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Overview

What this talk is about

@ Signals are piecewise-constant (or finitely-varying) functions.

@ We consider natural formalisms over these models: automata,

FO, MSO, LTL.
@ Show connections between them, like for classical formalisms
over words:
Rabinovich’04, CDP’06
ST-NFA

Counter-free ST-NFA



Overview

Some applications

@ Signals are appropriate underlying models for continuous time
logics (like words are for pointwise logics).
@ Help to obtain following results for continuous time:

@ MSO logic characterisation for timed automata based on
“input-determined” distance operators (eg. Event-recording
automata).

@ Expressive completeness results for MTL/MITL (in general for
logics with “input-determined” distance operators).

o Counter-free automata characterisations for MTL/MITL.



Overview

Pointwise vs continuous semantics

O(O=1a)

@ In pointwise semantics:
“There is a action point in the future from which an a occurs
at a distance of 1 time unit”. False

@ In continous semantics:
“There is a time point in the future from which an a occurs at
a distance of 1 time unit” True

@ Continuous semantics are typically more expressive [BCM05,DP06].



Overview

Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

&T b T a, T

0,8 A ~Qp,1b
a, T

Accepts timed words in which there are “no insertions”

ba a a b
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Overview

Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

0,18 A ~Qp,1b
a, T

Accepts timed words in which there are “no insertions”
ba a a b

Accepts




Overview

Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA
&T b T

Accepts timed words in which there are “no insertions”
ba a a b

Rejects




Overview

Counter-free ETA’s

@ Characterise MTLC-definable timed languages.
@ Guards must be “proper” or “time-deterministic”
@ Specify exact set of guards to be satisfied.

@ Automaton must be “fully canonical”: no g(e, g)g subwords
possible.

@ No counter in underlying graph.

Counter-free ETA
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Signals

Finitely varying functions or Signals

@ A signal over an alphabet A is a finitely varying function
f:[0,r] = A

@ t €[0,r] is a point of continuity if there is € > 0 such that f
is constant in (t — €, t + €).

@ finitely varying = finitely many discontinuities.

Example signal f

Signal f

! !

continuity  discontinuity e




Signals

Untiming of a signal

e - o °
A d 7 ¢ Signal f
C q -0 o—=e
T T T | untime
0 1 2 3 4
ccd e e c c w

Such words are called canonical: elements of A(AA)* and no “aaa’
at odd positions.



Signals

Timing a word to get signals

e — o—9
d 7 ° Signal f
C 9 ——o0 e
T T T |
0 1 2 3 4 T time
ccd e e c c w
l time
e o———o
d 7 ° Signal f’
Cc -4 o o——eo




Signals

Automata accepting signals: ST-NFA’s

@ State-and-Transition-labelled NFA's.
@ Generates a classical “symbolic” language
L(A) = {abbaa,...}.
@ Generates a language of signals S(A) = timing(L(.A)).




Signals

Canonical ST-NFA’s

A non-canonical ST-NFA and its canonical version

@ A canonical ST-NFA accepts only canonical words.

@ Every ST-NFA can be converted to a signal language
equivalent canonical one.



Logics over signals: FO°

@ Formulas of FO€:
Qa(X)7 x <Yy, HX(SO)v =, VAL
@ FOF€ sentence describing point of continuity at x:

Jydz(y < xAx<zA \/ Vw(y <w <z = Qa(w))).
acx




More examples of FO° sentences

@ Subset W of domain of signal has a decreasing subsequence:

decseq(W) = Fl3ag(ag € W Al < ag A
Vx((x e WAI<x) = Jy(ye WAI<y<x)

@ Bounded subset W of domain of signal is infinite:
inf(W) = decseq(W) V incseq(W).

@ Subset W of domain of signal is finitely-varying: Replace
x € W by @gisc(x) in the formula

—inf(W).



Logics over signals: MSO®

@ Formulas of MSO€:
Qa(X)) x <Yy, HXQD, HXQD, _'7\/)/\'

@ Second-order quantification ranges over finitely-varying
subsets of domain [0, r].

@ MSO€ sentence describing existance of a dense subset with
signal value a:

IX(Vx(x € X = Q,(x)) A
VxVy(x e XNy e XAx<y) = Fz(ze X Ax<z<Yy))




Logics over signals: LTLC

@ Formulas of LTLC:
a, U0, 056, -, A,V
@ OUn is strict: o,t = 0Un iff
Jt': t <t <dur(o), 0, En, and Vt": t <t' <t 0, t" 0.

@ Example: LTL® formula describing points of continuity:

\/ (a A (aSa) A (aUa)).

acx




What we show

Rabinovich’04, CDP’06

ST-NFA

Counter-free ST-NFA



Proofs

ST-NFA = MSO¢

From ST-NFA to MSO€: The formula ¢ 4 below describes when a
signal is accepted by A (ey, ..., en are the transitions of A):

Sentence ¢ 4

Xy - - - I IX (Vx(

x X < \/,-XEX,')/\

Nigj(x € Xi = =x € Xj)) A

x € X <= disc(x)) A

first(x) = \/,pestX)

last(x) = V. gepx € Xi) A

Nilx € Xi = (Qa;(x) A ((By(consec(x, y, X)) |=
Vz((x <zhz <y) = Quq)(2))))))))-

o e e o T )




Proofs

ST-NFA = MSO¢

From MSO€ to ST-NFA: Inductively associated ST-NFA that
accepts signals with interpretation built in.

For Q.(x)

o
oo
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Proofs

What we show

Rabinovich’04, CDP’06

ST-NFA

Counter-free ST-NFA



Proofs

Classical counter-free automata

Counter in an automaton

q u
0 O\/\O q1
u u
% @ o o
Automaton without
Automaton with counter

counter on “a a,bm




Proofs

Counter-free ST-NFA'’s

ST-NFA's that have
@ No counter

@ Are canonical

ST-NFA with counter
@ ST-NFA without counter




Proofs

FO¢ = counter-free ST-NFA

From FOF€ to counter-free ST-NFA's:

@ Inductive construction associates a counter-free ST-NFA with
open formulas.

For Q,(x)




Proofs

Counter-free ST-NFA’s to FO

Route taken

Ae @ 4
CF-ST-NFA(A) FO*(A)
A wa
(R )
CF-NFA(A U A') LTL(A)

B 6
McN—P+Kamp(X\ %)
6

LTL(AU A')




Proofs

Main step: LTL to LTL®

For an LTL formula @, construct an LTLS formula 0 which accepts
timings of models of 6.
aUb is translated to:

Odisc = ((bUb) V (aU(Hd,-sc/\b)) V (aU(Hd,-sc/\a/\(bUb)))).



Proofs

Summary of the talk

@ Study natural formalisms over signals
@ Automata-theoretic proof of decidability of MSO°€ over reals.

@ Proof of Kamp's theorem (LTL=FO) for signals using his
result for words

@ Counter-free automata characterisation of FO€ definable
signal languages.

@ Applications in expressive completeness 4 automata
characterisation of real-time logics like MITL and MTL.
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