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Synthesis of a reactive system

inputs from E outputs to E

Open system S
Specification

ϕ
Program P

Two problems

Decide whether there exists a program st. P ||E |= ϕ, ∀E .

Synthesis: If so, compute such a program.

For reasonable systems and specifications, the problems are decidable.
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Distributed synthesis

input of E output to E

Open distributed system S

S1 S2

S3 S4

Specification
ϕ

P1 P2

P3 P4

Two problems

Decide the existence of a distributed program such that their
joint behavior P1||P2||P3||P4||E satisfies ϕ, for all E .

Synthesis : If it exists, compute such a distributed program.
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Asynchronous semantics

P.G., Benjamin Lerman, Marc Zeitoun

Behaviors are Mazurkiewicz traces

Players = controllable actions

Causal memory

Specification : regular over Mazurkiewicz traces

Theorem

Synthesis problem is decidable for co-graph dependence alphabets,
i.e., for series-parallel systems.
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Asynchronous semantics

Our model

Processes evolve asynchronously for local actions (i.e.,
communications with the environment)

They can synchronize by signals = common actions initiated by only
one process. A process cannot refuse reception of a signal.

Specifications :
◮ over partial orders
◮ will not restrain communication abilities



Decidability Results

Theorem

Synthesis problem is decidable for strongly-connected architectures
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The model

Architectures

Communication graph (Proc ,E )

Sets of input and output signals for each process :⋃
i∈Proc Ini ∪

⋃
i∈Proc Outi = Γ

Processes choose sets Σi ,j for (i , j) ∈ E

Σ = Γ ∪
⋃

(i ,j)∈E Σi ,j

For each process i , Σi is the set of signals it can send or receive, and
Σc

i = Outi ∪
⋃

j ,(i ,j)∈E Σi ,j

1 2 3
Σ1,2 Σ2,3
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Strategies are partial functions fi : Σ∗
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i with local memory.
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Signal semantics implies reactivity of processes to events.
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The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

A run t = (V , λ,≤) is f -maximal if for each process i either
Vi = λ−1(Σi ) is infinite, or fi is undefined on the maximal event of Vi .
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2

3
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h
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The model

Observable runs

Given a run t = (V , λ,≤), we define the observable run by

πΓ(t) = (Γ, λ|Γ,≤ ∩ (Γ × Γ))
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The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

Do there exist

sets Σi ,j for each (i , j) ∈ E

and strategies fi : Σ∗
i → Σc

i for each i ∈ Proc

such that every f -maximal f -run t is such that πΓ(t) |= ϕ?
If so, compute them
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Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

Formulae

G1(request −→ F1,2(Out ∧ grant))

G2(grant −→ (Out ∧ H2,1 request))

Theorem

AlocTL is closed under extension and weakening
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Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

Specification is not allowed to require concurrency

Closure by weakening

Ensured by Fi ,j ∧Out and Out ∧ Hi ,j ϕ.
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Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular
specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is
decidable for AlocTL specifications.

Proof

By reduction to the singleton case.



Strongly connected architectures (2)

Proposition

If there are communication sets Σi ,j for (i , j) ∈ E and a winning distributed
strategy on the strongly connected architecture, then there is a winning
strategy on the singleton.

Proof

Easy.
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Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one
can define internal signals sets and a distributed winning strategy for the
strongly connected architecture.

Proof

1 2

3

4

1 2

3

We select a master process and a cycle.

The master process will centralize information in order to simulate f

and tell other processes which value to output

Aim: create a run that will be a weakening of some f -run over the
singleton
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Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert
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Proof - end

Lemma

t ′ is an extension of πΓ(t).

Lemma

t ′ is an f -maximal f -run.

Lemma

If x <′ y in t ′ and x ‖ y in πΓ(t) then λ(y) ∈ In.

Corollary

πΓ(t) is a weakening of t ′.

Conclusion

Then t ′ |= ϕ and, by closure property πΓ(t) |= ϕ.



Conclusion

Asynchrony removes undecidability causes

We have defined a new model of communication

We have identified a class of decidable architectures

Hopefully, many more to come!
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