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What this talk is about

Signals are piecewise-constant (or finitely-varying) functions.

We consider natural formalisms over these models: automata,
FO, MSO, LTL.

Show connections between them, like for classical formalisms
over words:
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Some applications

Signals are appropriate underlying models for continuous time
logics (like words are for pointwise logics).

Help to obtain following results for continuous time:

MSO logic characterisation for timed automata based on
“input-determined” distance operators (eg. Event-recording
automata).
Expressive completeness results for MTL/MITL (in general for
logics with “input-determined” distance operators).
Counter-free automata characterisations for MTL/MITL.
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Pointwise vs continuous semantics

0 2 3 41

a b bb

♦(♦=1a)

In pointwise semantics:
“There is a action point in the future from which an a occurs
at a distance of 1 time unit”. False

In continous semantics:
“There is a time point in the future from which an a occurs at
a distance of 1 time unit” True

Continuous semantics are typically more expressive [BCM05,DP06].
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Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

a,⊤
⊤

⊤

a,⊤

¬♦[1,1]a ∧ ¬♦[1,1]b

b,⊤
a,⊤

ǫ,⊤ b,⊤

a,⊤

Accepts timed words in which there are “no insertions”

��
��
��
��

�
�
�
�

ab a a b
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Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

a,⊤
⊤

⊤

a,⊤

¬♦[1,1]a ∧ ¬♦[1,1]b

b,⊤
a,⊤

ǫ,⊤ b,⊤

a,⊤

Accepts timed words in which there are “no insertions”
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��

�
�
�
�

ab a a b

Accepts

0 32 41

ab a b
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Example Eventual Timed Automaton (ETA) in continuous semantics

Continuous ETA

a,⊤
⊤

⊤

a,⊤

¬♦[1,1]a ∧ ¬♦[1,1]b

b,⊤
a,⊤

ǫ,⊤ b,⊤

a,⊤

Accepts timed words in which there are “no insertions”

���� ��

ab a a b

Rejects

0 2 3 41

a bb a b
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Counter-free ETA’s

Characterise MTL
c -definable timed languages.

Guards must be “proper” or “time-deterministic”

Specify exact set of guards to be satisfied.

Automaton must be “fully canonical”: no g(ǫ, g)g subwords
possible.

No counter in underlying graph.

Counter-free ETA

{}ǫ, {♦
[1,1]
a }

a, {}

ǫ, {♦
[1,1]
a }

ǫ, {♦
[1,1]
1 }

⊤ ⊤

{♦
[1,1]
a }
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Finitely varying functions or Signals

A signal over an alphabet A is a finitely varying function
f : [0, r ] → A

t ∈ [0, r ] is a point of continuity if there is ǫ > 0 such that f

is constant in (t − ǫ, t + ǫ).

finitely varying = finitely many discontinuities.

Example signal f

0 1 2 3 4

Time
discontinuitycontinuity

d

c

A Signal f

e
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Untiming of a signal

0 1 2 3 4

d

c

A Signal f

untime

c c c cd e e w

e

Such words are called canonical: elements of A(AA)∗ and no “aaa”
at odd positions.
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Timing a word to get signals

0 1 2 3

0 1 2 3 4

c c c cd e e w

d

c

Signal f ′

d

c

Signal f

time
e

e

time



Overview Signals Logics Proofs

Automata accepting signals: ST-NFA’s

ST-NFA A

a

a

b b

a
b

State-and-Transition-labelled NFA’s.

Generates a classical “symbolic” language
L(A) = {abbaa, . . .}.

Generates a language of signals S(A) = timing(L(A)).

0 41 32

b

a

c
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Canonical ST-NFA’s

A non-canonical ST-NFA and its canonical version

b b b

a

b

a

ba

b

a

A canonical ST-NFA accepts only canonical words.

Every ST-NFA can be converted to a signal language
equivalent canonical one.
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Logics over signals: FO
c

Formulas of FO
c :

Qa(x), x < y , ∃x(ϕ), ¬,∨,∧.

FO
c sentence describing point of continuity at x :

∃y∃z(y < x ∧ x < z ∧
∨

a∈Σ

∀w(y < w < z =⇒ Qa(w))).

0 41 32

b

a

c
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More examples of FO
c sentences

Subset W of domain of signal has a decreasing subsequence:

decseq(W ) = ∃l∃a0(a0 ∈ W ∧ l < a0 ∧
∀x((x ∈ W ∧ l < x) =⇒ ∃y(y ∈ W ∧ l < y < x)))

Bounded subset W of domain of signal is infinite:

inf (W ) = decseq(W ) ∨ incseq(W ).

Subset W of domain of signal is finitely-varying: Replace
x ∈ W by ϕdisc (x) in the formula

¬inf (W ).
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Logics over signals: MSO
c

Formulas of MSO
c :

Qa(x), x < y , ∃xϕ, ∃Xϕ, ¬,∨,∧.

Second-order quantification ranges over finitely-varying

subsets of domain [0, r ].

MSO
c sentence describing existance of a dense subset with

signal value a:

∃X (∀x(x ∈ X =⇒ Qa(x)) ∧
∀x∀y((x ∈ X ∧ y ∈ X ∧ x < y) =⇒ ∃z(z ∈ X ∧ x < z < y)))

0 41 32

b

a

c
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Logics over signals: LTL
c

Formulas of LTL
c :

a, θUθ, θSθ, ¬,∧,∨

θUη is strict: σ, t |= θUη iff

∃t ′ : t < t ′ ≤ dur(σ), σ, t ′ |= η, and ∀t ′′ : t < t ′′ < t ′, σ, t ′′ |= θ.

Example: LTL
c formula describing points of continuity:

∨

a∈Σ

(a ∧ (aSa) ∧ (aUa)).

0 41 32

b

a

c
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What we show

Kamp’68

Rabinovich’04, CDP’06
MSO

c

FO
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Counter-free ST-NFA’s
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ST-NFA



Overview Signals Logics Proofs

ST-NFA = MSO
c

From ST-NFA to MSO
c : The formula ϕA below describes when a

signal is accepted by A (e1, . . . , em are the transitions of A):

Sentence ϕA

∃X1 · · · ∃Xm∃X (∀x( (x ∈ X ⇐⇒
∨

i x ∈ Xi ) ∧
(
∧

i 6=j(x ∈ Xi =⇒ ¬ x ∈ Xj)) ∧

(x ∈ X ⇐⇒ disc(x)) ∧
(first(x) =⇒

∨
i : pi∈S x ∈ Xi ) ∧

(last(x) =⇒
∨

i : qi∈F x ∈ Xi ) ∧

(
∧

i (x ∈ Xi =⇒ (Qai
(x) ∧ ((∃y(consec(x , y , X ))) =⇒

∀z((x < z ∧ z < y) =⇒ Ql(qi )(z)))))))).
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ST-NFA = MSO
c

From MSO
c to ST-NFA: Inductively associated ST-NFA that

accepts signals with interpretation built in.

For Qa(x)

a
0

b
0

b
0

a
0

a
1

a
1

a
1

a
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b
0

a
0

a
0

b
0

−
0

−
0

−
0

−
0
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ST-NFA = MSO
c

For x < y

a
0
0

b
0
0

b
0
0

b
0
0

−
1
0

−
1
0

−
1
0

−
1
0

−
0
1

−
0
1

−
0
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b
0
0

−
0
0

b
0
0

a
0
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b
0
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a
0
0

a
0
0

a
0
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a
0
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−
0
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What we show

Kamp’68

Rabinovich’04, CDP’06
MSO
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Classical counter-free automata

Counter in an automaton
q0 q1

q2
qk

u

u
u

Automaton with
counter on “a”

a

a
b b

Automaton without
counter

a

a, b

ba

b
b a
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Counter-free ST-NFA’s

ST-NFA’s that have

No counter

Are canonical

ST-NFA with counter

b

a a

b
a

a b

b ST-NFA without counter

a

a

b b

a
b
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FO
c = counter-free ST-NFA

From FO
c to counter-free ST-NFA’s:

Inductive construction associates a counter-free ST-NFA with
open formulas.

For Qa(x)

a
0

b
0

b
0

a
0

a
1

a
1

a
1

a
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b
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a
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a
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Counter-free ST-NFA’s to FO

Route taken

(a)

(b)

McN−P+Kamp (c) (d)

(e)

FOs(A)CF-ST-NFA(A)

CF-NFA(A ∪ A′) LTLs(A)

LTL(A ∪ A′)

ϕAϕ

A

B

θ

ϕA

bθ
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Main step: LTL to LTL
c

For an LTL formula θ, construct an LTL
c formula θ̂ which accepts

timings of models of θ.
aUb is translated to:

θdisc =⇒ ((bUb) ∨ (aU(θdisc ∧ b)) ∨ (aU(θdisc ∧ a ∧ (bUb)))).
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Summary of the talk

Study natural formalisms over signals

Automata-theoretic proof of decidability of MSO
c over reals.

Proof of Kamp’s theorem (LTL=FO) for signals using his
result for words

Counter-free automata characterisation of FO
c definable

signal languages.

Applications in expressive completeness + automata
characterisation of real-time logics like MITL and MTL.
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