Asynchronous Diagnosis and *leadsto* in Occurrence Nets

Stefan Haar INRIA Saclay + LSV France

January 28, 2009

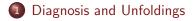
Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

・ 同 ト ・ ヨ ト ・ ヨ

Diagnosis and Unfoldings

Contents

Diagnosis and Unfoldings

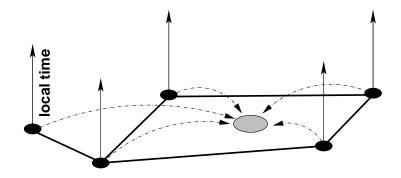


Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and leadsto in Occurrence Nets

-∢ ≣ →

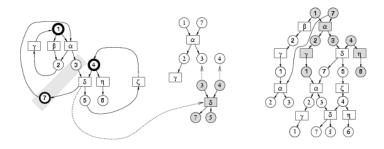
Contents

2 The leadsto relation ▷


Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

A.

-∢ ≣ ≯


-

Fault Diagnosis for Networks

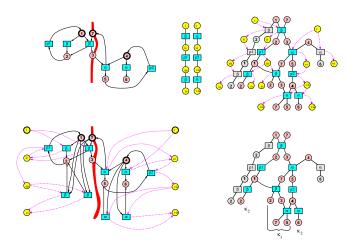
Centralized Diagnoser observes asynchronous alarm streams

Unfoldings and Diagnosis (BFHJ 2003)

Unfoldings: from PNs to ONs

Let $\mathit{ON}=(\mathcal{B},\mathcal{E},\mathit{G},\mathbf{c}^*)$, and $\leqslant:=\mathit{G}^*$, $<:=\mathit{G}^+$; set

• $e_1 \#_m e_2$ iff $e_1 \cap e_2 \neq \emptyset$


• $x_1 \ \# \ x_2 \ \text{iff} \ \exists \ e_1, e_2 : \ (e_1 \ \#_m e_2) \ \land \ (e_1 \ \leqslant \ x_1) \ \land \ (e_2 \ \leqslant \ x_2)$

• x_1 co x_2 iff neither $(x_1 \le x_2)$ nor $(x_2 < x_1)$ nor $(x_1 \# x_2)$ ON is an occurrence net iff:

- No self-conflict: $\forall x \in \mathcal{B} \cup \mathcal{E} : \neg[x \# x];$
- \leq is a partial order: $\forall x \in \mathcal{B} \cup \mathcal{E} : \neg[x < x];$
- $\forall x \in \mathcal{B} \cup \mathcal{E} : |\{x' \mid x' < x\}| < \infty;$
- no backward branching: $\forall b \in \mathcal{B} : |\bullet b| \leq 1$.
- $\mathbf{c}^* := \min(ON) \subseteq \mathcal{B}.$
- **Configuration:** conflict free, downward closed set $\mathbf{c}^* \subseteq \kappa \subseteq \mathcal{B} \cup \mathcal{E}$;
- **Run:** \subseteq -maximal configuration ω

イロト イポト イヨト イヨト

Unfoldings and Diagnosis

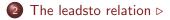
< A

Unfoldings and Diagnosis

$\textbf{C} \in \textbf{diag}(\mathcal{A}) \text{ iff }$

$\exists \ \overline{\textbf{C}} \in \text{config}(\mathcal{U}_{\mathcal{N} \times \mathcal{A}}): \text{proj}_{\mathcal{N}}(\overline{\textbf{C}}) = \textbf{C}, \ \text{proj}_{\mathcal{A}}(\overline{\textbf{C}}) = \mathcal{A}.$

Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets


 э

Further Fun

- Distribution
- Dynamic topologies
- Probability of asynchronous runs
- Latencies, nonmonotonicity in timed systems
- Observability: do there exist silent cycles ?
- **Diagnosability:** Can fault occurrence be determined after a bounded 'time' ? In particular, do there exist undeterminate cycles ?

Contents

Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

A 10

→ Ξ → → Ξ

leadsto relation ▷

Motivation: ensure Observability

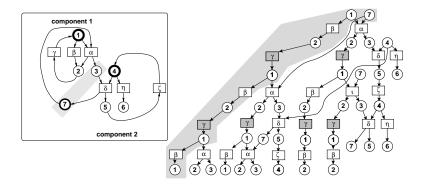
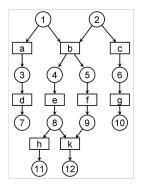



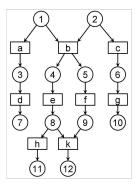
Image: A image: A

э

leadsto relation ▷

leadsto relation ▷

• In ON, set


$$\begin{aligned} &\#[x] &:= \{x' \mid x \# x'\} \\ &\#_{\mu}[x] &:= \{y \mid x \# y \land \forall z : z < y \Rightarrow \neg (z \# x)\} \end{aligned}$$

- x leads to y, written $x \triangleright y$, iff $\#[x] \supseteq \#[y]$.
- **THM:** $x \triangleright y$ holds iff for all runs $\omega \ x \in \omega \Rightarrow y \in \omega$, i. e. $x < y \Rightarrow y \triangleright x$.
- But $y \triangleright x$ compatible also with y < x and y **co** x
- $\bullet \ < \subseteq \rhd^{-1}$
- $\triangleright[x]$ is a configuration.

・吊り くまり くまり

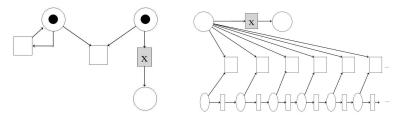
-

leadsto relation ▷

$$\triangleright[h] = \{b, e, f, h\} \quad , \quad \triangleright[k] = \{b, e, f, k\}$$
$$\triangleright[a] = \triangleright[d] = \triangleright[c] = \triangleright[g] \quad = \quad \{a, d, c, g\}$$

э

э


Image: A image: A

leadsto relation

• Theorem: For \triangleright , it suffices to inspect $\#_{\mu}[\bullet]$:

$$\#[x] = \{z' \mid \exists y \in \#_{\mu}[x] : y \leqslant z\}.$$

• Caveat: $\#_{\mu}[x]$ is not necessarily finite:

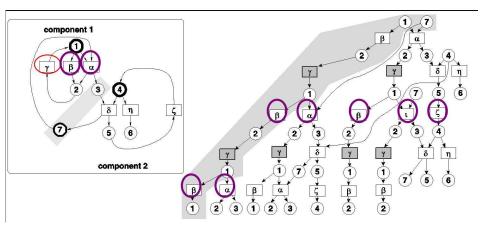
A.

< ∃ >

Safe nets allow to compute ▷

In $\mathcal{U}_{\mathcal{N}}$, \mathcal{N} safe, we have:

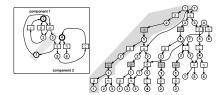
Define round(x) to be the minimal *n* such that x is in the *n*th complete prefix U_n .


Theorem: For all $n \in \mathbb{N}$ and $\neg(x \triangleright y)$, there exists a **leadsto witness** in \mathcal{U}_{m+K-1} , i.e. *z* such that

$$z \# y \land \neg (z \# x).$$

Here, $m = \min(round(x), round(y))$ and K is the number of \mathcal{N} 's reachable markings.

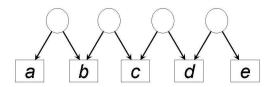
伺下 イヨト イヨト


Example revisited: Lifting \triangleright to \mathcal{N}

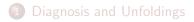
(日) (同) (三) (

-

Example revisited: Lifting \triangleright to \mathcal{N}


$\triangleright_{\mathcal{N}}$	α	β	γ	δ	η	ζ
α	+	_	+	_	-	—
β	-	+	+	_	-	—
γ	-	_	+	_	-	—
δ	+	_	—	+	_	+
η	-	_	_	_	+	—
ζ	+	—	+	+	—	+

Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

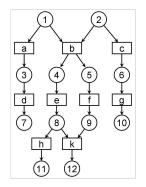

▷ is 'superadditive'

Extend \triangleright to sets of events:

$$\triangleright[\{a,e\}] = \{a,c,e\} \neq \triangleright[a] \cup \triangleright[e] = \{a,e\}$$

Contents

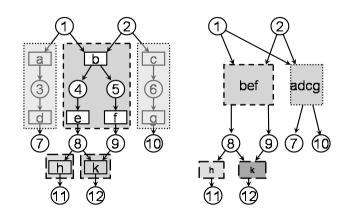
2 The leadsto relation ▷



Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

AP ► < E ►

э


When ▷ holds both ways

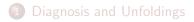
$$\triangleright[b] = \triangleright[e] = \triangleright[f] = \{b, e, f\}$$

э

Facets

æ

Facets and their properties


Call **facet** any strongly connected component δ of \triangleright . Then:

- δ is #-free
- δ is **convex**: x < y < z and $x, z \in \delta$ imply $y \in \delta$

•
$$b^{\bullet} \cap \delta(b) \neq \emptyset \Rightarrow |b^{\bullet}| = 1.$$

- Maximal nodes in δ are conditions
- $\bullet\,$ Facets are abstractions, and the set of facets Δ is an AES and an ON
- $x \mapsto \delta(x)$ preserves runs
- Allow e.g. for qualitative diagnosability analysis

Contents

2 The leadsto relation ▷

Stefan Haar INRIA Saclay + LSV France Asynchronous Diagnosis and *leadsto* in Occurrence Nets

AP ► < E ►

э

Results and Outlook

- leadsto relation effectively computable
- b formalizes occurrence dependencies under progress and information content of configurations
- Structures search for minimal observability : which events must be visible to allow control, diagnosis, verification, ...
- Large unfoldings can be reduced by facet abstraction if only eventual occurrence matters
- Facet abstraction preserves set of runs
- Todo :
 - Improve bounds on $\#_{\mu}[\bullet]$ -computation
 - Read nets
 - Check properties + morphisms of extended PES (E, ≤, #, ▷)

・吊り ・ラト ・ラト

Results and Outlook

To Do

- Refine *diagnosis* procedure
- Improve bounds on $\#_{\mu}[\bullet]$ -computation
- Read nets
- Check properties + morphisms of *extended PES* ($E, \leq, \#, \triangleright$)
- Logics

(4月) (4日) (4日)

3