
How to get decidability of distributed synthesis for

asynchronous systems

Paul Gastin
Joint work with Thomas Chatain and Nathalie Sznajder

January 29-31, 2009
Workshop ACTS

Outline

1 Introduction

2 Model

3 Specification

4 Decidability Results

Synthesis of a reactive system

inputs from E outputs to E

Open system S
Specification

ϕ

Synthesis of a reactive system

inputs from E outputs to E

Open system S
Specification

ϕ
Program P

Two problems

Decide whether there exists a program st. P ||E |= ϕ, ∀E .

Synthesis: If so, compute such a program.

For reasonable systems and specifications, the problems are decidable.

Distributed synthesis

input of E output to E

Open distributed system S

S1 S2

S3 S4

Specification
ϕ

Distributed synthesis

input of E output to E

Open distributed system S

S1 S2

S3 S4

Specification
ϕ

P1 P2

P3 P4

Two problems

Decide the existence of a distributed program such that their
joint behavior P1||P2||P3||P4||E satisfies ϕ, for all E .

Synthesis : If it exists, compute such a distributed program.

Distributed synthesis

Synchronous or asynchronous semantics?

Synchronous semantics

At each tick of a global clock, all processes and the environment
output their new value

Introduced in [PnueliRosner90].

In general undecidable.

Distributed synthesis

Synchronous or asynchronous semantics?

Synchronous semantics

At each tick of a global clock, all processes and the environment
output their new value

Introduced in [PnueliRosner90].

In general undecidable.

P0 P1

Distributed synthesis

Synchronous or asynchronous semantics?

Synchronous semantics

At each tick of a global clock, all processes and the environment
output their new value

Introduced in [PnueliRosner90].

In general undecidable.

P0 P1 P0 P1

Asynchronous semantics

P.G., Benjamin Lerman, Marc Zeitoun

Behaviors are Mazurkiewicz traces

Players = controllable actions

Causal memory

Specification : regular over Mazurkiewicz traces

Asynchronous semantics

P.G., Benjamin Lerman, Marc Zeitoun

Behaviors are Mazurkiewicz traces

Players = controllable actions

Causal memory

Specification : regular over Mazurkiewicz traces

Theorem

Synthesis problem is decidable for co-graph dependence alphabets,
i.e., for series-parallel systems.

Asynchronous semantics

Our model

Processes evolve asynchronously for local actions (i.e.,
communications with the environment)

Asynchronous semantics

Our model

Processes evolve asynchronously for local actions (i.e.,
communications with the environment)

They can synchronize by signals = common actions initiated by only
one process. A process cannot refuse reception of a signal.

Asynchronous semantics

Our model

Processes evolve asynchronously for local actions (i.e.,
communications with the environment)

They can synchronize by signals = common actions initiated by only
one process. A process cannot refuse reception of a signal.

Specifications :
◮ over partial orders

Asynchronous semantics

Our model

Processes evolve asynchronously for local actions (i.e.,
communications with the environment)

They can synchronize by signals = common actions initiated by only
one process. A process cannot refuse reception of a signal.

Specifications :
◮ over partial orders
◮ will not restrain communication abilities

Decidability Results

Theorem

Synthesis problem is decidable for strongly-connected architectures

Outline

1 Introduction

2 Model

3 Specification

4 Decidability Results

The model

Architectures

Communication graph (Proc ,E)

1 2 3

The model

Architectures

Communication graph (Proc ,E)

Sets of input and output signals for each process :⋃
i∈Proc Ini ∪

⋃
i∈Proc Outi = Γ

1 2 3

The model

Architectures

Communication graph (Proc ,E)

Sets of input and output signals for each process :⋃
i∈Proc Ini ∪

⋃
i∈Proc Outi = Γ

Processes choose sets Σi ,j for (i , j) ∈ E

1 2 3
Σ1,2 Σ2,3

The model

Architectures

Communication graph (Proc ,E)

Sets of input and output signals for each process :⋃
i∈Proc Ini ∪

⋃
i∈Proc Outi = Γ

Processes choose sets Σi ,j for (i , j) ∈ E

Σ = Γ ∪
⋃

(i ,j)∈E Σi ,j

1 2 3
Σ1,2 Σ2,3

The model

Architectures

Communication graph (Proc ,E)

Sets of input and output signals for each process :⋃
i∈Proc Ini ∪

⋃
i∈Proc Outi = Γ

Processes choose sets Σi ,j for (i , j) ∈ E

Σ = Γ ∪
⋃

(i ,j)∈E Σi ,j

For each process i , Σi is the set of signals it can send or receive, and
Σc

i = Outi ∪
⋃

j ,(i ,j)∈E Σi ,j

1 2 3
Σ1,2 Σ2,3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: runs

Runs

A run is a Mazurkiewicz trace t = (V , λ,≤) over (Σ,D)
where a D b if there is a process that takes part both in a and b

1 2 3

1

2

3

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

f1 : b

f2 : c

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a
f1 : b′

f2 : c

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a

a′
f1 : b′

f2 : c ′

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a

a′ f
f1 : b′

f2 : c ′′

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a

a′ f

b′

f1 : g

f2 : h

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a

a′ f

b′

h
f1 : g

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

1

2

3

a

a′ f

b′

h

g
f1 : j

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

1

2

3

a

a′ f

b′

h

g
f1 : j

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

1

2

3

a

a′ f

b′

h

g

k

f1 : j

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

1

2

3

a

a′ f

b′

h

g

d

f1 : j

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

1

2

3

a

a′ f

b′

h

g

c

f1 : j

f2 : i

f3 : d

The model: strategies

Strategies

Strategies are partial functions fi : Σ∗
i → Σc

i with local memory.

Signal semantics implies reactivity of processes to events.

A run respects a strategy f = (fi)i∈Proc (is an f -run) if each event of
process i labelled with a controllable action respects the strategy fi .

A run t = (V , λ,≤) is f -maximal if for each process i either
Vi = λ−1(Σi) is infinite, or fi is undefined on the maximal event of Vi .

1

2

3

a

a′ f

b′

h

g

c

The model

Observable runs

Given a run t = (V , λ,≤), we define the observable run by

πΓ(t) = (Γ, λ|Γ,≤ ∩ (Γ × Γ))

The model

Observable runs

Given a run t = (V , λ,≤), we define the observable run by

πΓ(t) = (Γ, λ|Γ,≤ ∩ (Γ × Γ))

1

2

3

a

a′ f

b′

h

g

c

d

The model

Observable runs

Given a run t = (V , λ,≤), we define the observable run by

πΓ(t) = (Γ, λ|Γ,≤ ∩ (Γ × Γ))

1

2

3

a

a′ f

b′

h

g

c

d

a

a′ f h

g

d

The synthesis problem

Given

A = (Proc,E ,Γ)

The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

Do there exist

sets Σi ,j for each (i , j) ∈ E

The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

Do there exist

sets Σi ,j for each (i , j) ∈ E

and strategies fi : Σ∗
i → Σc

i for each i ∈ Proc

The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

Do there exist

sets Σi ,j for each (i , j) ∈ E

and strategies fi : Σ∗
i → Σc

i for each i ∈ Proc

such that every f -maximal f -run t is such that πΓ(t) |= ϕ?

The synthesis problem

Given

A = (Proc,E ,Γ)

ϕ a specification over Γ-labelled partial orders (observable runs)

Do there exist

sets Σi ,j for each (i , j) ∈ E

and strategies fi : Σ∗
i → Σc

i for each i ∈ Proc

such that every f -maximal f -run t is such that πΓ(t) |= ϕ?
If so, compute them

Outline

1 Introduction

2 Model

3 Specification

4 Decidability Results

Specifications

Communication induces order relation

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

b

a

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

b

a

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

b

a

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

b

a

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

b

a

c

b

a

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

a

b

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

a

b

c

a

b

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

a

b

c

Specifications

Communication induces order relation

1 2 3

1

2

3

b

a

c

1

2

3

a

b

c

a

b

c

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

1

2

3

b

a

c

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

1

2

3

b

a

c

1

2

3

b

a

c

1

2

3

b

a

c

1

2

3

b

a

c

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

req’

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

req’

grant

req

req’

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

req’

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

req’

Specifications

Input events are not controllable by processes

1 2 3

1

2

3

req

grant

req’

1

2

3

req

grant

req’

grant

req

req’

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

Specifications should not discriminate between a partial order and its
”weakenings”

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

Specifications should not discriminate between a partial order and its
”weakenings”

1

2

3

b

a

In

Specifications

Restrictions on specifications

Specifications should not discriminate between a partial order and its
order extensions

Specifications should not discriminate between a partial order and its
”weakenings”

1

2

3

b

a

In

1

2

3

b

a

In

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ϕX1 ϕ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ψϕϕ ϕ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ψϕϕ ϕ

ϕ U1 ψ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ϕ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ϕ

F1,2(Out ∧ ϕ)

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ψ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

1

2

3

ψ

Out ∧ H2,1 ψ

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

Formulae

G1(request −→ F1,2(Out ∧ grant))

G2(grant −→ (Out ∧ H2,1 request))

Example of a logic closed by extension and weakening

AlocTL

ϕ ::= a | ¬a | ϕ ∨ ϕ | ϕ ∧ ϕ

| Xi ϕ | ϕ Ui ϕ | ¬Xi ⊤ | ϕ Ũi ϕ

| Yi ϕ | ϕSi ϕ | ¬Yi ⊤ | ϕ S̃i ϕ

| Fi ,j(Out ∧ ϕ) | Out ∧ Hi ,j ϕ

with a ∈ Γ and i , j ∈ Proc

Formulae

G1(request −→ F1,2(Out ∧ grant))

G2(grant −→ (Out ∧ H2,1 request))

Theorem

AlocTL is closed under extension and weakening

Closure by extension

¬Fi ,j ϕ forbidden!

Closure by extension

¬Fi ,j ϕ forbidden!

1

2

a ∧ ¬F1,2 b
a

b OK

Closure by extension

¬Fi ,j ϕ forbidden!

1

2

a ∧ ¬F1,2 b
a

b OK

1

2

a

b

KO

Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

1

2

a ∧ X1,2 c
a

b c OK

Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

1

2

a ∧ X1,2 c
a

b c OK

1

2

a

b c

KO

Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

Specification is not allowed to require concurrency

Closure by extension

¬Fi ,j ϕ forbidden!

Xi ,jϕ forbidden!

Specification is not allowed to require concurrency

Closure by weakening

Ensured by Fi ,j ∧Out and Out ∧ Hi ,j ϕ.

Outline

1 Introduction

2 Model

3 Specification

4 Decidability Results

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular
specifications.

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular
specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is
decidable for AlocTL specifications.

Decidability Results

Theorem

The synthesis problem over singleton architectures is decidable for regular
specifications.

Theorem

The distributed synthesis problem over strongly connected architectures is
decidable for AlocTL specifications.

Proof

By reduction to the singleton case.

Strongly connected architectures (2)

Proposition

If there are communication sets Σi ,j for (i , j) ∈ E and a winning distributed
strategy on the strongly connected architecture, then there is a winning
strategy on the singleton.

Proof

Easy.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one
can define internal signals sets and a distributed winning strategy for the
strongly connected architecture.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one
can define internal signals sets and a distributed winning strategy for the
strongly connected architecture.

Proof

1 2

3

4

1 2

3

We select a master process and a cycle.

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one
can define internal signals sets and a distributed winning strategy for the
strongly connected architecture.

Proof

1 2

3

4

1 2

3

We select a master process and a cycle.

The master process will centralize information in order to simulate f

and tell other processes which value to output

Strongly connected architectures

Proposition

If there is a winning strategy f over the singleton architecture then one
can define internal signals sets and a distributed winning strategy for the
strongly connected architecture.

Proof

1 2

3

4

1 2

3

We select a master process and a cycle.

The master process will centralize information in order to simulate f

and tell other processes which value to output

Aim: create a run that will be a weakening of some f -run over the
singleton

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Msg

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Msg a

c (Msg,c·c)

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Msg a

c (Msg,c·c)

b

(Msg,c·c·req3·b)

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Msg a

c (Msg,c·c)

b

(Msg,c·c·req3·b)

a a

Centralize information

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master collect information by sending a signal Msg through the cycle

1

2

3

t:

t ′:

a a

c

req3

Msg a

c (Msg,c·c)

b

(Msg,c·c·req3·b)

a a c c req3 b a

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

grant

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

grant c (Ack,c)

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

grant c (Ack,c)

a

b

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

grant c (Ack,c)

a

b

(Ack,c·b)

Tell processes what to output

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

(Ord2,grant)

grant c (Ack,c)

a

b

(Ack,c·b)

grant c b a

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

alert

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

alert

(Ord2,grant)

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

alert

(Ord2,grant)

(Nack,alert)

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

alert

(Ord2,grant)

(Nack,alert)

a

b

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a
f : grant

alert

(Ord2,grant)

(Nack,alert)

a

b

(Nack,alert·b)

Tell processes what to ouptut (2)

Example

Specification: req3 → F32(¬Y2 alert ↔ grant)
Strategy for the singleton: f (σ) = grant iff σ contains req3 but no alert

1 2

3

Master sends orders to other processes to simulate the strategy f

1

2

3

t:

t ′:

a a

c

req3

a

c

b

a a c c req3 b a

alert

(Ord2,grant)

(Nack,alert)

a

b

(Nack,alert·b)

alert b a

Proof - end

Lemma

t ′ is an extension of πΓ(t).

Proof - end

Lemma

t ′ is an extension of πΓ(t).

Lemma

t ′ is an f -maximal f -run.

Proof - end

Lemma

t ′ is an extension of πΓ(t).

Lemma

t ′ is an f -maximal f -run.

Lemma

If x <′ y in t ′ and x ‖ y in πΓ(t) then λ(y) ∈ In.

Proof - end

Lemma

t ′ is an extension of πΓ(t).

Lemma

t ′ is an f -maximal f -run.

Lemma

If x <′ y in t ′ and x ‖ y in πΓ(t) then λ(y) ∈ In.

Corollary

πΓ(t) is a weakening of t ′.

Proof - end

Lemma

t ′ is an extension of πΓ(t).

Lemma

t ′ is an f -maximal f -run.

Lemma

If x <′ y in t ′ and x ‖ y in πΓ(t) then λ(y) ∈ In.

Corollary

πΓ(t) is a weakening of t ′.

Conclusion

Then t ′ |= ϕ and, by closure property πΓ(t) |= ϕ.

Conclusion

Asynchrony removes undecidability causes

We have defined a new model of communication

We have identified a class of decidable architectures

Hopefully, many more to come!

	Introduction
	Model
	Specification
	Decidability Results

