Which local temporal logics are tractable?

Dietrich Kuske

(Institut für Informatik, Universität Leipzig) joint work with Paul Gastin

Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz traces.

Fundamenta Informaticae, 80:169–197, 2007.

and

Uniform satisfiability problem for local temporal logics over Mazurkiewicz traces.

to appear in Information and computation, 2009.

Verification and alternating automata: a success story

Uniform satisfiability problem for $\ensuremath{\mathrm{LTL}}$

INPUT: LTL-formula φ over finite set of atomic propositions Π QUESTION: $\exists ? u \in (2^{\Pi})^{\omega}$ with $u \models \varphi$?

Theorem (Sistla & Clarke 1985)

The uniform satisfiability problem for LTL is PSPACE-complete.

Vardi's proof idea

1. construct alternating automaton \mathcal{A}_{φ} of size $O(|\varphi|)$ s.t. $L(\mathcal{A}_{\varphi}) = \{ u \in (2^{\Pi})^{\omega} \mid u \models \varphi \}$

2. check $L(\mathcal{A}_{\varphi})$ for emptiness in space $|\mathcal{A}_{\varphi}|^{O(1)} = |\varphi|^{O(1)}$

Verification and alternating automata: a success story

Uniform satisfiability problem for $\ensuremath{\mathrm{LTL}}$

INPUT: LTL-formula φ over finite set of atomic propositions Π QUESTION: $\exists ? u \in (2^{\Pi})^{\omega}$ with $u \models \varphi$?

Theorem (Sistla & Clarke 1985)

The uniform satisfiability problem for LTL is PSPACE-complete.

Vardi's proof idea

1. construct alternating automaton \mathcal{A}_{φ} of size $O(|\varphi|)$ s.t. $L(\mathcal{A}_{\varphi}) = \{ u \in (2^{\Pi})^{\omega} \mid u \models \varphi \}$

2. check $L(\mathcal{A}_{\varphi})$ for emptiness in space $|\mathcal{A}_{\varphi}|^{O(1)} = |\varphi|^{O(1)}$

EXTENSION TO TRACES?

Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness Variance of Büchi-automata ... and 0-effectiveness

A temporal logic for words: LTL

 $\mathcal P$ $\ldots\,$ fixed, countably infinite set of atomic propositions

```
modalities of LTL

(0) 0-ary: (for p \in \mathcal{P})

p

(1) unary:

NOT

NEXT

(2) binary:

AND

UNTIL
```

LTL-formulas = terms over signature of LTL

A temporal logic for words: LTL

 \mathcal{P} ... fixed, countably infinite set of atomic propositions $\Pi \subseteq \mathcal{P}$ finite, $\Gamma = 2^{\Pi}$ $\Gamma_n^{\omega} = \Gamma^{\omega} \times (2^{\mathbb{N}})^n$

modalities of $\ensuremath{\mathrm{LTL}}$ and their semantics

(0) 0-ary: (for
$$p \in \mathcal{P}$$
)
 $[\![p]\!]_{\Pi} = \{(u, \{i\}) \in \Gamma_1^{\omega} : u = a_0 a_1 \dots, p \in a_i\}$

(1) unary:

 $\llbracket \text{NOT} \rrbracket_{\Pi} = \{ (u, \{i\}, X) \in \mathsf{\Gamma}_2^{\omega} \mid i \notin X \} \\ \llbracket \text{NEXT} \rrbracket_{\Pi} = \{ (u, \{i\}, X) \in \mathsf{\Gamma}_2^{\omega} \mid i+1 \in X \}$

(2) binary:

$$\llbracket \text{AND} \rrbracket_{\Pi} = \{ (u, \{i\}, X, Y) \in \Gamma_3^{\omega} \mid i \in X \cap Y \}$$

$$\llbracket \text{UNTIL} \rrbracket_{\Pi} \{ (u, \{i\}, X, Y) \in \Gamma_3^{\omega} \mid \exists j \ge i : i, i+1, \dots, j-1 \in X$$

$$j \in Y \}$$

LTL-formulas = terms over signature of LTL

Traces

 $\begin{array}{l} \Pi \ \dots \ \mbox{finite set of process names} \\ \Gamma = 2^{\Pi} \setminus \{ \emptyset \} \ \ \mbox{(finite) set of actions} \\ (A, B) \in D \iff A \cap B \neq \emptyset \end{array}$

Traces

 $\begin{array}{l} \Pi \ \dots \text{finite set of process names} \\ \Gamma = 2^{\Pi} \setminus \{\emptyset\} \ (\text{finite}) \ \text{set of actions} \\ (A, B) \in D \iff A \cap B \neq \emptyset \\ \mathbb{R}(\Pi) \ \dots \text{set of real traces} \ (V, \leq, \lambda) \ \text{over } \Pi \\ \mathbb{R}_n(\Pi) \ \dots \text{set of marked real traces} \ (V, \leq, \lambda, X_1, \dots, X_n) \ \text{with} \\ X_1, \dots, X_n \subseteq V \end{array}$

A (too) general temporal logic for traces: \mathcal{L} ... is given by

signature Ω (elements: "modality names")
 L-formulas = terms over signature Ω of *L*

A (too) general temporal logic for traces: ${\cal L}$

- ... is given by
 - signature Ω (elements: "modality names")
 L-formulas = terms over signature Ω of *L*
 - for each finite set of processes Π and $M \in \Omega$ of arity *n*:

 $\llbracket M \rrbracket_{\Pi} \subseteq \mathbb{R}_{n+1}(\Pi)$

Example

$$\begin{split} \llbracket \mathbf{X} \rrbracket_{\Pi} &= \{ (V, \leq, \lambda, \{x\}, Y) \in \mathbb{R}_2(\Pi) \mid \exists y \in Y : x \lessdot y \} \\ \llbracket \mathbf{U} \rrbracket_{\Pi} &= \{ (V, \leq, \lambda, \{x\}, Y, Z) \in \mathbb{R}_3(\Pi) \mid \\ \exists z \in Z : x \leq z \land \forall y : (x \leq y \leq z \to y \in Y) \} \end{split}$$

A (too) general temporal logic for traces: ${\cal L}$

- \dots is given by
 - signature Ω (elements: "modality names")
 L-formulas = terms over signature Ω of *L*
 - for each finite set of processes Π and $M \in \Omega$ of arity *n*:

$\llbracket M \rrbracket_{\Pi} \subseteq \mathbb{R}_{n+1}(\Pi)$

• then $t, v \models M(\varphi_1, \dots, \varphi_n) \iff (t, \{v\}, \varphi_1^t, \dots, \varphi_n^t) \in \llbracket M \rrbracket_{\Pi}$ for $t = (V, \leq, \lambda) \in \mathbb{R}(\Pi), v \in V$, and $\varphi_i \in \mathcal{L}$ with $\varphi_i^t = \{w \in V \mid t, w \models \varphi_i\}$

Example

$$\begin{split} \llbracket \mathbf{X} \rrbracket_{\Pi} &= \{ (V, \leq, \lambda, \{x\}, Y) \in \mathbb{R}_2(\Pi) \mid \exists y \in Y : x \lessdot y \} \\ \llbracket \mathbf{U} \rrbracket_{\Pi} &= \{ (V, \leq, \lambda, \{x\}, Y, Z) \in \mathbb{R}_3(\Pi) \mid \\ \exists z \in Z : x \leq z \land \forall y : (x \leq y \leq z \to y \in Y) \} \end{split}$$

A (too) general temporal logic for traces (continued)

Uniform satisfiability problem for $\mathcal L$

INPUT: Π finite set of processes and \mathcal{L} -formula φ QUESTION: $\exists ?(V, \leq, \lambda) \in \mathbb{R}(\Pi)$ and $v \in V$ s.t. $(V, \leq, \lambda), v \models \varphi$?

A (too) general temporal logic for traces (continued)

Uniform satisfiability problem for ${\cal L}$

INPUT: Π finite set of processes and \mathcal{L} -formula φ QUESTION: $\exists ?(V, \leq, \lambda) \in \mathbb{R}(\Pi)$ and $v \in V$ s.t. $(V, \leq, \lambda), v \models \varphi$?

Observation

The uniform satisfiability problem is undecidable for "almost all" $\ensuremath{\mathcal{L}}$

(n-)effective temporal logics

Remark

• elements of $[\![M]\!]_{\Pi}$ tell that property holds at marked vertex x

(*n*-)effective temporal logics

Definition

A temporal logic \mathcal{L} is effective if, from Π finite and $M \in \Omega$, one can compute a Büchi-automaton $\mathcal{M}_{\Pi,M}$ ("modality automaton") with

Remark

- elements of $[\![M]\!]_{\Pi}$ tell that property holds at marked vertex x
- elements of $L(\mathcal{M}_{\Pi,M})$ tell, for each and every vertex, whether property holds or not

(n-)effective temporal logics

Definition

A temporal logic \mathcal{L} is effective if, from Π finite and $M \in \Omega$, one can compute a Büchi-automaton $\mathcal{M}_{\Pi,M}$ ("modality automaton") with

 \mathcal{L} is *n*-effective if $\mathcal{M}_{\Pi,M}$ can be computed in *n*-fold exponential space (n = 0 means polynomial space)

Remark

- elements of $[\![M]\!]_{\Pi}$ tell that property holds at marked vertex x
- elements of $L(\mathcal{M}_{\Pi,M})$ tell, for each and every vertex, whether property holds or not

Tractability Theorem

 \mathcal{L} effective: uniform satisfiability problem decidable. \mathcal{L} *n*-effective: uniform satisfiability problem in *n*EXPSPACE.

Proof idea. Π finite set of processes, $\varphi \in \mathcal{L}$ $\operatorname{Sub}(\varphi)$: set of subformulas of φ

Tractability Theorem

 ${\cal L}$ effective: uniform satisfiability problem decidable.

 \mathcal{L} *n*-effective: uniform satisfiability problem in *n*EXPSPACE.

Proof idea.

 $\Pi \text{ finite set of processes, } \varphi \in \mathcal{L} \\ Sub(\varphi): \text{ set of subformulas of } \varphi$

1. for each $\psi = M(\psi_1, \dots, \psi_n) \in \operatorname{Sub}(\varphi)$: compute $\mathcal{C}_{\psi} = \mathcal{M}_{\Pi, M}$

Tractability Theorem

 $\mathcal L$ effective: uniform satisfiability problem decidable.

 \mathcal{L} *n*-effective: uniform satisfiability problem in *n*EXPSPACE.

Proof idea.

 $\Pi \text{ finite set of processes, } \varphi \in \mathcal{L}$ Sub(φ): set of subformulas of φ

- 1. for each $\psi = M(\psi_1, \dots, \psi_n) \in \operatorname{Sub}(\varphi)$: compute $\mathcal{C}_{\psi} = \mathcal{M}_{\Pi, M}$
- direct product C of automata C_ψ accepts (u, (X_ψ)_{ψ∈Sub(φ})) iff
 X_ψ = {x ∈ ℕ | [u], x ⊨ ψ} for all ψ ∈ Sub(φ)

Tractability Theorem

 $\mathcal L$ effective: uniform satisfiability problem decidable.

 \mathcal{L} *n*-effective: uniform satisfiability problem in *n*EXPSPACE.

Proof idea.

 $\label{eq:static} \begin{array}{l} \Pi \mbox{ finite set of processes, } \varphi \in \mathcal{L} \\ {\rm Sub}(\varphi) \mbox{: set of subformulas of } \varphi \end{array}$

- 1. for each $\psi = M(\psi_1, \dots, \psi_n) \in \operatorname{Sub}(\varphi)$: compute $\mathcal{C}_{\psi} = \mathcal{M}_{\Pi, M}$
- 2. direct product C of automata C_{ψ} accepts $(u, (X_{\psi})_{\psi \in \operatorname{Sub}(\varphi)})$ iff $X_{\psi} = \{x \in \mathbb{N} \mid [u], x \models \psi\}$ for all $\psi \in \operatorname{Sub}(\varphi)$
- 3. φ satisfiable in $\mathbb{R}(\Pi)$ iff $\exists (u, (X_{\psi})_{\psi \in \mathrm{Sub}(\varphi)}) \in L(\mathcal{C}) : X_{\varphi} \neq \emptyset$

Tractability Theorem

 $\mathcal L$ effective: uniform satisfiability problem decidable.

 \mathcal{L} *n*-effective: uniform satisfiability problem in *n*EXPSPACE.

Proof idea.

 $\Pi \text{ finite set of processes, } \varphi \in \mathcal{L}$ Sub(φ): set of subformulas of φ

- 1. for each $\psi = M(\psi_1, \dots, \psi_n) \in \operatorname{Sub}(\varphi)$: compute $\mathcal{C}_{\psi} = \mathcal{M}_{\Pi, M}$
- 2. direct product C of automata C_{ψ} accepts $(u, (X_{\psi})_{\psi \in \operatorname{Sub}(\varphi)})$ iff $X_{\psi} = \{x \in \mathbb{N} \mid [u], x \models \psi\}$ for all $\psi \in \operatorname{Sub}(\varphi)$

3. φ satisfiable in $\mathbb{R}(\Pi)$ iff $\exists (u, (X_{\psi})_{\psi \in \mathrm{Sub}(\varphi)}) \in L(\mathcal{C}) : X_{\varphi} \neq \emptyset$ complexity: build \mathcal{C}_{ψ} and \mathcal{C} on-the-fly Temporal logics

ASO-definable temporal logics

Polynomial variance and 0-effectiveness

n-effective temporal logics are good!

Temporal logics

ASO-definable temporal logics

Polynomial variance and 0-effectiveness

n-effective temporal logics are good!

But when is a temporal logic *n*-effective?

Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness Variance of Büchi-automata ... and 0-effectiveness

Monadic second order logic

atomic formulas:

- x = y (equality in trace (V, \leq, λ))
- $x \in X$ (membership)
- $x \lessdot y$ (covering relation in trace (V, \leq, λ))
- $p \in \lambda(x)$ for $p \in \mathcal{P}$ (process p is involved in event x)
- λ(x) ⊆ A for A ⊆ P finite (at most the processes from A are involved in event x)

 $M\Sigma_n^1$ is set of MSO-formulas of form

$$\exists \overline{Y}_1 \forall \overline{Y}_2 \dots \exists / \forall \overline{Y}_n : \alpha$$

where α does not contain second-order quantifications.

Definition

The local temporal logic \mathcal{L} is $M\Sigma_n$ -definable if, for every *m*-ary modality M, there is a formula $\varphi_M \in M\Sigma_n$ for $M \in \Omega$ such that

$$\llbracket M \rrbracket_{\Pi} = \{ (t, \{x\}, X_1, \dots, X_m) \in \mathbb{R}_{m+1} \mid t \models \varphi_M(x, X_1, \dots, X_m) \}$$

for all finite sets of processes $\Pi \subseteq \mathcal{P}$.

Definition

The local temporal logic \mathcal{L} is $M\Sigma_n$ -definable if, for every *m*-ary modality M, there is a formula $\varphi_M \in M\Sigma_n$ for $M \in \Omega$ such that

$$\llbracket M \rrbracket_{\Pi} = \{ (t, \{x\}, X_1, \dots, X_m) \in \mathbb{R}_{m+1} \mid t \models \varphi_M(x, X_1, \dots, X_m) \}$$

for all finite sets of processes $\Pi \subseteq \mathcal{P}$.

Example

$$\varphi_{\mathrm{X}} = (\exists y \in X_1 : x \lessdot y) \in M\Sigma_0$$

Definition

The local temporal logic \mathcal{L} is $M\Sigma_n$ -definable if, for every *m*-ary modality M, there is a formula $\varphi_M \in M\Sigma_n$ for $M \in \Omega$ such that

$$\llbracket M \rrbracket_{\Pi} = \{ (t, \{x\}, X_1, \dots, X_m) \in \mathbb{R}_{m+1} \mid t \models \varphi_M(x, X_1, \dots, X_m) \}$$

for all finite sets of processes $\Pi \subseteq \mathcal{P}$.

Example

$$\begin{split} \varphi_{\mathbf{X}} &= (\exists y \in X_1 : x \lessdot y) \in M\Sigma_0\\ \varphi_{\mathbf{U}} &= (\exists z \in X_2 : x \le z \land \forall y : (x \le y \le z \to y \in X_1))\\ &= (\exists U, D \exists z \in X_2 : U = \uparrow x \land D = \downarrow z \land U \cap D \setminus \{z\} \subseteq X_1) \in M\Sigma_1 \end{split}$$

Definition

The local temporal logic \mathcal{L} is $M\Sigma_n$ -definable if, for every *m*-ary modality M, there is a formula $\varphi_M \in M\Sigma_n$ for $M \in \Omega$ such that

$$\llbracket M \rrbracket_{\Pi} = \{ (t, \{x\}, X_1, \dots, X_m) \in \mathbb{R}_{m+1} \mid t \models \varphi_M(x, X_1, \dots, X_m) \}$$

for all finite sets of processes $\Pi \subseteq \mathcal{P}$.

Example

$$\begin{split} \varphi_{\mathbf{X}} &= (\exists y \in X_1 : x \lessdot y) \in M\Sigma_0\\ \varphi_{\mathbf{U}} &= (\exists z \in X_2 : x \le z \land \forall y : (x \le y \le z \to y \in X_1))\\ &= (\exists U, D \exists z \in X_2 : U = \uparrow x \land D = \downarrow z \land U \cap D \setminus \{z\} \subseteq X_1) \in M\Sigma_1 \end{split}$$

(all familiar modalities are $M\Sigma_1$ -definable)

Theorem (Gastin & K '05, '09)

Let $n \ge 0$ be arbitrary.

1. Every $M\Sigma_n$ -definable temporal logic is n-effective.

Theorem (Gastin & K '05, '09)

- Let $n \ge 0$ be arbitrary.
 - 1. Every $M\Sigma_n$ -definable temporal logic is n-effective.
 - 2. Hence: the uniform satisfiability problem of every $M\Sigma_n$ -definable temporal logic is in nEXPSPACE.

Theorem (Gastin & K '05, '09)

- Let $n \ge 0$ be arbitrary.
 - 1. Every $M\Sigma_n$ -definable temporal logic is n-effective.
 - 2. Hence: the uniform satisfiability problem of every $M\Sigma_n$ -definable temporal logic is in nEXPSPACE.

Corollary

The uniform satisfiability problem of all familiar local temporal logics belongs to EXPSPACE $\textcircled{\ensuremath{\square}}$

Theorem (Gastin & K '05, '09)

Let $n \ge 0$ be arbitrary.

- 1. Every $M\Sigma_n$ -definable temporal logic is n-effective.
- 2. Hence: the uniform satisfiability problem of every $M\Sigma_n$ -definable temporal logic is in nEXPSPACE.
- 3. There exists an $M\Sigma_n$ -definable temporal logic whose uniform satisfiability problem is hard for nEXPSPACE.

Corollary

The uniform satisfiability problem of all familiar local temporal logics belongs to EXPSPACE $\textcircled{\ensuremath{\square}}$

Theorem (Gastin & K '05, '09)

Let $n \ge 0$ be arbitrary.

- 1. Every $M\Sigma_n$ -definable temporal logic is n-effective.
- 2. Hence: the uniform satisfiability problem of every $M\Sigma_n$ -definable temporal logic is in nEXPSPACE.
- 3. There exists an $M\Sigma_n$ -definable temporal logic whose uniform satisfiability problem is hard for nEXPSPACE.

Corollary

The uniform satisfiability problem of all familiar local temporal logics belongs to EXPSPACE O, and this approach cannot yield PSPACE O.

Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness Variance of Büchi-automata ... and 0-effectiveness

Is \mathcal{L} 0-effective?

often: automaton $\mathcal{A}_{\Pi,M}$ for $\mathrm{Lin}([\![M]\!]_{\Pi})$ constructible with $2^{\mathrm{poly}(|\Pi|)}$ states

Is \mathcal{L} 0-effective?

- often: automaton $\mathcal{A}_{\Pi,M}$ for $\mathrm{Lin}([\![M]\!]_{\Pi})$ constructible with $2^{\mathrm{poly}(|\Pi|)}$ states
- but: how to transform it into modality automaton $\mathcal{M}_{\Pi,M}$ of polynomial size with

Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness Variance of Büchi-automata

... and 0-effectiveness

Problem description

Problem

given Büchi-automaton \mathcal{A} with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$ construct Büchi-automaton \mathcal{M} of polynomial size with

$$(u, X) \in L(\mathcal{M})$$

$$(u, X) \in L(\mathcal{M})$$

$$X = \{x \in \mathbb{N} \mid (u, \{x\}) \in L(\mathcal{A})\},$$

$$(u, X) \mapsto (u, \{x\}) \in L(\mathcal{A})\}$$

i.e., with $L(\mathcal{M}) = \{(u, X) \mid \forall x : (x \in X \leftrightarrow (u, \{x\}) \in L(\mathcal{A}))\}$

Problem description

Problem

given Büchi-automaton \mathcal{A} with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$ construct Büchi-automaton \mathcal{M} of polynomial size with

i.e., with $L(\mathcal{M}) = \{(u, X) \mid \forall x : (x \in X \leftrightarrow (u, \{x\}) \in L(\mathcal{A}))\}$ Plan

(i) use "General variance" to construct B for {(u, X) | ∀x(x ∈ X ← (u, {x}) ∈ L(A)}
(ii) use "Special variance" to construct B for {(u, X) | ∀x(x ∈ X → (u, {x}) ∈ L(A)}

General variance $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$ $GS(v) = \{q \in Q \mid \exists x : I \xrightarrow{(v, \emptyset)} q \text{ or } I \xrightarrow{(v, \{x\})} q\}$

number of states reachable by (v, X) with $|X| \leq 1$

General variance $\mathcal{A} = (Q, I, T, F) \text{ Büchi-automaton with } \mathcal{L}(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}, v \in \Gamma^*$ $GS(v) = \{q \in Q \mid \exists x : I \xrightarrow{(v, \emptyset)} q \text{ or } I \xrightarrow{(v, \{x\})} q\}$ $GV(\mathcal{A}) = \max\{|GS(v)| : v \in \Gamma^*\}$

maximal number of states reachable by (v, X) with $|X| \leq 1$

General variance

 $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$

$$GS(v) = \{q \in Q \mid \exists x : I \xrightarrow{(v,\emptyset)} q \text{ or } I \xrightarrow{(v,\{x\})} q\}$$
$$GV(\mathcal{A}) = \max\{|GS(v)| : v \in \Gamma^*\}$$

Proposition 1 Büchi-automaton $\overleftarrow{\mathcal{B}}$ constructible in space $O(GV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overleftarrow{\mathcal{B}}) = \{(u, X) \mid \forall x : (x \in X \leftarrow (u, \{x\}) \in L(\mathcal{A}))\}$$

General variance

 $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $\mathcal{L}(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$

$$GS(v) = \{q \in Q \mid \exists x : I \xrightarrow{(v,\emptyset)} q \text{ or } I \xrightarrow{(v,\{x\})} q\}$$
$$GV(\mathcal{A}) = \max\{|GS(v)| : v \in \Gamma^*\}$$

 $\begin{array}{l} \text{Proposition 1} \\ \text{Büchi-automaton} & \overleftarrow{\mathcal{B}} \text{ constructible in space } O(GV(\mathcal{A})\log|\mathcal{A}|) \text{ with } \end{array}$

$$L(\overleftarrow{\mathcal{B}}) = \{(u, X) \mid \forall x : (x \in X \leftarrow (u, \{x\}) \in L(\mathcal{A}))\} \\ = (\Gamma^{\omega} \times 2^{\mathbb{N}}) \setminus \{(u, X) \mid \exists x : (x \notin X \land (u, \{x\}) \in L(\mathcal{A}))\}$$

General variance

 $\mathcal{A}=(\mathcal{Q},\mathcal{I},\mathcal{T},\mathcal{F})$ Büchi-automaton with $\mathcal{L}(\mathcal{A})\subseteq\Gamma^{\omega} imes2^{\mathbb{N}}$, $v\in\Gamma^{*}$

$$GS(v) = \{q \in Q \mid \exists x : I \xrightarrow{(v,\emptyset)} q \text{ or } I \xrightarrow{(v,\{x\})} q\}$$
$$GV(\mathcal{A}) = \max\{|GS(v)| : v \in \Gamma^*\}$$

$\begin{array}{l} \text{Proposition 1} \\ \text{Büchi-automaton} & \overleftarrow{\mathcal{B}} \text{ constructible in space } O(GV(\mathcal{A}) \log |\mathcal{A}|) \text{ with} \end{array}$

$$egin{aligned} \mathcal{L}(\overleftarrow{\mathcal{B}}) &= \{(u,X) \mid orall x : (x \in X \leftarrow (u,\{x\}) \in \mathcal{L}(\mathcal{A}))\} \ &= (\Gamma^{\omega} imes 2^{\mathbb{N}}) \setminus \{(u,X) \mid \exists x : (x \notin X \land (u,\{x\}) \in \mathcal{L}(\mathcal{A}))\} \end{aligned}$$

Proof idea (for finite automata).

reachable states in equivalent deterministic automaton contain at most m = GV(A) original states \Rightarrow algorithm has to handle *m*-elements sets of original states

 $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $\mathcal{L}(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$, $w \in \Gamma^{\omega}$

$$SS(v,w) = \left\{ q \in Q \mid \exists x \exists \text{ successful run } : \begin{array}{c} I \xrightarrow{(v,\emptyset)} q \xrightarrow{(w,\{x\})} & \text{or} \\ I \xrightarrow{(v,\{x\})} q \xrightarrow{(w,\emptyset)} & \end{array} \right\}$$

set of states reachable after v in successful run on (vw,X) with $|X|\leq 1$

 $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$, $w \in \Gamma^{\omega}$

$$SS(v, w) = \left\{ q \in Q \mid \exists x \exists \text{ successful run } : \begin{array}{c} I \xrightarrow{(v, \emptyset)} q \xrightarrow{(w, \{x\})} & \text{or} \\ I \xrightarrow{(v, \{x\})} q \xrightarrow{(w, \emptyset)} & \end{array} \right\}$$
$$SV(\mathcal{A}) = \max\{|SS(v, w)| : v \in \Gamma^*, w \in \Gamma^\omega\}$$

maximal number of states reachable after v in successful run on (vw, X) with $|X| \leq 1$

 $\mathcal{A} = (Q, I, T, F)$ Büchi-automaton with $L(\mathcal{A}) \subseteq \Gamma^{\omega} \times 2^{\mathbb{N}}$, $v \in \Gamma^*$, $w \in \Gamma^{\omega}$

$$SS(v, w) = \begin{cases} q \in Q \mid \exists x \exists \text{ successful run } : & I \xrightarrow{(v, \emptyset)} q \xrightarrow{(w, \{x\})} \text{ or } \\ I \xrightarrow{(v, \{x\})} q \xrightarrow{(w, \emptyset)} & I \end{cases} \\ SV(\mathcal{A}) = \max\{|SS(v, w)| : v \in \Gamma^*, w \in \Gamma^\omega\} \end{cases}$$

Proposition 2

Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overrightarrow{\mathcal{B}}) = \{(u, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proposition 2 Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\vec{\mathcal{B}}) = \{(w, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proposition 2 Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overrightarrow{\mathcal{B}}) = \{(w, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proof idea

1. construct alternating automaton for $L(\vec{B})$ s.t. slices in minimal successful run dags are of form $\{q_1, \ldots, q_n, B\}$ with $q_i \in Q, B \subseteq Q, n, |B| \le m = SV(A)$

Proposition 2 Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overrightarrow{\mathcal{B}}) = \{(w, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proof idea

- 1. construct alternating automaton for $L(\vec{B})$ s.t. slices in minimal successful run dags are of form $\{q_1, \ldots, q_n, B\}$ with $q_i \in Q, B \subseteq Q, n, |B| \leq m = SV(A)$
- 2. transform it into Büchi-automaton $\overrightarrow{\mathcal{B}}$ with states of form $(slice, b_1, \ldots, b_{m+1})$ where $b_i \in \{0, 1\}$

Proposition 2 Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overrightarrow{\mathcal{B}}) = \{(w, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proof idea

- 1. construct alternating automaton for $L(\vec{B})$ s.t. slices in minimal successful run dags are of form $\{q_1, \ldots, q_n, B\}$ with $q_i \in Q, B \subseteq Q, n, |B| \le m = SV(A)$
- 2. transform it into Büchi-automaton $\overrightarrow{\mathcal{B}}$ with states of form $(slice, b_1, \ldots, b_{m+1})$ where $b_i \in \{0, 1\}$ \Rightarrow number of states of $\overrightarrow{\mathcal{B}} \leq {|Q| \choose m} \cdot {|Q| \choose m} \cdot 2^{m+1} = |Q|^{O(m)}$

Proposition 2 Büchi-automaton $\overrightarrow{\mathcal{B}}$ constructible in space $O(SV(\mathcal{A}) \log |\mathcal{A}|)$ with

$$L(\overrightarrow{\mathcal{B}}) = \{(w, X) \mid \forall x : (x \in X \to (u, \{x\}) \in L(\mathcal{A}))\}$$

Proof idea

- 1. construct alternating automaton for $L(\vec{B})$ s.t. slices in minimal successful run dags are of form $\{q_1, \ldots, q_n, B\}$ with $q_i \in Q, B \subseteq Q, n, |B| \le m = SV(A)$
- 2. transform it into Büchi-automaton $\overrightarrow{\mathcal{B}}$ with states of form $(slice, b_1, \ldots, b_{m+1})$ where $b_i \in \{0, 1\}$ \Rightarrow number of states of $\overrightarrow{\mathcal{B}} \leq {|\mathcal{Q}| \choose m} \cdot {|\mathcal{Q}| \choose m} \cdot 2^{m+1} = |\mathcal{Q}|^{O(m)}$ $\Rightarrow \overrightarrow{\mathcal{B}}$ constructible in space $O(m \log(|\mathcal{A}|))$

Local temporal logics for traces

MSO-definable temporal logics

Polynomial variance and 0-effectiveness Variance of Büchi-automata ... and 0-effectiveness

Recall

1. *n*-ary modality is 0-effecitve, if modality-automaton $\mathcal{M}_{M,\Pi}$ that accepts

 $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftrightarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$

computable in space $poly(\Pi)$.

Recall

1. *n*-ary modality is 0-effecitve, if modality-automaton $\mathcal{M}_{M,\Pi}$ that accepts

$$\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftrightarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$$

computable in space $poly(\Pi)$.

2. If all modalities are 0-effective, then the satisfiability problem is in PSPACE.

Proposition A

M m-ary modality s.t. Büchi-automaton $\mathcal{A}_{M,\Pi}$ is computable from Π in polynomial space with $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi} \})$ and $GV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$. Then *M* is 0-effective.

Proposition A

M m-ary modality s.t. Büchi-automaton $\mathcal{A}_{M,\Pi}$ is computable from Π in polynomial space with $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $GV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$. Then *M* is 0-effective.

Proof.

1.
$$\overleftarrow{\mathcal{B}}$$
 from Prop. 1 accepts
 $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$

Proposition A

M m-ary modality s.t. Büchi-automaton $\mathcal{A}_{M,\Pi}$ is computable from Π in polynomial space with $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $GV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$. Then *M* is 0-effective.

Proof.

1. $\overleftarrow{\mathcal{B}}$ from Prop. 1 accepts $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$ 2. $SV(\mathcal{A}) \leq GV(\mathcal{A})$, hence $\overrightarrow{\mathcal{B}}$ from Prop. 2 accepts $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \rightarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$

Proposition A

M m-ary modality s.t. Büchi-automaton $\mathcal{A}_{M,\Pi}$ is computable from Π in polynomial space with $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $GV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$. Then *M* is 0-effective.

Proof.

t

1.
$$\overleftarrow{\mathcal{B}}$$
 from Prop. 1 accepts
 $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_\Pi)\}$
2. $SV(\mathcal{A}) \leq GV(\mathcal{A})$, hence $\overrightarrow{\mathcal{B}}$ from Prop. 2 accepts
 $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \rightarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_\Pi)\}$
hen $\mathcal{M}_{M,\Pi}$ for $L(\overrightarrow{\mathcal{B}}) \cap L(\overleftarrow{\mathcal{B}})$ constructible in space

Proposition A

M m-ary modality s.t. Büchi-automaton $\mathcal{A}_{M,\Pi}$ is computable from Π in polynomial space with $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $GV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$. Then *M* is 0-effective.

Examples

"strict universal until" SU, "universal until" U, "next" X, "process-based next" X_p , "process-based until" U_p "strict universal since" SS, "universal since" S, "yesterday" Y, "process-based yesterday" Y_p , "process-based since" S_p path modalities EU, ES, EG

Proposition B

M m-ary modality s.t. Büchi-automata $A_{M,\Pi}$ and $\overline{A_{M,\Pi}}$ are computable from Π in polynomial space with

1. $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $SV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$

2. $L(\overline{\mathcal{A}_{M,\Pi}}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi})^{\operatorname{co}} \text{ and } SV(\overline{\mathcal{A}_{M,\Pi}}) \in \operatorname{poly}(|\Pi|)$

Then *M* is 0-effective.

Proof

1. $\overrightarrow{\mathcal{B}}$ from Prop. 2 accepts $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \to (\llbracket u \rrbracket, \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$

Proposition B

M m-ary modality s.t. Büchi-automata $A_{M,\Pi}$ and $\overline{A_{M,\Pi}}$ are computable from Π in polynomial space with

- 1. $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $SV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$
- 2. $L(\overline{\mathcal{A}_{M,\Pi}}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi})^{\operatorname{co}} \text{ and } SV(\overline{\mathcal{A}_{M,\Pi}}) \in \operatorname{poly}(|\Pi|)$

Then *M* is 0-effective.

Proof

2. \mathcal{B} from Prop. 2 accepts $\{(u, Y, \overline{X}) \mid \forall x : (x \in Y \to ([u], \{x\}, \overline{X}) \notin \llbracket M \rrbracket_{\Pi})\}$ modify into $\overleftarrow{\mathcal{B}}$ for $\{(u, X_0, \overline{X}) \mid \forall x : (x \notin X_0 \to ([u], \{x\}, \overline{X}) \notin \llbracket M \rrbracket_{\Pi})\}$ which equals $\{(u, X_0, \overline{X}) \mid \forall x : (x \in X_0 \leftarrow ([u], \{x\}, \overline{X}) \in \llbracket M \rrbracket_{\Pi})\}$

Proposition B

M m-ary modality s.t. Büchi-automata $A_{M,\Pi}$ and $\overline{A_{M,\Pi}}$ are computable from Π in polynomial space with

1. $L(\mathcal{A}_{M,\Pi}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi}\})$ and $SV(\mathcal{A}_{M,\Pi}) \in \operatorname{poly}(|\Pi|)$

2. $L(\overline{\mathcal{A}_{M,\Pi}}) = \operatorname{Lin}(\llbracket M \rrbracket_{\Pi})^{\operatorname{co}} \text{ and } SV(\overline{\mathcal{A}_{M,\Pi}}) \in \operatorname{poly}(|\Pi|)$

Then *M* is 0-effective.

Examples

"Thiagarajan's process-based next" \mathcal{O}_p , "... until" \mathcal{U}_p , "... since" \mathcal{S}_p "exists concurrently" Eco

Final result

Main theorem

The uniform satisfiability problem for

- (1) $M\Sigma_n^1$ -definable local temporal logics is *n*EXPSPACE-complete.
- (2) the temporal logic based on all familiar local modalities is PSPACE-complete.

Proof of (2).

- (a) all familiar local modalities are 0-effective: corollary to Prop. A and B $\,$
- (b) result follows from Tractability Theorem

Final result

Main theorem

The uniform satisfiability problem for

- (1) $M\Sigma_n^1$ -definable local temporal logics is *n*EXPSPACE-complete.
- (2) the temporal logic based on all familiar local modalities is PSPACE-complete.

analogous statements for the model checking problem hold as well.