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Verification and alternating automata: a success story

Uniform satisfiability problem for LTL

INPUT: LTL-formula ϕ over finite set of atomic propositions Π
QUESTION: ∃?u ∈ (2Π)ω with u |= ϕ?

Theorem (Sistla & Clarke 1985)

The uniform satisfiability problem for LTL is PSPACE-complete.

Vardi’s proof idea

1. construct alternating automaton Aϕ of size O(|ϕ|) s.t.
L(Aϕ) = {u ∈ (2Π)ω | u |= ϕ}

2. check L(Aϕ) for emptiness in space |Aϕ|O(1) = |ϕ|O(1)

Extension to traces?
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Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness
Variance of Büchi-automata
... and 0-effectiveness
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A temporal logic for words: LTL
P . . . fixed, countably infinite set of atomic propositions

Π ⊆ P finite, Γ = 2Π

Γωn = Γω × (2N)n

modalities of LTL

and their semantics

(0) 0-ary: (for p ∈ P)
p

[[p]]Π = {(u, {i}) ∈ Γω1 : u = a0a1 . . . , p ∈ ai}

(1) unary:
NOT

[[NOT]]Π = {(u, {i},X ) ∈ Γω2 | i /∈ X}

NEXT

[[NEXT]]Π = {(u, {i},X ) ∈ Γω2 | i + 1 ∈ X}

(2) binary:
AND

[[AND]]Π = {(u, {i},X ,Y ) ∈ Γω3 | i ∈ X ∩ Y }

UNTIL

[[UNTIL]]Π{(u, {i},X ,Y ) ∈ Γω3 | ∃j ≥ i : i , i + 1, . . . , j − 1 ∈ X
j ∈ Y }

LTL-formulas = terms over signature of LTL
4 / 26
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Traces

Π . . . finite set of process names
Γ = 2Π \ {∅} (finite) set of actions
(A,B) ∈ D ⇐⇒ A ∩ B 6= ∅

R(Π) . . . set of real traces (V ,≤, λ) over Π
Rn(Π) . . . set of marked real traces (V ,≤, λ,X1, . . . ,Xn) with

X1, . . . ,Xn ⊆ V

5 / 26



Temporal logics MSO-definable temporal logics Polynomial variance and 0-effectiveness

Traces

Π . . . finite set of process names
Γ = 2Π \ {∅} (finite) set of actions
(A,B) ∈ D ⇐⇒ A ∩ B 6= ∅

R(Π) . . . set of real traces (V ,≤, λ) over Π
Rn(Π) . . . set of marked real traces (V ,≤, λ,X1, . . . ,Xn) with

X1, . . . ,Xn ⊆ V

5 / 26



Temporal logics MSO-definable temporal logics Polynomial variance and 0-effectiveness

A (too) general temporal logic for traces: L
... is given by

• signature Ω (elements: “modality names”)
L-formulas = terms over signature Ω of L

• for each finite set of processes Π and M ∈ Ω of arity n:

[[M]]Π ⊆ Rn+1(Π)

• then t, v |= M(ϕ1, . . . , ϕn) ⇐⇒ (t, {v}, ϕt
1, . . . , ϕ

t
n) ∈ [[M]]Π

for t = (V ,≤, λ) ∈ R(Π), v ∈ V , and ϕi ∈ L with
ϕt

i = {w ∈ V | t,w |= ϕi}

Example

[[X]]Π = {(V ,≤, λ, {x},Y ) ∈ R2(Π) | ∃y ∈ Y : x l y}
[[U]]Π = {(V ,≤, λ, {x},Y ,Z ) ∈ R3(Π) |

∃z ∈ Z : x ≤ z ∧ ∀y : (x ≤ y ≤ z → y ∈ Y )}
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A (too) general temporal logic for traces (continued)

Uniform satisfiability problem for L
INPUT: Π finite set of processes and L-formula ϕ
QUESTION: ∃?(V ,≤, λ) ∈ R(Π) and v ∈ V s.t. (V ,≤, λ), v |= ϕ?

Observation
The uniform satisfiability problem is undecidable for “almost all” L
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(n-)effective temporal logics

Definition
A temporal logic L is effective if, from Π finite and M ∈ Ω, one can
compute a Büchi-automaton MΠ,M (“modality automaton”) with

(u,X0, . . . ,Xn) ∈ L(MΠ,M)

m
X0 = {x ∈ N | ([u], {x},X1, . . . ,Xn}) ∈ [[M]]Π}

Remark

• elements of [[M]]Π tell that property holds at marked vertex x

• elements of L(MΠ,M) tell, for each and every vertex, whether
property holds or not
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The decision procedure

Tractability Theorem

L effective: uniform satisfiability problem decidable.
L n-effective: uniform satisfiability problem in nEXPSPACE.

Proof idea.
Π finite set of processes, ϕ ∈ L
Sub(ϕ): set of subformulas of ϕ

1. for each ψ = M(ψ1, . . . , ψn) ∈ Sub(ϕ): compute Cψ =MΠ,M

2. direct product C of automata Cψ accepts (u, (Xψ)ψ∈Sub(ϕ)) iff
Xψ = {x ∈ N | [u], x |= ψ} for all ψ ∈ Sub(ϕ)

3. ϕ satisfiable in R(Π) iff ∃(u, (Xψ)ψ∈Sub(ϕ)) ∈ L(C) : Xϕ 6= ∅

complexity: build Cψ and C on-the-fly
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Message

n-effective temporal logics are good!

But when is a temporal logic n-effective?
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Monadic second order logic

atomic formulas:

• x = y (equality in trace (V ,≤, λ))

• x ∈ X (membership)

• x l y (covering relation in trace (V ,≤, λ))

• p ∈ λ(x) for p ∈ P (process p is involved in event x)

• λ(x) ⊆ A for A ⊆ P finite (at most the processes from A are
involved in event x)

MΣ1
n is set of MSO-formulas of form

∃Y 1∀Y 2 . . .∃/∀Y n : α

where α does not contain second-order quantifications.
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MΣn-definable temporal logics

Definition
The local temporal logic L is MΣn-definable if, for every m-ary
modality M, there is a formula ϕM ∈ MΣn for M ∈ Ω such that

[[M]]Π = {(t, {x},X1, . . . ,Xm) ∈ Rm+1 | t |= ϕM(x ,X1, . . . ,Xm)}

for all finite sets of processes Π ⊆ P.

Example

ϕX = (∃y ∈ X1 : x l y) ∈ MΣ0

ϕU = (∃z ∈ X2 : x ≤ z ∧ ∀y : (x ≤ y ≤ z → y ∈ X1))

= (∃U,D∃z ∈ X2 : U = ↑x ∧ D = ↓z ∧ U ∩ D \ {z} ⊆ X1) ∈ MΣ1

(all familiar modalities are MΣ1-definable)
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Effectiveness of MSO-definable temporal logics

Theorem (Gastin & K ’05, ’09)

Let n ≥ 0 be arbitrary.

1. Every MΣn-definable temporal logic is n-effective.

2. Hence: the uniform satisfiability problem of every
MΣn-definable temporal logic is in nEXPSPACE.

3. There exists an MΣn-definable temporal logic whose uniform
satisfiability problem is hard for nEXPSPACE.

Corollary

The uniform satisfiability problem of all familiar local temporal
logics belongs to EXPSPACE ,
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Theorem (Gastin & K ’05, ’09)

Let n ≥ 0 be arbitrary.

1. Every MΣn-definable temporal logic is n-effective.

2. Hence: the uniform satisfiability problem of every
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3. There exists an MΣn-definable temporal logic whose uniform
satisfiability problem is hard for nEXPSPACE.

Corollary

The uniform satisfiability problem of all familiar local temporal
logics belongs to EXPSPACE ,, and this approach cannot yield
PSPACE /.
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Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness
Variance of Büchi-automata
... and 0-effectiveness
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Is L 0-effective?

often: automaton AΠ,M for Lin([[M]]Π) constructible with
2poly(|Π|) states

but: how to transform it into modality automatonMΠ,M of poly-
nomial size with

(u,X0, . . . ,Xn) ∈ L(MΠ,M)

m
X0 = {x ∈ N | (u, {x},X1, . . . ,Xn}) ∈ L(AΠ,M)}
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Problem description

Problem
given Büchi-automaton A with L(A) ⊆ Γω × 2N

construct Büchi-automatonM of polynomial size with

(u,X ) ∈ L(M)

m
X = {x ∈ N | (u, {x}) ∈ L(A)},

i.e., with L(M) = {(u,X ) | ∀x : (x ∈ X ↔ (u, {x}) ∈ L(A))}

Plan

(i) use “General variance” to construct
←−
B for

{(u,X ) | ∀x(x ∈ X ← (u, {x}) ∈ L(A)}
(ii) use “Special variance” to construct

−→
B for

{(u,X ) | ∀x(x ∈ X → (u, {x}) ∈ L(A)}

18 / 26
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18 / 26
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General variance
A = (Q, I ,T ,F ) Büchi-automaton with L(A) ⊆ Γω × 2N, v ∈ Γ∗

GS(v) = {q ∈ Q | ∃x : I
(v ,∅)−−−→ q or I

(v ,{x})−−−−→ q}

number of states reachable by (v ,X ) with |X | ≤ 1

Proof idea (for finite automata).

reachable states in equivalent deterministic automaton contain at
most m = GV (A) original states
⇒ algorithm has to handle m-elements sets of original states
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Special variance

A = (Q, I ,T ,F ) Büchi-automaton with L(A) ⊆ Γω × 2N, v ∈ Γ∗,
w ∈ Γω

SS(v ,w) =

q ∈ Q | ∃x∃ successful run :
I

(v ,∅)−−−→ q
(w ,{x})−−−−−→ or

I
(v ,{x})−−−−→ q

(w ,∅)−−−→


set of states reachable after v in successful run on (vw ,X ) with
|X | ≤ 1
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I
(v ,{x})−−−−→ q

(w ,∅)−−−→


SV (A) = max{|SS(v ,w)| : v ∈ Γ∗,w ∈ Γω}

Proposition 2

Büchi-automaton
−→
B constructible in space O(SV (A) log |A|) with

L(
−→
B ) = {(u,X ) | ∀x : (x ∈ X → (u, {x}) ∈ L(A))}
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Special variance

Proposition 2

Büchi-automaton
−→
B constructible in space O(SV (A) log |A|) with

L(
−→
B ) = {(w ,X ) | ∀x : (x ∈ X → (u, {x}) ∈ L(A))}

Proof idea

1. construct alternating automaton for L(
−→
B ) s.t. slices in

minimal successful run dags are of form {q1, . . . , qn,B} with
qi ∈ Q, B ⊆ Q, n, |B| ≤ m = SV (A)

2. transform it into Büchi-automaton
−→
B with states of form

(slice, b1, . . . , bm+1) where bi ∈ {0, 1}
⇒ number of states of

−→
B ≤

(|Q|
m

)
·
(|Q|

m

)
· 2m+1 = |Q|O(m)

⇒
−→
B constructible in space O(m log(|A|))
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Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness
Variance of Büchi-automata
... and 0-effectiveness
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0-effectiveness of modalities

Recall

1. n-ary modality is 0-effecitve, if modality-automatonMM,Π

that accepts

{(u,X0,X ) | ∀x : (x ∈ X0 ↔ ([u], {x},X ) ∈ [[M]]Π)}

computable in space poly(Π).

2. If all modalities are 0-effective, then the satisfiability problem
is in PSPACE.
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0-effectiveness of modalities I

Proposition A

M m-ary modality s.t. Büchi-automaton AM,Π is computable
from Π in polynomial space with
L(AM,Π) = Lin([[M]]Π}) and GV (AM,Π) ∈ poly(|Π|).
Then M is 0-effective.
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from Π in polynomial space with
L(AM,Π) = Lin([[M]]Π}) and GV (AM,Π) ∈ poly(|Π|).
Then M is 0-effective.

Proof.

1.
←−
B from Prop. 1 accepts
{(u,X0,X ) | ∀x : (x ∈ X0 ← ([u], {x},X ) ∈ [[M]]Π)}

2. SV (A) ≤ GV (A), hence
−→
B from Prop. 2 accepts
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Proof.

1.
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B from Prop. 1 accepts
{(u,X0,X ) | ∀x : (x ∈ X0 ← ([u], {x},X ) ∈ [[M]]Π)}

2. SV (A) ≤ GV (A), hence
−→
B from Prop. 2 accepts

{(u,X0,X ) | ∀x : (x ∈ X0 → ([u], {x},X ) ∈ [[M]]Π)}

thenMM,Π for L(
−→
B ) ∩ L(

←−
B ) constructible in space

O(poly(|Π|) · log(|AM,Π|)) = poly(|Π|)
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0-effectiveness of modalities I

Proposition A

M m-ary modality s.t. Büchi-automaton AM,Π is computable
from Π in polynomial space with
L(AM,Π) = Lin([[M]]Π}) and GV (AM,Π) ∈ poly(|Π|).
Then M is 0-effective.

Examples

“strict universal until” SU, “universal until” U, “next” X,
“process-based next” Xp, “process-based until” Up

“strict universal since” SS, “universal since” S, “yesterday” Y,
“process-based yesterday” Yp, “process-based since” Sp

path modalities EU, ES, EG
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0-effectiveness of modalities II

Proposition B

M m-ary modality s.t. Büchi-automata AM,Π and AM,Π are
computable from Π in polynomial space with

1. L(AM,Π) = Lin([[M]]Π}) and SV (AM,Π) ∈ poly(|Π|)
2. L(AM,Π) = Lin([[M]]Π})co and SV (AM,Π) ∈ poly(|Π|)

Then M is 0-effective.

Proof

1.
−→
B from Prop. 2 accepts
{(u,X0,X ) | ∀x : (x ∈ X0 → ([u], {x},X ) ∈ [[M]]Π)}
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0-effectiveness of modalities II

Proposition B

M m-ary modality s.t. Büchi-automata AM,Π and AM,Π are
computable from Π in polynomial space with

1. L(AM,Π) = Lin([[M]]Π}) and SV (AM,Π) ∈ poly(|Π|)
2. L(AM,Π) = Lin([[M]]Π})co and SV (AM,Π) ∈ poly(|Π|)

Then M is 0-effective.

Proof

2. B from Prop. 2 accepts
{(u,Y ,X ) | ∀x : (x ∈ Y → ([u], {x},X ) /∈ [[M]]Π)}
modify into

←−
B for

{(u,X0,X ) | ∀x : (x /∈ X0 → ([u], {x},X ) /∈ [[M]]Π)}
which equals
{(u,X0,X ) | ∀x : (x ∈ X0 ← ([u], {x},X ) ∈ [[M]]Π)}
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0-effectiveness of modalities II

Proposition B

M m-ary modality s.t. Büchi-automata AM,Π and AM,Π are
computable from Π in polynomial space with

1. L(AM,Π) = Lin([[M]]Π}) and SV (AM,Π) ∈ poly(|Π|)
2. L(AM,Π) = Lin([[M]]Π})co and SV (AM,Π) ∈ poly(|Π|)

Then M is 0-effective.

Examples

“Thiagarajan’s process-based next” Op, “. . . until” Up,
“. . . since” Sp

“exists concurrently” Eco
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Final result

Main theorem
The uniform satisfiability problem for

(1) MΣ1
n-definable local temporal logics is nEXPSPACE-complete.

(2) the temporal logic based on all familiar local modalities is
PSPACE-complete.

Proof of (2).

(a) all familiar local modalities are 0-effective: corollary to Prop. A
and B

(b) result follows from Tractability Theorem
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analogous statements for the model checking problem hold as well.
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