $\pi(X, Z_p^a, ...)$ defining $Plays(\mathcal{A}, \sigma)$.
- Write a formula $\pi^{\omega}(X, Z_p^a, \dots)$ defining $Plays^{\omega}(\mathcal{A}, \sigma)$.
- Say that all paths in $Plays^{\omega}(\mathcal{A}, \rho)$ satisfy the specification: $\forall X. \pi^{\omega}(X, Z_p^a, ...) \Rightarrow \alpha(X).$
- The required formula is: $\exists Z_p^a \dots \forall X. \pi^{\omega}(X, Z_p^a, \dots) \Rightarrow \alpha(X).$

Decidability of MSOL is not necessary

Definition

A trace alphabet is a co-graph if it does not contain the induced subgraph a - b - c - d.

Theorem (Gastin, Lerman, Zeitoun)

The action-based control problem is decidable for automata over co-graph trace alphabets.

Remark

Alphabet $\Sigma = \{a, b, c\}$ with a - c - b is a co-graph. There is A over this alphabet whose ES(A) has undecidable MSOL theory.

Part 2

MSOL and Thiagarajan's conjecture

- Thiagarajan's conjecture
- Co-graph dependence alphabets

(Latest?) Thiagarajan's conjecture

Synchronizing automata

An automaton A is not synchronizing if there are traces x, u, v, y such that

- *u*, *v* are nonempty and independent from each other.
- xuvy is a prime trace.
- $xu^*v^*y \subseteq L(\mathcal{A}).$

Remark

If $\mathcal A$ is not synchronizing then $\mathit{ES}(\mathcal A)$ has undecidable MSOL theory.

Conjecture

If \mathcal{A} is synchronizing then the MSOL theory of $\mathit{ES}(\mathcal{A})$ is decidable.

Strongly strongly-synchronizing automata

Strongly synchronizing automaton

An asynchronous automaton A is strongly synchronizing if in every prime trace of L(A), each of its events has at most |A| many concurrent events.

Theorem (Madhusudan, Thiagarajan, Yang)

If A is strongly synchronizing then the MSOL theory of ES(A) is decidable.

Corollary

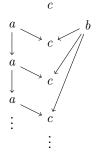
Both process- and action-based control are decidable for strongly synchronizing automata.

Stronalv svnchronizina are too strona Remark

There are automata A that are not strongly synchronizing but still MSOL theory of ES(A) is decidable.

Example: $\Sigma = \{a, b, c\}, D: a - c - b, L(\mathcal{A}) = a^*ba^*c + c$

- This event structure is not strongly synchronizing
- It has decidable MSOL theory.



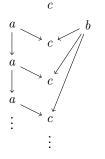
- Encode prime trace $[a^m bc]$ by the *word* $a^m bc$, etc.
- Translate MSOL over event structure into MSOL over {*a*, *b*, *c*}-tree.
- Ex: partial order $[a^n] < [a^n bc]$ translates to $a^n < a^n bc$ (word prefix).
- Rem: encoding [aⁿbc] by baⁿc does not work, since aⁿ and baⁿ far apart in the tree.

Stronalv svnchronizina are too strona Remark

There are automata A that are not strongly synchronizing but still MSOL theory of ES(A) is decidable.

Example: $\Sigma = \{a, b, c\}, D: a - c - b, L(\mathcal{A}) = a^*ba^*c + c$

- This event structure is not strongly synchronizing
- It has decidable MSOL theory.



- Encode prime trace $[a^m bc]$ by the *word* $a^m bc$, etc.
- Translate MSOL over event structure into MSOL over {*a*, *b*, *c*}-tree.
- Ex: partial order $[a^n] < [a^n bc]$ translates to $a^n < a^n bc$ (word prefix).
- Rem: encoding [*aⁿbc*] by *baⁿc* does not work, since *aⁿ* and *baⁿ* far apart in the tree.

Towards a solution: co-graphs

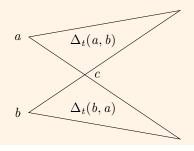
Trace normal form

We look for trace normal forms nf(t) that behave well w.r.t. prefix relation:

for all traces t < t' there are words p, s, s' s.t.

nf(t') = ps', nf(t) = ps and s is small

Co-graphs



- In trace $t: a \parallel b$ and $a \uparrow \cap b \uparrow \neq \emptyset$.
- For co-graphs (and A sychronizing) there is no extension t' of t such that $\Delta_{t'}(a, b) > \Delta_t(a, b)$ or $\Delta_{t'}(b, a) > \Delta_t(b, a)$.

Normal form

Dynamical lexicographic form

• Enforce more order to the trace partial order:

For $a \parallel b$ let $a \prec b$ if $|\Delta_t(a, b)| > N$, $N = |\mathcal{A}|$.

- Trace partial order t plus \prec is acyclic: t_{\prec} .
- The priority normal form is the lexicographic normal form of t_≺.
- If \mathcal{A} is strongly synchronizing then it coincides with the lexicographic normal form.

Priority normal form and reduction

• Priority normal form has the desired property:

for all traces t < t' there are words p, s, s' s.t.

nf(t') = ps', nf(t) = ps and s is small

 Reduction of MSOL over *ES*(*A*) to MSOL over Σ-tree works by identifying *t* with word *p* in the tree and checking that small *s* fits correctly into *s'*.

Normal form

Dynamical lexicographic form

• Enforce more order to the trace partial order:

For $a \parallel b$ let $a \prec b$ if $|\Delta_t(a, b)| > N$, $N = |\mathcal{A}|$.

- Trace partial order t plus \prec is acyclic: t_{\prec} .
- The priority normal form is the lexicographic normal form of t_≺.
- If \mathcal{A} is strongly synchronizing then it coincides with the lexicographic normal form.

Priority normal form and reduction

• Priority normal form has the desired property:

for all traces t < t' there are words p, s, s' s.t.

nf(t') = ps', nf(t) = ps and s is small

 Reduction of MSOL over ES(A) to MSOL over Σ-tree works by identifying t with word p in the tree and checking that small s fits correctly into s'.

Conclusions

- While traces are relatively well understood, event structures are much less.
- From the synthesis point of view, event structures are more fundamental than traces.
- Thiagarajan's conjecture is an important milestone in understanding the decidability frontier.
- Thiagarajan's conjecture is true for co-graphs. The general case remains open.
- It may well be the case that action based control is decidable for all asynchronous automata.