
ACTS Workshop

30th January 2009

Improved state-count for determinization of

non-deterministic Buchi automata: A Safra-tree

based approach

A conjecture

Hrishikesh Karmarkar and Supratik Chakraborty

IIT Bombay

Page 2

Motivation

• Complementation of non-deterministic Büchi

word automata - a well studied and

important problem.

• Complementation can be carried out -

directly or via determinization.

• Both complementation and determinization

for NBW are non-trivial.

• Complementation upper bound has reduced

continuously - current bound stands at

(0.8n)
n

[Schewe09].

• Det. upper-bound more or less stable.

• Piterman06 reduced it to 2n(n!2) - DPW

with 2n indices. Schewe09 gives a

determinization construction - DRW with

L.o(1.65nn) states and 2n − 1 accepting pairs,

where L is the size of the input alphabet.

• We have reason to believe that

determinization upper bounds can match

those of complementation.

Page 3

Safra trees

• Our ongoing attempt uses Safra trees.

• Consider usual Safra trees.

• Has the following -

1. Set of nodes with a designated root node.

2. A node naming function that assigns

names from a finite vocabulary to every

node.

3. A node labelling function that assigns sets

of Büchi-states to every node.

4. A parenthood function extendable to an

ancestor relation.

5. A sibling relation extendable to a left

relation.

6. A coloring function that colors every node

with one of White/Red/Green.

Page 4

Modified Safra trees (mS-trees).

• mS-trees are Safra trees with additional color

in {Yellow, NotYellow} for nodes. Hence, the

color for a node is a pair in

{White, Red, Green}× {Y ellow, NotY ellow}.

Notation: A color from {White, Red, Green}

is called the first-color of a node (χ1), while a

color from {Y ellow, NotY ellow} is called the

second-color (χ2) of a node.

• Eventual goal: To reorder nodes such that all

nodes that are removed finitely often appear

to the left of or above all vertices that are

removed infinitely often.

• To attain our goal : When a node is deleted

move all nodes to its right to the left. This

requires us to move nodes as children of

nodes that did not spawn them.

• Semantics of color Yellow : If a node v has

parent u and is also colored Yellow, then u

has not spawned v.

Page 5

• What if a node has only Yellow children and

it becomes empty? Safra mechanism to pull

back descendants does not work. We can

move all Yellow nodes left.

• How far left can we move? The leftmost path

perhaps.

• What if a node on the leftmost path has only

Yellow children? Where do we move?

• Important Property of mS-trees: mS-trees

admit non-planarity. This is required to make

sure we can always move left.

• Non-planarity causes siblings to have no

order. We need order. We need to embed

back into a plane.

• In Safra trees, Büchi runs can move left or

below by merging. The left and descendant

relations dictate the merging.

• With reordering (called Horizontal

Compression) we have another way of moving

runs in addition to merging. How do we

Page 6

manage merging in Yellow nodes?

• What is really required is a new way of

coding nodes.

Page 7

Codes for nodes in Safra trees

• A code for a node is a sequence

c = (i0, i1, i2, . . . , ik−1, ik), with each ij ∈ N.

• c is the code for node v in Safra tree if v can

be reached from the root via a path that

visits vertices vi0 , vi1 , vi2 , . . . , vik−1
, vik

.

• vi0 = root and vik
= v and vij

is the ij
th child

in left-right order of vertex vij−1
for

j = 1, . . . , k.

• root has code 0 by default.

• Example: If v has code 012, then v can be

reached by visiting the root, then the first

child of the root and then the second child of

this first child.

• A node that is to the left or below has lower

code. Ex: 012 is lower than 013 and 012 is

lower than 01. Merging happens by

comparing codes and merging into lower code

nodes.

Page 8

Codes in mS-trees.

• We need codes that address problems caused

due to Yellow nodes.

• Extend codes of Safra trees.

• Separate tree from codes. Example: A node

to the rightmay have a lower code in a

non-natural coding scheme.

• We need to find useful codes, not arbitrary

ones.

• One such useful code but that failed is given.

• A sequence c = (i0, i1, i2, . . . , ik−1, ik), with

each ij ∈ N ∪ {#}.

• Notation: node(c)=node with code c.

Suppose, node(c) is in plane numbered p.

Then node(c#) is an immediate right-sibling

of node(c) in plane numbered p + 1. Similarly,

node(c#i) for i > 1 is the right-sibling of

node(c) in plane numbered p + i.

• Example: Let c = 12, then code c# = 12#.

Page 9

Then node(12#) is really a right-sibling of

node(12) in the new coding scheme, but

node(12#) is in a higher plane than node(12).

Under the usual coding scheme for Safra trees

node(12) and node(13) are immediate siblings

on the same plane. In the new coding scheme

node(13) is to the right of node(12) and

node(12#).

• Codes are still totally ordered.

Page 10

Codes in mS-trees.

• Let c1 = c0n be a code.

1. Right siblings of node(c1): node(c0m#i),

m ≥ n, i ≥ 0, but m = n ⇒ i > 0.

2. Left siblings of node(c1): node(c0m#i),

m < n, i ≥ 0.

3. Children of node(c1): node(c1m), m > 0.

4. Parent of node(c1): node(c0).

• Let c1 = c0n#i be a code, with i, n > 0.

1. Right siblings of node(c1): node(c1#
j),

j > 0 and node(c0m#j), m > n, j ≥ 0.

2. Left-siblings of node(c1): node(c0n#j), for

j < i and node(c0m#j), for m ≤ n, j ≥ 0

but m = n ⇒ j < i.

3. Children of node(c1): node(c1m), m > 0.

4. Parent of node(c1): node(c0).

Page 11

Ordering over codes.

• Let c1, c2 be two codes in an mS-tree. Let

a1, a2 be the first symbols reading from left to

right where c1, c2 differ.

• If c1, c2 are not prefixes of one another then,

we say c1 ≤ c2 if

1. a1, a2 ∈ N , a1 ≤ a2 (L1)

Ex: c1 = 12, c2 = 13.

2. a1 ∈ N , a2 = # (L2)

Ex: c1 = 123, c2 = 12#.

• If c1 is a prefix of c2, then c1 ≤ c2 if

1. c2 = c1#c3, c3 is possibly ε. (L3)

For this node(c2) is the descendant of a

right-sibling of node(c1).

• This naturally defines the LEFT relation

between nodes i.e c1 is to the left of c2 if

c1 ≤ c2 by the above criteria.

Page 12

Ordering over codes.

• If c2 is a prefix of c1 then, we say c1 ≤ c2 if

1. c1 = c2nc3, n ∈ N and c3 is possibly ε.

(D1)

For this, node(c1) is indeed a descendant

of node(c2).

2. This naturally defines the ANCESTOR

relation between nodes i.e c2 is an ancestor

of c1 if c1 ≤ c2 by the above criteria.

Page 13

A natural node naming scheme.

Notation: Name(n) is the name assigned to node

n, where 1 ≤ Name(n) ≤ I, and I is the total

number of nodes in the mS-tree.

• For all pairs of nodes n1, n2 such that

n1 6= n2, let code(n1) = c1 and code(n2) = c2.

• If c1 ≤ c2 by any one of criteria L1, L2, L3

then Name(node(c1)) ≤ Name(node(c2)).

• If c1 ≤ c2 by criteria D1, then

Name(node(c2)) ≤ Name(node(c1)).

• The solution for the above constraints gives a

unique naming scheme for mS-trees.

• The obtained naming scheme is nothing but a

preorder naming scheme i.e if node n is the

ith node visited in a preorder traversal of the

mS-tree then node n gets name i.

Page 14

The determinization construction

• Given a NBW B = (Σ, Qb, Qb
0, δ

b, T b) with

|Qb| = n, we construct a DPW

R = (Σ, Qr, qr
0, δ

r, T r) that accepts the same

language.

• States of R are mS-trees with the node labels

disjoint subsets of Qb.

• Additionally with every state we store two

variables e, f that are used to define the

acceptance condition.

• t0 be the mS-tree consisting of just the root

node v0 with node label Qb
0 and color (White,

NotYellow). The initial state of R is qr
0 = t0.

• The transition function of DPW R is

computed using procedure NextState. Given a

state t ∈ Qr and a letter a ∈ Σ, invoking

NextState with (t, a) gives t′ = δr(t, a).

Notation: λ(v) is the (Büchi state) label of

node v.

Page 15

The determinization construction

Notation: A Yellow/NotYellow node is a node

with χ2 Yellow/NotYellow.

Procedure NextState (t, a)

1. For the label of every node in t, compute the

next Büchi states via δb. Set χ1 of all nodes

to White.

2. For every Büchi state s in the tree nodes, find

the leftmost and lowermost node that

contains s. For this order all nodes containing

s with respect to the ≤ ordering on their

codes and find the node v with the lowest

code. Keep s in v and remove it from labels

of all other nodes.

3. For every node v if λ(v) ∩ T b 6= ∅, create a

new node v′ with λ(v′) = λ(v) ∩ T b and add

it as the rightmost child of v on the same

plane as v. Hence, if code of v is c, then code

of v′ is cm for some m ∈ N. Set the first color

of v′ to Red.

Page 16

The determinization construction

4. If λ(v) = ∅ and v has atleast one NotYellow

child then

(a) For every NotYellow descendant u of v

reachable via a path consisting of only

NotYellow nodes, set λ(v) = λ(v) ∪ λ(u)

and set λ(u) = ∅.

(b) Set χ1 of v to Green.

Notation: The leftmost path in an mS-tree is

the path consisting of only vertices with codes

in 01∗.

5. For every node v, in reverse preorder

sequence, not on the leftmost path and such

that λ(v) = ∅

(a) Collapse entire subtree of v and add all

Büchi states to a new node v′. Color v′

with (Red, Yellow).

(b) Let u be the rightmost and lowermost

node (using the ≤ ordering on codes)

among all nodes to the left of v and let u′

Page 17

be the parent of u.

(c) If u′ is not an ancestor of v, then add v′ as

the rightmost child of u′ on the same

plane as u′. Hence, if the code of u′ is c′,

then the code of v′ is c′m for some m ∈ N.

(d) If u′ is an ancestor of v, then add v′ as a

child of u′ and as the immediate

right-sibling of u on the next plane as u.

Hence, if the code of u is c then the code

of v′ is c#.

(e) Compress (reorder) mS-tree by the

following steps

i. Let u0, u1, u2, . . . , uk be vertices such

that u0 = v and uk = root and

ui+1=parent of ui for all

i ∈ {0, 1, . . . , k − 1}.

ii. Delete vertex v.

iii. For each i ∈ {1, . . . , k − 1}, if ui has an

immediate right sibling ri then set ui to

be the parent of ri (from its original

parent ui+1). Set χ2 of ri to Yellow.

Page 18

6. Among all nodes on the leftmost path let v be

the node with the largest code such that

first-color of v is Green. Then -

(a) Collapse the entire subtree of v into a

single node v′.

(b) Add v′ as the rightmost child of the root

on the same plane as the root.

7. Set e,f variables : Let t′ be the mS-tree

obtained after all the above steps have been

completed. We set the e, f variables.

(a) If the vertex in preorder position i of t′ is

not named i, then the vertex in preorder

position i is called Red.

(b) Set f to the minimum j such that the

vertex in preorder position j is called

Green, else if no such j exists then f is set

to 2n + 1.

(c) Set e to the minimum j such that the

vertex in preorder position j is called Red,

else if no such j exists then e is set to

2n + 1.

Page 19

(d) Set the name of the vertex in preorder

position i in t′ to i, for i ∈ {1, . . . , n}.

Return (t′)

The parity acceptance condition is defined by by

setting up the following sets

F0 = {q ∈ Qr|f = 1 and e > 1}

F2n−1 = Qr \
⋃2n−2

j=0 Fj

F2i+1 = {q ∈ Qr|e = i + 2 and f ≥ e}

F2i+2 = {q ∈ Qr|f = i + 2 and e > f} where

i = 0, . . . , n − 2.

A run of R is accepting if there is an even j such

that states from Fj are seen infinitely often, while

states from Fi for all i < j are seen finitely often.

Page 20

Correctness

Theorem 1 On a word α, if there is an even j

such that states from Fj are seen infinitely often,

while states from Fi for all i < j are seen finitely

often then there is a Büchi accepting run in B.

1. Statement of theorem implies the existence of

a node v that is Green infinitely often and

Red finitely often along the run of states

(mS-trees) of R on α.

2. Proof of theorem now follows Safra’s original

proof exactly. Construct finitely branching

infinite tree and use König’s Lemma.

Page 21

Correctness

Theorem 2 One a word α, if there is an

accepting Büchi run in B, then there is an even j

such that states from Fj are seen infinitely often,

while states from Fi for all i < j are seen finitely

often.

Let ρ be the accepting Büchi run. We break the

proof into two parts.

(I) In the mS-trees along the run ρ of R, suppose

the leftmost path has a node that turns Green

infinitely often.

1. Look at the highest such node on the leftmost

path, say v.

2. After a sufficiently long finite prefix of ρ, no

node above v turns Green.

3. The only way in which a node on the leftmost

path can be deleted if its ancestor is Green.

4. Hence, v is Red finitely often and its code

and its preorder position eventually get fixed.

Page 22

(II) In the mS-trees along the run ξ of R, suppose

no node on the leftmost path turns Green

infinitely often.

1. After a sufficiently long finite prefix of ξ, after

which no node on the leftmost path turns

Green, let us trace the movement of ρ.

2. The run ρ cannot move to a child of the root

after this finite prefix.

3. Hence, ρ can move to a node to the left or

below the current node and it can only move

up into an ancestor that is colored Green.

4. Since, no node on the leftmost path is Green

now, the run ρ always stays to the right of

the leftmost path.

5. Look at the codes of all nodes that contain ρ

after the finite prefix. Let c be the longest

common prefix of these codes.

6. Since, ρ cannot move left and down

indefinitely it must move back up infinitely

often and it moves up into an ancestor that is

Page 23

colored Green.

7. But, since c is the longest common prefix of

all codes that ρ is in, the run ρ must come

back to the node of c infinitely often.

8. Hence the node of c is Green infinitely often.

9. If a node to the left or above the node of c is

deleted, it would result in the node of c being

moved left and c cannot be the longest

common prefix of codes then.

10. Hence, the code and preorder position of the

node with code c is fixed and since ρ is always

in the subtree of the node with code c, it is

Red finitely often.

The existence of a node that is Green infinitely

often and Red finitely often and whose preorder

position is fixed implies that there is an even j

such that states from Fj are seen infinitely often,

while states from Fi for all i < j are visited only

finitely often.

Page 24

Size of parity automaton

1. Nodes in every mS-tree are named according

to their preorder position.

2. This does away with the need to store node

names.

3. We store only the Büchi states for each node

of an mS-tree in preorder, suitable separated

(nn with a multiplier of kn for the separator

information, for constant k).

4. Information regarding structure of the tree

(2(2n+1) multiplier).

5. Node colors (6n multiplier).

6. e,f variables (2n multiplier)

7. Number of states of the deterministic parity

automaton is upper bounded by (cnn) for a

suitable constant c, with 2n parity sets.

