Automata and Logics over Signals

Fabrice Chevalier¹ Deepak D'Souza² Raj Mohan² Pavithra Prabhakar³

¹LSV, Ecole Normale Superieure de Cachan, Cachan.

²Department of Computer Science & Automation Indian Institute of Science, Bangalore.

³Department of Computer Science University of Illinois at Urbana-Champaign.

29 January 2009

Overview	Signals	Logics	Proofs
What this talk	is about		

- Signals are piecewise-constant (or finitely-varying) functions.
- We consider natural formalisms over these models: automata, FO, MSO, LTL.
- Show connections between them, like for classical formalisms over words:

Overview	Signals	Logics	Proofs
Some applicat	ions		

- Signals are appropriate underlying models for continuous time logics (like words are for pointwise logics).
- Help to obtain following results for continuous time:
 - MSO logic characterisation for timed automata based on "input-determined" distance operators (eg. Event-recording automata).
 - Expressive completeness results for MTL/MITL (in general for logics with "input-determined" distance operators).
 - Counter-free automata characterisations for MTL/MITL.

Overview	Signals	Logics	Proofs

Pointwise vs continuous semantics

In pointwise semantics:

"There is a *action point* in the future from which an *a* occurs at a distance of 1 time unit". *False*

• In continous semantics:

"There is a *time point* in the future from which an *a* occurs at a distance of 1 time unit" *True*

• Continuous semantics are typically more expressive [BCM05,DP06].

Example Eventual Timed Automaton (ETA) in continuous semantics

Accepts timed words in which there are "no insertions"

Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

Accepts timed words in which there are "no insertions"

Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

Accepts timed words in which there are "no insertions"

Overview	Signals	Logics	Proofs
Counter-free ETA's			

- Characterise MTL^c -definable timed languages.
- Guards must be "proper" or "time-deterministic"
 - Specify exact set of guards to be satisfied.
- Automaton must be "fully canonical": no g(e, g)g subwords possible.
- No counter in underlying graph.

Counter-free ETA

Overview	Signals	Logics	Proofs

Finitely varying functions or Signals

- A signal over an alphabet A is a finitely varying function $f : [0, r] \rightarrow A$
- t ∈ [0, r] is a point of continuity if there is ε > 0 such that f is constant in (t − ε, t + ε).
- finitely varying = finitely many discontinuities.

Overview	Signals	Logics	Proofs
Untiming of a	signal		

Such words are called canonical: elements of $A(AA)^*$ and no "aaa" at odd positions.

Overview	Signals	Logics	Proofs

Timing a word to get signals

- (-)	11	0	r١	1	16	٨	1
	\sim				ν.			

Automata accepting signals: ST-NFA's

- State-and-Transition-labelled NFA's.
- Generates a classical "symbolic" language $L(A) = \{abbaa, \ldots\}.$
- Generates a language of signals S(A) = timing(L(A)).

Canonical ST-NFA's

- A canonical ST-NFA accepts only canonical words.
- Every ST-NFA can be converted to a signal language equivalent canonical one.

Overview	Signals	Logics	Proofs
Logics over s	ignals: FO ^c		

• Formulas of FO^c:

$$Q_a(x), \ x < y, \ \exists x(\varphi), \ \neg, \lor, \land.$$

• FO^c sentence describing point of continuity at x:

$$\exists y \exists z (y < x \land x < z \land \bigvee_{a \in \Sigma} \forall w (y < w < z \implies Q_a(w))).$$

Overview	Signals	Logics	Proofs
More example	s of FO ^c sentences		

• Subset W of domain of signal has a decreasing subsequence:

$$decseq(W) = \exists I \exists a_0 (a_0 \in W \land I < a_0 \land \forall x ((x \in W \land I < x) \implies \exists y (y \in W \land I < y < x))$$

• Bounded subset W of domain of signal is infinite:

$$inf(W) = decseq(W) \lor incseq(W).$$

Subset W of domain of signal is finitely-varying: Replace x ∈ W by φ_{disc}(x) in the formula

 \neg *inf*(W).

Overview	Signals	Logics	Proofs
Logics over si	gnals: MSO ^c		

 $\bullet~{\rm Formulas}$ of ${\rm MSO}^{\rm c}$:

$$Q_a(x), \ x < y, \ \exists x \varphi, \ \exists X \varphi, \ \neg, \lor, \land.$$

- Second-order quantification ranges over *finitely-varying* subsets of domain [0, *r*].
- MSO^c sentence describing existance of a dense subset with signal value *a*:

$$\exists X (\forall x (x \in X \implies Q_a(x)) \land \\ \forall x \forall y ((x \in X \land y \in X \land x < y) \implies \exists z (z \in X \land x < z < y)))$$

Overview	Signals	Logics	Proofs
Logics over s	ignals: LTL ^c		

• Formulas of LTL^c:

 $a, \ \theta U\theta, \ \theta S\theta, \ \neg, \wedge, \vee$

• $\theta U\eta$ is strict: $\sigma, t \models \theta U\eta$ iff $\exists t': t < t' \leq dur(\sigma), \sigma, t' \models \eta$, and $\forall t'': t < t'' < t', \sigma, t'' \models \theta$.

• Example: LTL^c formula describing points of continuity:

Overview	Signals	Logics	Proofs
What we show			

Overview	Signals	Logics	Proofs
ST NEA $-$ MSOC			

From ST-NFA to MSO^c: The formula φ_A below describes when a signal is accepted by A (e_1, \ldots, e_m are the transitions of A):

Sentence $\varphi_{\mathcal{A}}$

$$\exists X_1 \cdots \exists X_m \exists X (\forall x ((x \in X \iff \bigvee_i x \in X_i) \land (\bigwedge_{i \neq j} (x \in X_i \implies \neg x \in X_j)) \land (x \in X \iff disc(x)) \land (ist(x) \implies \bigvee_{i:p_i \in S} x \in X_i) \land (last(x) \implies \bigvee_{i:q_i \in F} x \in X_i) \land (\bigwedge_i (x \in X_i \implies (Q_{a_i}(x) \land ((\exists y(consec(x, y, X)))) \implies \forall z((x < z \land z < y) \implies Q_{l(q_i)}(z)))))))).$$

From $\rm MSO^{\it c}$ to $\rm ST-NFA$: Inductively associated $\rm ST-NFA$ that accepts signals with interpretation built in.

$ST-NFA = MSO^{c}$

Overview	Signals	Logics	Proofs
What we show			

Classical counter-free automata

Overview	-				
		2.74	ar	110	
	\sim			V 10	2 V V

Logics

Proofs

Counter-free ST-NFA's

ST-NFA's that have

- No counter
- Are canonical

Overview	Signals	Logics	Proofs
DOC			
$FO^{\circ} = coun^{\circ}$	ter-free ST-NFA		

From FO^{c} to counter-free ST-NFA's:

 Inductive construction associates a counter-free ST-NFA with open formulas.

Counter-free ST-NFA's to FO

Main step: LTL to LTL^c

For an LTL formula θ , construct an LTL^c formula $\hat{\theta}$ which accepts timings of models of θ . *aUb* is translated to:

$$\theta_{\textit{disc}} \implies ((bUb) \lor (aU(\theta_{\textit{disc}} \land b)) \lor (aU(\theta_{\textit{disc}} \land a \land (bUb)))).$$

Summary of t	he talk	

- Study natural formalisms over signals
- \bullet Automata-theoretic proof of decidability of MSO^c over reals.
- Proof of Kamp's theorem (LTL=FO) for signals using his result for words
- Counter-free automata characterisation of FO^c definable signal languages.
- Applications in expressive completeness + automata characterisation of real-time logics like MITL and MTL.