Realizability of Concurrent Recursive Programs

Benedikt Bollig

LSV, ENS Cachan, CNRS France

joint work with Manuela-Lidia Grindei and Peter Habermehl

Workshop on Automata, Concurrency, and Timed Systems CMI, Chennai, January 2009

Concurrent recursive programs

Analysis

- amounts to verifying multi-stack pushdown systems
- abstraction of unrestricted systems
 - overapproximation [BET'03]
 - underapproximation [QR'05]

• restricting the degree of synchronization and parallelism [SV'06]

Synthesis

- language and automata theoretic framework needed
- generalization of asynchronous automata and Mazurkiewicz traces

[[]BET'03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003. [QR'05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[[]SV'06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Concurrent recursive programs

Analysis

- amounts to verifying multi-stack pushdown systems
- abstraction of unrestricted systems
 - overapproximation [BET'03]
 - underapproximation [QR'05]

• restricting the degree of synchronization and parallelism [SV'06]

Synthesis

- language and automata theoretic framework needed
- generalization of asynchronous automata and Mazurkiewicz traces

[[]BET'03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003. [QR'05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[[]SV'06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Outline

• Example of a concurrent recursive program

- Model of concurrent recursive programs: Concurrent visibly pushdown automata (CVPA)
- Specifications: Multi-stack visibly pushdown automata (MVPA)
- Synthesis of CVPA from MVPA
- A decidable criterion for realizability of bounded-phase specifications
- An MSO characterization of bounded-phase CVPA

p(int x)

```
1 wait(turn=0); turn:=1;
2 if x>0 then return f(x,p(x-1));
3 else return x;
```

```
q(int y)
1 wait(turn=1); turn:=0;
2 if y>0 then return g(y,q(y-1));
3 else return y;
```

p(int x)

```
1 wait(turn=0); turn:=1;
2 if x>0 then return f(x,p(x-1));
3 else return x;
```

```
q(int y)
1 wait(turn=1); turn:=0;
2 if y>0 then return g(y,q(y-1));
3 else return y;
```


p(int x)

```
1 wait(turn=0); turn:=1;
2 if x>0 then return f(x,p(x-1));
3 else return x;
```

```
q(int y)
1 wait(turn=1); turn:=0;
2 if y>0 then return g(y,q(y-1));
3 else return y;
```


 $\mathtt{turn} = 0$ $\mathtt{turn} = 1$

p(int x)

```
1 wait(turn=0); turn:=1;
2 if x>0 then return f(x,p(x-1));
3 else return x;
```

q(int y)

1 wait(turn=1); turn:=0; 2 if y>0 then return g(y,q(y-1)); 3 else return y;

 $\mathtt{turn} = 0$ $\mathtt{turn} = 1$

 $\mathtt{turn} = 0$ $\mathtt{turn} = 1$

$$\begin{split} \boldsymbol{\Sigma}_q^{\mathsf{call}} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{\mathsf{ret}} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{\mathsf{int}} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

 t_1

 t_1 t2 c_2, Y c_2, Y t_1 3 r_2, Y r_2, Y t_1 r₂, Y () r₂, Y 5) r_2, \perp r_2, \perp t_1

 $t_1 t_2$

 c_1, X

 r_1, X

 r_1, \perp

 t_1 *c*₂ t_2

$$\begin{split} \boldsymbol{\Sigma}_q^{call} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{ret} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{int} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

 c_1, X

 r_1, X

 r_1, \perp

3

Benedikt Bollig (LSV)

 c_1, X

 r_1, X

 r_1, \perp

3

$$\begin{split} \boldsymbol{\Sigma}_q^{call} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{ret} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{int} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

*t*₂ *c*₂ *c*₁ t_1 t_1

$$\begin{split} \boldsymbol{\Sigma}_q^{call} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{ret} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{int} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

 $t_1 t_2 c_2 c_1 t_1 c_1$

 c_1, X

 r_1, X

 r_1, \perp

5 r_1, X

3

$$\begin{split} \boldsymbol{\Sigma}_q^{call} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{ret} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{int} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

 $t_1 t_2 c_2 c_1 t_1 c_1 t_2$

$$\begin{split} \boldsymbol{\Sigma}_q^{\mathsf{call}} &= \{\boldsymbol{c}_2\} \\ \boldsymbol{\Sigma}_q^{\mathsf{ret}} &= \{\boldsymbol{r}_2\} \\ \boldsymbol{\Sigma}_q^{\mathsf{int}} &= \{\boldsymbol{t}_1, \boldsymbol{t}_2\} \end{split}$$

$$t_1$$
 t_2 c_2 c_1 t_1 c_1 t_2 r_2

$$\begin{split} \boldsymbol{\Sigma}_{q}^{call} &= \{\boldsymbol{c}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{ret} &= \{\boldsymbol{r}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{int} &= \{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\} \end{split}$$

 $t_1 t_2 c_2 c_1 t_1 c_1 t_2 r_2 t_1$

 c_1, X

 r_1, X

 r_1, \perp

5 r_1, X

3

$$\begin{split} \boldsymbol{\Sigma}_{q}^{call} &= \{\boldsymbol{c}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{ret} &= \{\boldsymbol{r}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{int} &= \{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\} \end{split}$$

 t_2 $c_2 c_1 t_1 c_1 t_2$ **r**₂ $t_1 r_1$ t_1

 c_1, X

 r_1, X

 r_1, \perp

5 r_1, X

$$\begin{split} \boldsymbol{\Sigma}_{q}^{\mathsf{call}} &= \{\boldsymbol{c}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{\mathsf{ret}} &= \{\boldsymbol{r}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{\mathsf{int}} &= \{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\} \end{split}$$

 t_2 $c_2 c_1 t_1 c_1 t_2$ r_2 $t_1 r_1 r_1$ t_1

 c_1, X

 r_1, X

 r_1, \perp

5 r_1, X

3

 $L(\mathcal{A}_{p}) = \{ t_{1} ((\begin{array}{ccc} c_{1} & t_{2} + t_{2} & c_{1} \end{array}) t_{1})^{n} r_{1}^{i} (t_{2} + \varepsilon) r_{1}^{j} \mid n, i, j \in \mathbb{N}, i + j = n + 1 \}$ $L(\mathcal{A}_{q}) = \{ t_{1} & t_{2} ((\begin{array}{ccc} c_{2} & t_{1} + t_{1} & c_{2} \end{array}) t_{2})^{n} r_{2}^{i} (t_{1} + \varepsilon) r_{2}^{j} \mid n, i, j \in \mathbb{N}, i + j = n + 1 \}$

$$\begin{split} \mathcal{L}(\mathcal{A}_{\mathsf{p}}) &= \{ t_1 \left(\begin{pmatrix} \mathbf{c}_1 & t_2 + t_2 & \mathbf{c}_1 \end{pmatrix} t_1 \end{pmatrix}^n \mathbf{r_1}^i \left(t_2 + \varepsilon \right) \mathbf{r_1}^j \mid n, i, j \in \mathbb{N}, \ i + j = n + 1 \} \\ \mathcal{L}(\mathcal{A}_{\mathsf{q}}) &= \{ t_1 & t_2 \left(\begin{pmatrix} \mathbf{c}_2 & t_1 + t_1 & \mathbf{c}_2 \end{pmatrix} t_2 \right)^n \mathbf{r_2}^i \left(t_1 + \varepsilon \right) \mathbf{r_2}^j \mid n, i, j \in \mathbb{N}, \ i + j = n + 1 \} \\ \mathcal{L}(\mathcal{A}) &= \{ w \in \Sigma^* \mid w \upharpoonright \Sigma_{\mathsf{p}} \in \mathcal{L}(\mathcal{A}_{\mathsf{p}}) \text{ and } w \upharpoonright \Sigma_{\mathsf{q}} \in \mathcal{L}(\mathcal{A}_{\mathsf{q}}) \} \end{split}$$

The architecture of a concurrent recursive program

Definition

We fix the following parameters:

- $\bullet \ \mathcal{P}$ a finite set of processes
- $\widetilde{\Sigma} = ((\Sigma_p^{call}, \Sigma_p^{ret}, \Sigma_p^{int}))_{p \in \mathcal{P}}$ a concurrent pushdown alphabet:
 - ▶ Σ_p^{call} , Σ_p^{ret} , Σ_p^{int} are pairwise disjoint for all $p \in \mathcal{P}$
 - (Σ_p^{call} ∪ Σ_p^{ret}) ∩ (Σ_q^{call} ∪ Σ_q^{ret}) = ∅ for all p, q ∈ P with p ≠ q

Notation

•
$$\Sigma_p = \Sigma_p^{\mathsf{call}} \cup \Sigma_p^{\mathsf{ret}} \cup \Sigma_p^{\mathsf{int}}$$
 and $\Sigma = igcup_{p \in \mathcal{P}} \Sigma_p$

- $\Sigma^{call} = \bigcup_{p \in \mathcal{P}} \Sigma_p^{call}$ call actions
- $\Sigma^{\text{ret}} = \bigcup_{p \in \mathcal{P}} \Sigma_p^{\text{ret}}$ return actions
- $\Sigma^{\mathsf{int}} = \Sigma \setminus (\Sigma^{\mathsf{call}} \cup \Sigma^{\mathsf{ret}})$ internal actions
- $proc(a) = \{p \in \mathcal{P} \mid a \in \Sigma_p\}$ processes involved in $a \in \Sigma$

The architecture of a concurrent recursive program

Definition

We fix the following parameters:

- $\bullet \ \mathcal{P}$ a finite set of processes
- $\widetilde{\Sigma} = ((\Sigma_p^{call}, \Sigma_p^{ret}, \Sigma_p^{int}))_{p \in \mathcal{P}}$ a concurrent pushdown alphabet:
 - Σ_p^{call} , Σ_p^{ret} , Σ_p^{int} are pairwise disjoint for all $p \in \mathcal{P}$
 - (Σ_p^{call} ∪ Σ_p^{ret}) ∩ (Σ_q^{call} ∪ Σ_q^{ret}) = ∅ for all p, q ∈ P with p ≠ q

Notation

•
$$\Sigma_p = \Sigma_p^{\mathsf{call}} \cup \Sigma_p^{\mathsf{ret}} \cup \Sigma_p^{\mathsf{int}}$$
 and $\Sigma = \bigcup_{p \in \mathcal{P}} \Sigma_p$

- $\Sigma^{call} = \bigcup_{p \in \mathcal{P}} \Sigma_p^{call}$ call actions
- $\Sigma^{\text{ret}} = \bigcup_{p \in \mathcal{P}} \Sigma_p^{\text{ret}}$ return actions
- $\Sigma^{int} = \Sigma \setminus (\Sigma^{call} \cup \Sigma^{ret})$ internal actions
- $proc(a) = \{p \in \mathcal{P} \mid a \in \Sigma_p\}$ processes involved in $a \in \Sigma$

Definition

A concurrent visibly pushdown automaton (CVPA) over $\widetilde{\Sigma}$ is a structure

 $((S_p)_{p\in\mathcal{P}}, \Gamma, (\delta_a)_{a\in\Sigma}, \iota, F)$

• S_p is a finite set of local states

- ullet Γ contains the stack symbols including a special symbol \bot
- $\delta_a \subseteq S_a imes (\Gamma \setminus \{\bot\}) imes S_a$ if $a \in \Sigma^{\mathsf{call}}$
 - $\delta_a \subseteq S_a imes \Gamma imes S_a$ if $a \in \Sigma^{ret}$
 - $\delta_a \subseteq S_a imes S_a$ if $a \in \Sigma^{int}$

where $S_a = \prod_{p \in proc(a)} S_p$ is the set of *a*-local states

ι ∈ ∏_{*p*∈*P*} *S_p* initial state *F* ⊆ ∏_{*p*∈*P*} *S_p* set of final states

Definition

A concurrent visibly pushdown automaton (CVPA) over $\widetilde{\Sigma}$ is a structure

 $((S_p)_{p\in\mathcal{P}}, \Gamma, (\delta_a)_{a\in\Sigma}, \iota, F)$

- S_p is a finite set of local states
- \bullet $\sc \Gamma$ contains the stack symbols including a special symbol \perp
- $\delta_a \subseteq S_a \times (\Gamma \setminus \{\bot\}) \times S_a$ if $a \in \Sigma^{call}$ $\delta_a \subseteq S_a \times \Gamma \times S_a$ if $a \in \Sigma^{ret}$ $\delta_a \subseteq S_a \times S_a$ if $a \in \Sigma^{int}$

where $S_a = \prod_{p \in proc(a)} S_p$ is the set of *a*-local states

ι ∈ ∏_{*p*∈*P*} *S_p* initial state *F* ⊆ ∏_{*p*∈*P*} *S_p* set of final states

Definition

A concurrent visibly pushdown automaton (CVPA) over $\widetilde{\Sigma}$ is a structure

 $((S_p)_{p\in\mathcal{P}}, \Gamma, (\delta_a)_{a\in\Sigma}, \iota, F)$

- S_p is a finite set of local states
- \bullet $\sc \Gamma$ contains the stack symbols including a special symbol \perp
- $\delta_a \subseteq S_a \times (\Gamma \setminus \{\bot\}) \times S_a$ if $a \in \Sigma^{call}$ $\delta_a \subseteq S_a \times \Gamma \times S_a$ if $a \in \Sigma^{ret}$ $\delta_a \subseteq S_a \times S_a$ if $a \in \Sigma^{int}$

where $S_a = \prod_{p \in proc(a)} S_p$ is the set of *a*-local states

ι ∈ ∏_{*p*∈*P*} *S_p* initial state *F* ⊆ ∏_{*p*∈*P*} *S_p* set of final states

Definition

A concurrent visibly pushdown automaton (CVPA) over $\widetilde{\Sigma}$ is a structure

 $((S_p)_{p\in\mathcal{P}}, \Gamma, (\delta_a)_{a\in\Sigma}, \iota, F)$

- S_p is a finite set of local states
- \bullet $\sc \Gamma$ contains the stack symbols including a special symbol \perp
- $\delta_a \subseteq S_a \times (\Gamma \setminus \{\bot\}) \times S_a$ if $a \in \Sigma^{call}$ $\delta_a \subseteq S_a \times \Gamma \times S_a$ if $a \in \Sigma^{ret}$ $\delta_a \subseteq S_a \times S_a$ if $a \in \Sigma^{int}$

where $S_a = \prod_{p \in proc(a)} S_p$ is the set of *a*-local states

- $\iota \in \prod_{p \in \mathcal{P}} S_p$ initial state
- $F \subseteq \prod_{p \in \mathcal{P}} S_p$ set of final states

Semantics of concurrent visibly pushdown automaton Let $C = ((S_p)_{p \in \mathcal{P}}, \Gamma, (\delta_a)_{a \in \Sigma}, \iota, F)$ be a CVPA.

Definition

• set of configurations of C:

$$\prod_{\rho\in\mathcal{P}}S_{\rho} \times \prod_{\rho\in\mathcal{P}}(\Gamma^*\setminus\{\bot\})\{\bot\}$$

• global transition:

$$(s,\sigma) \stackrel{a}{\Longrightarrow} (s',\sigma')$$

 $a \in \Sigma_p^{\text{call}} (s_{proc(a)}, a, A, s'_{proc(a)}) \in \delta_a \text{ and } \sigma'_p = A \cdot \sigma_p \text{ for some } A \in \Gamma$ $a \in \Sigma_p^{\text{ret}} (s_{proc(a)}, a, A, s'_{proc(a)}) \in \delta_a \text{ for some } A \in \Gamma \text{ such that}$ $\text{either } A \neq \bot \text{ and } \sigma_p = A \cdot \sigma'_p, \text{ or } A = \bot \text{ and } \sigma_p = \sigma'_p = \bot$

 $a \in \Sigma^{\mathsf{int}} (s_{\mathsf{proc}(a)}, a, s'_{\mathsf{proc}(a)}) \in \delta_a$

All other components remain unchanged.

Semantics of concurrent visibly pushdown automaton Let $C = ((S_p)_{p \in \mathcal{P}}, \Gamma, (\delta_a)_{a \in \Sigma}, \iota, F)$ be a CVPA.

Definition

• set of configurations of C:

$$\prod_{p\in\mathcal{P}}S_p \times \prod_{p\in\mathcal{P}}(\Gamma^*\setminus\{\bot\})\{\bot\}$$

• global transition:

$$(s,\sigma) \stackrel{a}{\Longrightarrow} (s',\sigma')$$

 $\begin{aligned} a \in \Sigma_p^{\mathsf{call}} \quad (s_{proc(a)}, a, A, s'_{proc(a)}) \in \delta_a \text{ and } \sigma'_p &= A \cdot \sigma_p \text{ for some } A \in \Gamma \\ a \in \Sigma_p^{\mathsf{ret}} \quad (s_{proc(a)}, a, A, s'_{proc(a)}) \in \delta_a \text{ for some } A \in \Gamma \text{ such that} \\ & \text{either } A \neq \bot \text{ and } \sigma_p &= A \cdot \sigma'_p, \text{ or } A = \bot \text{ and } \sigma_p = \sigma'_p = \bot \\ a \in \Sigma^{\mathsf{int}} \quad (s_{proc(a)}, a, s'_{proc(a)}) \in \delta_a \end{aligned}$

All other components remain unchanged.

Semantics of CVPA ...

... can also be described in terms of MVPA:

Definition ([LMP'07])

A multi-stack visibly pushdown automaton (MVPA) over Σ is a structure

 $\mathcal{A} = (S, \Gamma, \Delta, \iota, F)$

- $\Delta \subseteq S \times \Sigma^{\mathsf{call}} \times (\Gamma \setminus \{\bot\}) \times S$ $\cup S \times \Sigma^{\mathsf{ret}} \times \Gamma \times S$ $\Box S \times \Sigma^{\text{int}} \times S$
- set of configurations: $S \times \prod_{p \in \mathcal{P}} (\Gamma^* \setminus \{\bot\}) \{\bot\}$
- notion of a 'process' meaningless
- processes only determine number of stacks

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Semantics of CVPA ...

 \ldots can also be described in terms of $\mathrm{Mv}{\mbox{\tiny PA}}$:

Definition ([LMP'07])

A multi-stack visibly pushdown automaton (MVPA) over Σ is a structure

 $\mathcal{A} = (S, \Gamma, \Delta, \iota, F)$

•
$$\Delta \subseteq \qquad S \times \Sigma^{\mathsf{call}} \times (\Gamma \setminus \{\bot\}) \times S$$

 $\cup \qquad S \times \Sigma^{\mathsf{ret}} \times \Gamma \times S$
 $\cup \qquad S \times \Sigma^{\mathsf{int}} \times S$

- set of configurations: $S \times \prod_{p \in \mathcal{P}} (\Gamma^* \setminus \{\bot\}) \{\bot\}$
- notion of a 'process' meaningless
- processes only determine number of stacks

[[]LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.
Specification formalisms for distributed systems

Specification

```
finite automata rational expressions temporal logics (LTL, CTL, LTrL, ...) \rm M_{VPA} monadic second-order logic
```

Synthesis

mplementation

```
asynchronous automata
message-passing automata
OvPA
```

Specification formalisms for distributed systems

Specification finite automata rational expressions temporal logics (LTL, CTL, LTrL, ...) MVPA monadic second-order logic ...

Synthesis

Implementation

asynchronous automata message-passing automata $\rm CVPA$

Specification formalisms for distributed systems

Specification

finite automata rational expressions temporal logics (LTL, CTL, LTrL, ...) **MvPA** monadic cocond order logic

Synthesis

Implementation

asynchronous automata message-passing automata CVPA

Closure property of CVPA

 t_1

 t_1

 t_1

t₁

 r_1

 r_1

 c_2, Y

 r_2, Y

 r_2, \perp

 $r_2 r_1$

r₂ **r**₁

 $r_1 r_1 r_1$

 $(5) \mathbf{D} r_2, Y$

3

Closure property of $\operatorname{C}\!\operatorname{VPA}$

$\begin{array}{l} \text{Definition} \\ I_{\widetilde{\Sigma}} = \{(a,b) \in \Sigma \times \Sigma \mid proc(a) \cap proc(b) = \emptyset \} \\ a \text{ and } b \text{ are called independent if } (a,b) \in I_{\widetilde{\Sigma}} \end{array}$

Definition

 $\sim_{\widetilde{\Sigma}} \subseteq \Sigma^* imes \Sigma^*$ is the least congruence with $ab \sim_{\widetilde{\Sigma}} ba$ for all $(a,b) \in I_{\widetilde{\Sigma}}$.

Lemma

Let C be a CVPA. For all $u, v \in \Sigma^*$ with $u \sim_{\widetilde{\Sigma}} v$:

 $u \in L(\mathcal{C})$ iff $v \in L(\mathcal{C})$

Closure property of $\operatorname{C}\!\operatorname{VPA}$

$\begin{array}{l} \text{Definition} \\ I_{\widetilde{\Sigma}} = \{(a,b) \in \Sigma \times \Sigma \mid proc(a) \cap proc(b) = \emptyset\} \\ a \text{ and } b \text{ are called independent if } (a,b) \in I_{\widetilde{\Sigma}} \end{array}$

Definition

 $\sim_{\widetilde{\Sigma}} \subseteq \Sigma^* \times \Sigma^* \text{ is the least congruence with } ab \sim_{\widetilde{\Sigma}} ba \text{ for all } (a,b) \in I_{\widetilde{\Sigma}}.$

Lemma

Let C be a CVPA. For all $u, v \in \Sigma^*$ with $u \sim_{\widetilde{\tau}} v$:

 $u \in L(\mathcal{C})$ iff $v \in L(\mathcal{C})$

Closure property of $\operatorname{C}\!\operatorname{VPA}$

$\begin{array}{l} \text{Definition} \\ I_{\widetilde{\Sigma}} = \{(a,b) \in \Sigma \times \Sigma \mid proc(a) \cap proc(b) = \emptyset\} \\ a \text{ and } b \text{ are called independent if } (a,b) \in I_{\widetilde{\Sigma}} \end{array}$

Definition

 $\sim_{\widetilde{\Sigma}} \subseteq \Sigma^* \times \Sigma^* \text{ is the least congruence with } ab \sim_{\widetilde{\Sigma}} ba \text{ for all } (a, b) \in I_{\widetilde{\Sigma}}.$

Lemma

Let \mathcal{C} be a CVPA. For all $u, v \in \Sigma^*$ with $u \sim_{\widetilde{\Sigma}} v$:

 $u \in L(\mathcal{C})$ iff $v \in L(\mathcal{C})$

Zielonka's Theorem

Let $\widetilde{\Sigma}$ be a concurrent pushdown alphabet.

Remark

$$\begin{split} & \text{Suppose } \Sigma = \Sigma^{\text{int}}. \ \text{Then,} \\ & \bullet \ \text{an } \mathrm{M}\mathrm{VPA} \ \text{over } \widetilde{\Sigma} \ \text{is a finite automaton over } \Sigma. \\ & \bullet \ \text{a } \mathrm{C}\mathrm{VPA} \ \text{over } \widetilde{\Sigma} \ \text{is an asynchronous automaton over } \widetilde{\Sigma}. \end{split}$$

Theorem ([Zie'87]) Suppose $\Sigma = \Sigma^{\text{int}}$. Let $L \subseteq \Sigma^*$ be a $\sim_{\widetilde{\Sigma}}$ -closed regular language. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = L$.

[Zie'87] Zielonka. Notes on finite asynchronous automata. 1987.

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed.

There is a $\operatorname{CVPA} \mathcal{C}$ over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = L(\mathcal{A})$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$
- triply exponential in $|\Sigma|$

Proof

- Interpret $\mathcal{A} = (S, \Gamma, \Delta, \iota, F)$ as finite automaton over $\Sigma \times \Gamma$.
- Apply Zielonka's Theorem to obtain CVPA \mathcal{C} over $((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.
- Interpret C as CVPA over Σ .

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed.

There is a $\operatorname{CVPA} \mathcal{C}$ over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = L(\mathcal{A})$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$
- triply exponential in $|\Sigma|$

Proof

- Interpret $\mathcal{A} = (S, \Gamma, \Delta, \iota, F)$ as finite automaton over $\Sigma \times \Gamma$.
- Apply Zielonka's Theorem to obtain CVPA \mathcal{C} over $((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.
- Interpret C as CVPA over Σ .

MVPA \mathcal{A}

finite automaton \mathcal{B}_1 over $\Sigma \times \Gamma$

finite automaton \mathcal{B}_1 over $\Sigma \times \Gamma$

• Consider the concurrent pushdown alphabet $\widetilde{\Omega} = ((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.

finite automaton \mathcal{B}_1 over $\Sigma \times \Gamma$

- Consider the concurrent pushdown alphabet $\overline{\Omega} = ((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.
- Fix lexicographic order $c_2 <_{\text{lex}} r_1$.

finite automaton \mathcal{B}_1 over $\Sigma \times \Gamma$

- Consider the concurrent pushdown alphabet $\widetilde{\Omega} = ((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.
- Fix lexicographic order $c_2 <_{\text{lex}} r_1$.
- There is a loop-connected finite automaton for the normal forms of \mathcal{B}_1 wrt. $<_{\text{lex}}$ of size $|\mathcal{B}_1| \cdot (|\Sigma| + 1)!$ [Kus'07].

[Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

finite automaton \mathcal{B}_1 over $\Sigma \times \Gamma$

- Consider the concurrent pushdown alphabet $\widetilde{\Omega} = ((\emptyset, \emptyset, \Sigma_p \times \Gamma))_{p \in \mathcal{P}}$.
- Fix lexicographic order $c_2 <_{\text{lex}} r_1$.
- There is a loop-connected finite automaton for the normal forms of \mathcal{B}_1 wrt. $<_{\text{lex}}$ of size $|\mathcal{B}_1| \cdot (|\Sigma| + 1)!$ [Kus'07].

loop-connected finite automaton \mathcal{B}_2 for normal forms

[[]Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

loop-connected finite automaton \mathcal{B}_2 for normal forms

loop-connected finite automaton \mathcal{B}_2 for normal forms

There is an I-diamond finite automaton for [L(B₂)]_{~Ω̃} of size exp(|B₂|, |Σ|) [MP'99,Kus'07].

[[]MP'99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999. [Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

loop-connected finite automaton \mathcal{B}_2 for normal forms

There is an I-diamond finite automaton for [L(B₂)]_{~Ω̃} of size exp(|B₂|, |Σ|) [MP'99,Kus'07].

I-diamond finite automaton \mathcal{B}_3 for $[\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}}$

[MP'99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999. [Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

 $\begin{array}{l} \mbox{l-diamond} \\ \mbox{finite automaton } \mathcal{B}_3 \\ \mbox{for } [\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}} \end{array}$

I-diamond finite automaton \mathcal{B}_3 for $[\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}}$

• There is a CVPA C over Ω such that $L(C) = L(B_3)$. It is of size $\exp(|B_3|, |\Sigma|)$ [GM'06]

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

I-diamond finite automaton \mathcal{B}_3 for $[\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}}$

• There is a CVPA C over Ω such that $L(C) = L(B_3)$. It is of size $\exp(|B_3|, |\Sigma|)$ [GM'06]

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

I-diamond finite automaton \mathcal{B}_3 for $[\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}}$

• There is a CVPA C over Ω such that $L(C) = L(B_3)$. It is of size $\exp(|B_3|, |\Sigma|)$ [GM'06]

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

 $\begin{array}{l} \mbox{l-diamond} \\ \mbox{finite automaton } \mathcal{B}_3 \\ \mbox{for } [\mathcal{L}(\mathcal{B}_2)]_{\sim_{\widetilde{\Omega}}} \end{array}$

• There is a CVPA C over $\widetilde{\Omega}$ such that $L(C) = L(\mathcal{B}_3)$. It is of size $\exp(|\mathcal{B}_3|, |\Sigma|)$ [GM'06] / $(3 \cdot |\Sigma| \cdot |\Gamma| \cdot |\mathcal{B}_3|)^{2^{|\Sigma| \cdot |\Gamma|}}$ [BM'06].

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.
 [BM'06] Baudru & Morin. Unfolding Synthesis of Asynchronous Automata. 2006.

Benedikt Bollig (LSV)

Concurrent Recursive Programs ACTS,

Is a specification implementable?

Theorem ([Zie'87]) Suppose $\Sigma = \Sigma^{\text{int}}$. Let $L \subseteq \Sigma^*$ be a $\sim_{\widetilde{\Sigma}}$ -closed regular language. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = L$.

Theorem ([Mus'94,PWW'96])

$$\begin{split} & Suppose \ \Sigma = \Sigma^{\text{int}}. \ \text{The following problem is PSPACE-complete:} \\ & \text{INPUT:} \qquad \text{MVPA } \mathcal{A} \text{ over } \widetilde{\Sigma} \\ & \text{QUESTION:} \ \ \text{Is } L(\mathcal{A}) \sim_{\widetilde{\Sigma}} \text{-closed?} \end{split}$$

Benedikt Bollig (LSV)

[[]Mus'94] Muscholl Über die Erkennbarkeit unendlicher Spuren. 1994

[[]PWW'96] Peled & Wilke & Wolper. An algorithmic approach for checking closure properties of temporal logic specifications and ω-regular languages. 1996.

Is a specification implementable?

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = L$.

Theorem

The following problem is undecidable:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$ and MVPA \mathcal{A} over $\widetilde{\Sigma}$ QUESTION: Is $L(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed?

Definition

Let $k \in \mathbb{N}$. A word $w \in \Sigma^*$ is called a *k*-phase word over $\widetilde{\Sigma}$ if it can be written as $w_1 \cdot \ldots \cdot w_k$ where $w_i \in (\Sigma^{call} \cup \Sigma^{int} \cup \Sigma_p^{ret})^*$ for some $p \in \mathcal{P}$.

Definition

Let $k \in \mathbb{N}$. A word $w \in \Sigma^*$ is called a *k*-phase word over $\overline{\Sigma}$ if it can be written as $w_1 \cdot \ldots \cdot w_k$ where $w_i \in (\Sigma^{call} \cup \Sigma^{int} \cup \Sigma_p^{ret})^*$ for some $p \in \mathcal{P}$.

Definition

Let $k \in \mathbb{N}$. A word $w \in \Sigma^*$ is called a *k*-phase word over $\widetilde{\Sigma}$ if it can be written as $w_1 \cdot \ldots \cdot w_k$ where $w_i \in (\Sigma^{call} \cup \Sigma^{int} \cup \Sigma_p^{ret})^*$ for some $p \in \mathcal{P}$.

t_1	t_2	<i>c</i> ₂	<i>c</i> ₁	t_1	<i>c</i> ₁	<i>t</i> ₂	<i>r</i> ₂	t_1	<i>r</i> ₁	<i>r</i> ₁	<i>r</i> ₂	<i>r</i> ₁
	1							2		3	4	

4-phase word

$$\sim \quad t_1 \quad t_2 \quad c_1 \quad c_2 \quad t_1 \quad c_1 \quad t_2 \quad r_2 \quad t_1 \quad r_1 \quad r_1 \quad r_1 \quad r_2$$

 \sim t_1 t_2 c_1 c_2 t_1 c_1 t_2 r_2 t_1 r_2 r_1 r_1 r_1 r_1

Definition

Let $k \in \mathbb{N}$. A word $w \in \Sigma^*$ is called a *k*-phase word over Σ if it can be written as $w_1 \cdot \ldots \cdot w_k$ where $w_i \in (\Sigma^{call} \cup \Sigma^{int} \cup \Sigma_p^{ret})^*$ for some $p \in \mathcal{P}$.

Definition

Let $k \in \mathbb{N}$. A word $w \in \Sigma^*$ is called a *k*-phase word over Σ if it can be written as $w_1 \cdot \ldots \cdot w_k$ where $w_i \in (\Sigma^{call} \cup \Sigma^{int} \cup \Sigma_p^{ret})^*$ for some $p \in \mathcal{P}$.

$\ensuremath{\mathrm{MvPA}}$ and $\ensuremath{\textit{k}\mathchar`-phase}$ words

Notation

- Let $W_k(\widetilde{\Sigma})$ denote the set of *k*-phase words over $\widetilde{\Sigma}$.
- For an MVPA \mathcal{A} , let $L_k(\mathcal{A}) = L(\mathcal{A}) \cap W_k(\widetilde{\Sigma})$.

Theorem ([LMP'07])

The following problem is decidable:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION: Does $L_k(\mathcal{A}) \neq \emptyset$ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP'07])

Let $k \in \mathbb{N}$ and let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$. One can effectively construct an MVPA \mathcal{A}' over $\widetilde{\Sigma}$ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

$\mathrm{M}\mathrm{VPA}$ and k-phase words

Notation

- Let $W_k(\widetilde{\Sigma})$ denote the set of *k*-phase words over $\widetilde{\Sigma}$.
- For an MVPA \mathcal{A} , let $L_k(\mathcal{A}) = L(\mathcal{A}) \cap W_k(\widetilde{\Sigma})$.

Theorem ([LMP'07])

The following problem is decidable:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION: Does $L_k(\mathcal{A}) \neq \emptyset$ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP'07])

Let $k \in \mathbb{N}$ and let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$. One can effectively construct an $MVPA \mathcal{A}'$ over $\widetilde{\Sigma}$ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

$\ensuremath{\mathrm{MvPA}}$ and $\ensuremath{\textit{k}\mathchar`-phase}$ words

Notation

- Let $W_k(\widetilde{\Sigma})$ denote the set of *k*-phase words over $\widetilde{\Sigma}$.
- For an MVPA \mathcal{A} , let $L_k(\mathcal{A}) = L(\mathcal{A}) \cap W_k(\widetilde{\Sigma})$.

Theorem ([LMP'07])

The following problem is decidable:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION: Does $L_k(\mathcal{A}) \neq \emptyset$ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP'07])

Let $k \in \mathbb{N}$ and let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$. One can effectively construct an MVPA \mathcal{A}' over $\widetilde{\Sigma}$ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

A decidable sufficient criterion for implementability

Definition

A set $L \subseteq W_k(\widetilde{\Sigma})$ is a *k*-phase representation if, for all $u, v \in \Sigma^*$ and $(a, b) \in I_{\widetilde{\Sigma}}$ with $\{uabv, ubav\} \subseteq W_k(\widetilde{\Sigma})$, we have $uabv \in L$ iff $ubav \in L$.

A decidable sufficient criterion for implementability

Definition

A set $L \subseteq W_k(\widetilde{\Sigma})$ is a *k*-phase representation if, for all $u, v \in \Sigma^*$ and $(a, b) \in I_{\widetilde{\Sigma}}$ with $\{uabv, ubav\} \subseteq W_k(\widetilde{\Sigma})$, we have $uabv \in L$ iff $ubav \in L$.

$$\left\{ u \ t_1 \ r_1 \ m \ r_2 \ n \ \ m, n \ge 2, \ u \in \{ c_1, c_2 \}^*, \ |u|_{c_1} = m, \ |u|_{c_2} = n \right\}$$
 is a 2-phase representation.
A decidable sufficient criterion for implementability

Definition

A set $L \subseteq W_k(\widetilde{\Sigma})$ is a *k*-phase representation if, for all $u, v \in \Sigma^*$ and $(a, b) \in I_{\widetilde{\Sigma}}$ with $\{uabv, ubav\} \subseteq W_k(\widetilde{\Sigma})$, we have $uabv \in L$ iff $ubav \in L$.

$$\left\{ u \ t_1 \ r_1 \ m \ r_2 \ n \ \ m, n \ge 2, \ u \in \{ \ c_1 \ , \ c_2 \ \}^*, \ |u|_{c_1} = m, \ |u|_{c_2} = n \right\}$$
 is a 2-phase representation.

Any $\sim_{\widetilde{\Sigma}}$ -closed subset of $W_k(\widetilde{\Sigma})$ is a *k*-phase representation.

The closure of a k-phase representation

$$\begin{split} \mathcal{L}(\mathcal{A}_{p}) &= \{ t_{1} \left((\begin{array}{ccc} \mathbf{c}_{1} t_{2} + t_{2} \mathbf{c}_{1} \right) t_{1} \right)^{n} \mathbf{r}_{1}^{-i} (t_{2} + \varepsilon) \mathbf{r}_{1}^{-j} \mid n, i, j \in \mathbb{N}, \ i+j = n+1 \} \\ \mathcal{L}(\mathcal{A}_{q}) &= \{ t_{1} t_{2} \left((\begin{array}{ccc} \mathbf{c}_{2} t_{1} + t_{1} \mathbf{c}_{2} \right) t_{2} \right)^{n} \mathbf{r}_{2}^{-i} (t_{1} + \varepsilon) \mathbf{r}_{2}^{-j} \mid n, i, j \in \mathbb{N}, \ i+j = n+1 \} \\ \mathcal{L}(\mathcal{A}) &= \{ w \in \Sigma^{*} \mid w \upharpoonright \Sigma_{p} \in \mathcal{L}(\mathcal{A}_{p}) \text{ and } w \upharpoonright \Sigma_{q} \in \mathcal{L}(\mathcal{A}_{q}) \} \end{split}$$

The closure of a *k*-phase representation

$$\begin{split} \mathcal{L}(\mathcal{A}_{p}) &= \{ t_{1} \left((\begin{array}{ccc} \mathbf{c}_{1} t_{2} + t_{2} \mathbf{c}_{1} \right) t_{1} \right)^{n} \mathbf{r}_{1}^{-i} (t_{2} + \varepsilon) \mathbf{r}_{1}^{-j} \mid n, i, j \in \mathbb{N}, \ i + j = n + 1 \} \\ \mathcal{L}(\mathcal{A}_{q}) &= \{ t_{1} t_{2} \left((\begin{array}{ccc} \mathbf{c}_{2} t_{1} + t_{1} \mathbf{c}_{2} \right) t_{2} \right)^{n} \mathbf{r}_{2}^{-i} (t_{1} + \varepsilon) \mathbf{r}_{2}^{-j} \mid n, i, j \in \mathbb{N}, \ i + j = n + 1 \} \\ \mathcal{L}(\mathcal{A}) &= \{ w \in \Sigma^{*} \mid w \upharpoonright \Sigma_{p} \in \mathcal{L}(\mathcal{A}_{p}) \text{ and } w \upharpoonright \Sigma_{q} \in \mathcal{L}(\mathcal{A}_{q}) \} \end{split}$$

 $L_2(\mathcal{A})$ is a 2-phase representation and we have $[L_2(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}} = L(\mathcal{A}).$

From Mvpa to Cvpa

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation.

There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

Proof

• Set $\widetilde{\Omega} = ((\Sigma_p^{\mathsf{call}} \times \{1, \dots, k\}, \Sigma_p^{\mathsf{ret}} \times \{1, \dots, k\}, \Sigma_p^{\mathsf{int}} \times \{1, \dots, k\}))_{p \in \mathcal{P}}.$

- Build MVPA \mathcal{B} over $\widetilde{\Omega}$ for words $(a_1, ph_1) \dots (a_n, ph_n)$ such that $a_1 \dots a_n \in L_k(\mathcal{A})$ and $ph_i = \min\{j \leq k \mid a_1 \dots a_i \text{ is } j\text{-phase word}\}$
- Consider $<_{\mathsf{lex}} \subseteq \Omega^* \times \Omega^*$ such that i < j implies $(a, i) <_{\mathsf{lex}} (b, j)$.
- L(B) contains its normal forms wrt. <_{lex}.
- Rest of construction as before.

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

- Set $\widetilde{\Omega} = ((\Sigma_{\rho}^{\mathsf{call}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{ret}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{int}} \times \{1, \dots, k\}))_{\rho \in \mathcal{P}}.$
- Build MVPA \mathcal{B} over $\widetilde{\Omega}$ for words $(a_1, ph_1) \dots (a_n, ph_n)$ such that $a_1 \dots a_n \in L_k(\mathcal{A})$ and $ph_i = \min\{j \leq k \mid a_1 \dots a_i \text{ is } j\text{-phase word}\}$.
- Consider $<_{\mathsf{lex}} \subseteq \Omega^* \times \Omega^*$ such that i < j implies $(a, i) <_{\mathsf{lex}} (b, j)$.
- L(B) contains its normal forms wrt. <_{lex}.
- Rest of construction as before.

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

- Set $\widetilde{\Omega} = ((\Sigma_{\rho}^{\mathsf{call}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{ret}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{int}} \times \{1, \dots, k\}))_{\rho \in \mathcal{P}}.$
- Build MVPA \mathcal{B} over $\widetilde{\Omega}$ for words $(a_1, ph_1) \dots (a_n, ph_n)$ such that $a_1 \dots a_n \in L_k(\mathcal{A})$ and $ph_j = \min\{j \leq k \mid a_1 \dots a_j \text{ is } j\text{-phase word}\}.$
- Consider $<_{\mathsf{lex}} \subseteq \Omega^* \times \Omega^*$ such that i < j implies $(a, i) <_{\mathsf{lex}} (b, j)$.
- L(B) contains its normal forms wrt. <_{lex}.
- Rest of construction as before.

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

- Set $\widetilde{\Omega} = ((\Sigma_{\rho}^{\mathsf{call}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{ret}} \times \{1, \dots, k\}, \Sigma_{\rho}^{\mathsf{int}} \times \{1, \dots, k\}))_{\rho \in \mathcal{P}}.$
- Build MVPA \mathcal{B} over $\widetilde{\Omega}$ for words $(a_1, ph_1) \dots (a_n, ph_n)$ such that $a_1 \dots a_n \in L_k(\mathcal{A})$ and $ph_j = \min\{j \leq k \mid a_1 \dots a_j \text{ is } j\text{-phase word}\}.$
- Consider $<_{\mathsf{lex}} \subseteq \Omega^* \times \Omega^*$ such that i < j implies $(a, i) <_{\mathsf{lex}} (b, j)$.
- L(B) contains its normal forms wrt. <_{lex}.
- Rest of construction as before.

Theorem

Let \mathcal{A} be an MVPA over $\widetilde{\Sigma}$ such that $L_k(\mathcal{A})$ is a k-phase representation. There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $L(\mathcal{C}) = [L_k(\mathcal{A})]_{\sim_{\widetilde{\Sigma}}}$. The size of \mathcal{C} is

- doubly exponential in $|\mathcal{A}|$ and k
- triply exponential in $|\Sigma|$

- Set $\widetilde{\Omega} = ((\Sigma_p^{\mathsf{call}} \times \{1, \dots, k\}, \Sigma_p^{\mathsf{ret}} \times \{1, \dots, k\}, \Sigma_p^{\mathsf{int}} \times \{1, \dots, k\}))_{p \in \mathcal{P}}.$
- Build MVPA \mathcal{B} over $\widetilde{\Omega}$ for words $(a_1, ph_1) \dots (a_n, ph_n)$ such that $a_1 \dots a_n \in L_k(\mathcal{A})$ and $ph_j = \min\{j \leq k \mid a_1 \dots a_j \text{ is } j\text{-phase word}\}.$
- Consider $<_{\mathsf{lex}} \subseteq \Omega^* \times \Omega^*$ such that i < j implies $(a, i) <_{\mathsf{lex}} (b, j)$.
- L(B) contains its normal forms wrt. <_{lex}.
- Rest of construction as before.

Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION 1: Is $L_k(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed? QUESTION 2: Is $L_k(\mathcal{A})$ a k-phase representation?

Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION 1: Is $L_k(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed? QUESTION 2: Is $L_k(\mathcal{A})$ a k-phase representation?

- From \mathcal{A} construct MVPA \mathcal{A}' over Σ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.
- Build MVPA \mathcal{B} over $\overline{\Sigma}$ recognizing words of the form *uabv* with $(a, b) \in I_{\widetilde{\Sigma}}$, *uabv* $\in L(\mathcal{A})$, and *ubav* $\in L(\mathcal{A}')$.
- $L_k(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed iff $L_k(\mathcal{B}) \neq \emptyset$.
- For Question 2, build \mathcal{A}' such that $L(\mathcal{A}') = (\Sigma^* \setminus L_k(\mathcal{A})) \cap W_k(\Sigma)$.

Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION 1: Is $L_k(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed? QUESTION 2: Is $L_k(\mathcal{A})$ a k-phase representation?

- From \mathcal{A} construct MVPA \mathcal{A}' over Σ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.
- Build MVPA B over Σ recognizing words of the form uabv with (a, b) ∈ l_Σ, uabv ∈ L(A), and ubav ∈ L(A').
- $L_k(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed iff $L_k(\mathcal{B}) \neq \emptyset$.
- For Question 2, build \mathcal{A}' such that $L(\mathcal{A}') = (\Sigma^* \setminus L_k(\mathcal{A})) \cap W_k(\widetilde{\Sigma})$.

Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION 1: Is $L_k(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed? QUESTION 2: Is $L_k(\mathcal{A})$ a k-phase representation?

- From \mathcal{A} construct MVPA \mathcal{A}' over Σ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.
- Build MVPA B over Σ recognizing words of the form uabv with (a, b) ∈ l_Σ, uabv ∈ L(A), and ubav ∈ L(A').
- $L_k(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed iff $L_k(\mathcal{B}) \neq \emptyset$.
- For Question 2, build \mathcal{A}' such that $L(\mathcal{A}') = (\Sigma^* \setminus L_k(\mathcal{A})) \cap W_k(\Sigma)$.

Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet $\widetilde{\Sigma}$, MVPA \mathcal{A} over $\widetilde{\Sigma}$, and $k \in \mathbb{N}$ QUESTION 1: Is $L_k(\mathcal{A}) \sim_{\widetilde{\Sigma}}$ -closed? QUESTION 2: Is $L_k(\mathcal{A})$ a k-phase representation?

- From \mathcal{A} construct $MVPA \mathcal{A}'$ over $\widetilde{\Sigma}$ such that $L(\mathcal{A}') = \Sigma^* \setminus L_k(\mathcal{A})$.
- Build MVPA B over Σ recognizing words of the form uabv with (a, b) ∈ l_Σ, uabv ∈ L(A), and ubav ∈ L(A').
- $L_k(\mathcal{A})$ is $\sim_{\widetilde{\Sigma}}$ -closed iff $L_k(\mathcal{B}) \neq \emptyset$.
- For Question 2, build \mathcal{A}' such that $L(\mathcal{A}') = (\Sigma^* \setminus L_k(\mathcal{A})) \cap W_k(\widetilde{\Sigma})$.

Specification formalisms for distributed systems

Specification finite automata rational expressions temporal logics (LTL, CTL, LTrL, ...) MVPA monadic second-order logic ...

Synthesis

Implementation

asynchronous automata message-passing automata $\rm CVPA$

Specification formalisms for distributed systems

Specification finite automata

rational expressions temporal logics (LTL, CTL, LTrL, ...) MVPA

monadic second-order logic

Synthesis

Implementation

asynchronous automata message-passing automata CVPA

word
$$w$$
 t_1 t_2 c_2 c_1 t_1 c_1 t_2 r_2 t_1 r_1 r_1 r_2 r_1

 $T(w) = (E, \leq, \mu, \lambda)$ where $\leq, \mu \subseteq E \times E$ and $\lambda : E \to \Sigma$

The nested-trace language of a $\mathrm{Cvpa}\ \mathcal{C}$

$$\begin{split} \boldsymbol{\Sigma}_{q}^{call} &= \{\boldsymbol{c}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{ret} &= \{\boldsymbol{r}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{int} &= \{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\} \end{split}$$

 $\mathcal{L}(\mathcal{C}) = \{ T(w) \mid w \in L(\mathcal{C}) \}$

The nested-trace language of a $\mathrm{Cvpa}\ \mathcal{C}$

$$\begin{split} \boldsymbol{\Sigma}_{q}^{\mathsf{call}} &= \{\boldsymbol{c}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{\mathsf{ret}} &= \{\boldsymbol{r}_{2}\} \\ \boldsymbol{\Sigma}_{q}^{\mathsf{int}} &= \{\boldsymbol{t}_{1}, \boldsymbol{t}_{2}\} \end{split}$$

MSO logic for nested traces

Definition

Monadic second-order logic $MSO(\widetilde{\Sigma})$:

$$\varphi ::= x \le y \mid (x, y) \in \mu \mid \lambda(x) = a \mid$$
$$x \in X \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x \varphi \mid \exists X \varphi$$

MSO logic for nested traces

Definition

Monadic second-order logic $MSO(\widetilde{\Sigma})$:

$$\varphi ::= x \le y \mid (x, y) \in \mu \mid \lambda(x) = a \mid$$
$$x \in X \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x \varphi \mid \exists X \varphi$$

 $= \quad \forall x \forall y [(\lambda(x) \in \{c_1, c_2\} \land \lambda(y) \in \{r_1, r_2\}) \to x \leq y]$

MSO logic for nested traces

Definition

Monadic second-order logic $MSO(\widetilde{\Sigma})$:

$$\varphi ::= x \le y \mid (x, y) \in \mu \mid \lambda(x) = a \mid$$
$$x \in X \mid \neg \varphi \mid \varphi_1 \lor \varphi_2 \mid \exists x \varphi \mid \exists X \varphi$$

 $\models \forall x \forall y [(\lambda(x) \in \{c_1, c_2\} \land \lambda(y) \in \{r_1, r_2\}) \to x \le y]$ $\models \forall y [\lambda(y) \in \{r_1, r_2\} \to \exists x (x, y) \in \mu]$

Thomas' Theorem

Let $\widetilde{\Sigma}$ be a concurrent alphabet.

Remark

- Suppose $\Sigma = \Sigma^{int}$. Then,
 - \bullet an $\rm MSO$ formula over nested traces is an $\rm MSO$ formula over traces.
 - a CVPA over $\widetilde{\Sigma}$ is an asynchronous automaton over $\widetilde{\Sigma}$.

Theorem ([Tho'90])

Suppose $\Sigma = \Sigma^{\text{int}}$. Let \mathcal{L} be a set of (nested) traces over $\widetilde{\Sigma}$. The following are equivalent:

- There is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $\mathcal{L}(\mathcal{C}) = \mathcal{L}$.
- There is an MSO sentence φ over $\widetilde{\Sigma}$ such that $\mathcal{L}(\varphi) = \mathcal{L}$.

[Tho'90] Thomas. On logical definability of trace languages. 1990.

$\operatorname{Cvp}\nolimits_A$ cannot be complemented

Theorem ([B'08])

- $\bullet~{\rm Mvpa/Cvpa}$ can in general not be complemented.
- MSO is strictly more expressive than $\mathrm{MVPA}/\mathrm{CVPA}$.

[B'08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

$\operatorname{Cvp}\nolimits_A$ cannot be complemented

Theorem ([B'08])

- $\bullet~{\rm MvPA}/{\rm CvPA}$ can in general not be complemented.
- MSO is strictly more expressive than $\mathrm{MVPA}/\mathrm{CVPA}$.

\rightsquigarrow restrict to *k*-phase traces

[B'08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

k-phase traces

Definition

Let $k \in \mathbb{N}$. A *k*-phase trace (over $\widetilde{\Sigma}$) is a nested trace *T* such that there is a *k*-phase word $w \in \Sigma^*$ with T(w) = T.

Let $\operatorname{Tr}_k(\widetilde{\Sigma})$ denote the set of *k*-phase traces.

k-phase traces

Definition

Let $k \in \mathbb{N}$. A *k*-phase trace (over $\widetilde{\Sigma}$) is a nested trace *T* such that there is a *k*-phase word $w \in \Sigma^*$ with T(w) = T.

Let $\operatorname{Tr}_k(\widetilde{\Sigma})$ denote the set of *k*-phase traces.

is a 2-phase trace

MSO characterization of CVPA wrt. k-phase traces

Theorem

For every CVPA \mathcal{C} over $\widetilde{\Sigma}$, there is $\varphi \in MSO(\widetilde{\Sigma})$ such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{C})$.

Theorem

Let $k \in \mathbb{N}$. For every $\varphi \in MSO(\widetilde{\Sigma})$, there is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that

- By induction.
- Lemma: If $\mathcal{L} \subseteq \mathsf{Tr}_k(\widetilde{\Sigma})$ is recognizable, then so is $\overline{\mathcal{L}} \cap \mathsf{Tr}_k(\widetilde{\Sigma})$.
- $\operatorname{Tr}_k(\widetilde{\Sigma})$ is recognizable.
- Atomic formulas standard.
- CVPA are closed under union, intersection, and projection.

MSO characterization of CVPA wrt. k-phase traces

Theorem

For every CVPA \mathcal{C} over $\widetilde{\Sigma}$, there is $\varphi \in MSO(\widetilde{\Sigma})$ such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{C})$.

Theorem

Let $k \in \mathbb{N}$. For every $\varphi \in MSO(\widetilde{\Sigma})$, there is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $\mathcal{L}(\mathcal{C}) = \mathcal{L}(\varphi) \cap Tr_k(\widetilde{\Sigma})$

- By induction.
- Lemma: If $\mathcal{L} \subseteq \mathsf{Tr}_k(\widetilde{\Sigma})$ is recognizable, then so is $\overline{\mathcal{L}} \cap \mathsf{Tr}_k(\widetilde{\Sigma})$.
- $\operatorname{Tr}_k(\widetilde{\Sigma})$ is recognizable.
- Atomic formulas standard.
- CVPA are closed under union, intersection, and projection.

MSO characterization of CVPA wrt. k-phase traces

Theorem

For every CVPA \mathcal{C} over $\widetilde{\Sigma}$, there is $\varphi \in MSO(\widetilde{\Sigma})$ such that $\mathcal{L}(\varphi) = \mathcal{L}(\mathcal{C})$.

Theorem

Let $k \in \mathbb{N}$. For every $\varphi \in MSO(\widetilde{\Sigma})$, there is a CVPA \mathcal{C} over $\widetilde{\Sigma}$ such that $\mathcal{L}(\mathcal{C}) = \mathcal{L}(\varphi) \cap Tr_k(\widetilde{\Sigma})$

- By induction.
- Lemma: If $\mathcal{L} \subseteq \mathsf{Tr}_k(\widetilde{\Sigma})$ is recognizable, then so is $\overline{\mathcal{L}} \cap \mathsf{Tr}_k(\widetilde{\Sigma})$.
- $\operatorname{Tr}_k(\widetilde{\Sigma})$ is recognizable.
- Atomic formulas standard.
- $\bullet~\mathrm{CvPA}$ are closed under union, intersection, and projection.

Summary

Specification

finite automata rational expressions temporal logics (LTL, CTL, LTrL, ...) MVPA MSO

Synthesis

Implementation

asynchronous automata message-passing automata CVPA
Future work: Temporal logic for nested traces

Combine works on

- temporal logic for nested words [AAB+'08]
- temporal logic for traces
 - global [DG'02], interpreted over configurations:

Iocal [GK'07], interpreted over events:

 [AAB^{+'08}] Alur & Arenas & Barcelo & Etessami & Immerman & Libkin. First-Order and Temporal Logics for Nested Words. 2008.
[DG'02] Diekert & Gastin. LTL is expressively complete for Mazurkiewicz traces. 2002.
[GK'07] Gastin & Kuske. Uniform satisfiability in PSPACE for local temporal logics over Mazurkiewicz traces. 2007.

Benedikt Bollig (LSV)

Future work: Nested MSCs

Extend Zielonka-like theorems and logical characterizations of

- unbounded message-passing automata [BL'06]
- existentially bounded message passing automata [GKM'06]
- universally bounded message-passing automata [HMN+'05]

by visibly pushdown stacks.

 [BL'06] B. & Leucker. Message-Passing Automata are expressively equivalent to EMSO Logic. 2006.
[GKM'06] Genest & Kuske & Muscholl. A Kleene theorem and model checking algorithms for existentially bounded communicating automata. 2006.
[HMNST'05] Henriksen & Mukund & Narayan Kumar & Sohoni & Thiagarjan.

A Theory of Regular MSC Languages. 2005.

Thank you!