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Concurrent recursive programs

Analysis

amounts to verifying multi-stack pushdown systems

abstraction of unrestricted systems
◮ overapproximation [BET’03]

◮ underapproximation [QR’05]

restricting the degree of synchronization and parallelism [SV’06]

Synthesis

language and automata theoretic framework needed

generalization of asynchronous automata and Mazurkiewicz traces

[BET’03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003.

[QR’05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[SV’06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.
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Outline

Example of a concurrent recursive program

Model of concurrent recursive programs:
Concurrent visibly pushdown automata (Cvpa)

Specifications: Multi-stack visibly pushdown automata (Mvpa)

Synthesis of Cvpa from Mvpa

A decidable criterion for realizability of bounded-phase specifications

An MSO characterization of bounded-phase Cvpa
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Example of a concurrent recursive program

p(int x)

1 wait(turn = 0); turn := 1;
2 if x > 0 then return f(x,p(x-1));
3 else return x;

q(int y)

1 wait(turn = 1); turn := 0;
2 if y > 0 then return g(y,q(y-1));
3 else return y;
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Concurrent visibly pushdown automaton
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The architecture of a concurrent recursive program

Definition

We fix the following parameters:

P a finite set of processes

Σ̃ = ((Σcall
p , Σret

p , Σint
p ))p∈P a concurrent pushdown alphabet:

◮ Σcall
p , Σret

p , Σint
p are pairwise disjoint for all p ∈ P

◮ (Σcall
p ∪ Σret

p ) ∩ (Σcall
q ∪ Σret

q ) = ∅ for all p, q ∈ P with p 6= q

Notation

Σp = Σcall
p ∪ Σret

p ∪ Σint
p and Σ =

⋃
p∈P Σp

Σcall =
⋃

p∈P Σcall
p call actions

Σret =
⋃

p∈P Σret
p return actions

Σint = Σ \ (Σcall ∪ Σret) internal actions

proc(a) = {p ∈ P | a ∈ Σp} processes involved in a ∈ Σ
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p return actions

Σint = Σ \ (Σcall ∪ Σret) internal actions

proc(a) = {p ∈ P | a ∈ Σp} processes involved in a ∈ Σ
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Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is a structure

((Sp)p∈P , Γ, (δa)a∈Σ, ι, F )

Sp is a finite set of local states

Γ contains the stack symbols including a special symbol ⊥

δa ⊆ Sa × (Γ \ {⊥}) × Sa if a ∈ Σcall

δa ⊆ Sa × Γ × Sa if a ∈ Σret

δa ⊆ Sa × Sa if a ∈ Σint

where Sa =
∏

p∈proc(a) Sp is the set of a-local states

ι ∈
∏

p∈P Sp initial state

F ⊆
∏

p∈P Sp set of final states
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Semantics of concurrent visibly pushdown automaton
Let C = ((Sp)p∈P , Γ, (δa)a∈Σ, ι, F ) be a Cvpa.

Definition

set of configurations of C:

∏
p∈P

Sp ×
∏

p∈P
(Γ∗ \ {⊥}){⊥}

global transition:
(s, σ)

a
=⇒ (s ′, σ′)

a ∈ Σcall
p (sproc(a), a, A, s ′proc(a)) ∈ δa and σ′

p = A · σp for some A ∈ Γ

a ∈ Σret
p (sproc(a), a, A, s ′proc(a)) ∈ δa for some A ∈ Γ such that

either A 6= ⊥ and σp = A · σ′

p, or A = ⊥ and σp = σ′

p = ⊥

a ∈ Σint (sproc(a), a, s
′

proc(a)) ∈ δa

All other components remain unchanged.
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Semantics of Cvpa ...

... can also be described in terms of Mvpa:

Definition ([LMP’07])

A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a structure

A = (S , Γ, ∆, ι, F )

∆ ⊆ S × Σcall × (Γ \ {⊥}) × S
∪ S × Σret × Γ × S
∪ S × Σint × S

set of configurations: S ×
∏

p∈P(Γ∗ \ {⊥}){⊥}

notion of a ‘process’ meaningless

processes only determine number of stacks

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.
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Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37



Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37



Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37



Closure property of Cvpa

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1
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Closure property of Cvpa

Definition

IeΣ
= {(a, b) ∈ Σ × Σ | proc(a) ∩ proc(b) = ∅}

a and b are called independent if (a, b) ∈ IeΣ

Definition

∼eΣ
⊆ Σ∗ × Σ∗ is the least congruence with ab ∼eΣ

ba for all (a, b) ∈ IeΣ
.

Lemma

Let C be a Cvpa. For all u, v ∈ Σ∗ with u ∼eΣ
v :

u ∈ L(C) iff v ∈ L(C)
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Zielonka’s Theorem

Let Σ̃ be a concurrent pushdown alphabet.

Remark

Suppose Σ = Σint. Then,

an Mvpa over Σ̃ is a finite automaton over Σ.

a Cvpa over Σ̃ is an asynchronous automaton over Σ̃.

Theorem ([Zie’87])

Suppose Σ = Σint. Let L ⊆ Σ∗ be a ∼eΣ
-closed regular language.

There is a Cvpa C over Σ̃ such that L(C) = L.

[Zie’87] Zielonka. Notes on finite asynchronous automata. 1987.
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From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that L(A) is ∼eΣ
-closed.

There is a Cvpa C over Σ̃ such that L(C) = L(A). The size of C is

doubly exponential in |A|

triply exponential in |Σ|

Proof

Interpret A = (S , Γ, ∆, ι, F ) as finite automaton over Σ × Γ.

Apply Zielonka’s Theorem to obtain Cvpa C over ((∅, ∅, Σp × Γ))p∈P .

Interpret C as Cvpa over Σ̃.
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From Mvpa to Cvpa

c1, X

c1, X
′

t1

c2, Y

r1, X
′

r1, X

c2, Y
′

t1
r2, Y

r2, Y
′

Mvpa A
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From Mvpa to Cvpa

(c1, X )

(c1, X
′)

(t1,⊥)

(c2, Y )

(r1, X
′)

(r1, X )

(c2, Y
′)

(t1,⊥)
(r2, Y )

(r2, Y
′)

finite automaton B1

over Σ × Γ
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From Mvpa to Cvpa
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(r2, Y )

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Fix lexicographic order c2 <lex r1.
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From Mvpa to Cvpa

(c1, X )

(c1, X
′)

(t1,⊥)

(c2, Y )

(r1, X
′)

(r1, X )

(c2, Y
′)

(t1,⊥)
(r2, Y )

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Fix lexicographic order c2 <lex r1.

There is a loop-connected finite automaton for the normal forms of
B1 wrt. <lex of size |B1| · (|Σ| + 1)! [Kus’07].

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.
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From Mvpa to Cvpa

(c1, X )

(c1, X
′)

(t1,⊥)

(c2, Y ) (r1, X )

(t1,⊥)
(r2, Y )

(r2, Y
′)

loop-connected

finite automaton B2

for normal forms

There is an I-diamond finite automaton for [L(B2)]∼eΩ

of size exp(|B2|, |Σ|) [MP’99,Kus’07].

[MP’99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999.

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.
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From Mvpa to Cvpa

(c1, X )

(c1, X
′)

(t1,⊥)

(c2, Y )

(r1, X )

(r1, X )

(c2, Y )

(t1,⊥)
(r2, Y )

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37



From Mvpa to Cvpa

(c1, X )

(c1, X
′)

(t1,⊥)

(c2, Y )

(r1, X )

(r1, X )

(c2, Y )
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I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

There is a Cvpa C over Ω̃ such that L(C) = L(B3).
It is of size exp(|B3|, |Σ|) [GM’06]

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.
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c1, X

c1, X
′

t1 r1, X t1
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Cvpa C ′ over Σ̃

for L(A)
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There is a Cvpa C over Ω̃ such that L(C) = L(B3).

It is of size exp(|B3|, |Σ|) [GM’06] / (3 · |Σ| · |Γ| · |B3|)
2|Σ|·|Γ|

[BM’06].

c1, X

c1, X
′

t1 r1, X t1

t1 c2, Y t1

r2, Y

r2, Y
′

Cvpa C ′ over Σ̃

for L(A)

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

[BM’06] Baudru & Morin. Unfolding Synthesis of Asynchronous Automata. 2006.
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Is a specification implementable?

Theorem ([Zie’87])

Suppose Σ = Σint. Let L ⊆ Σ∗ be a ∼eΣ
-closed regular language.

There is a Cvpa C over Σ̃ such that L(C) = L.

Theorem ([Mus’94,PWW’96])

Suppose Σ = Σint. The following problem is PSPACE-complete:

Input: Mvpa A over Σ̃
Question: Is L(A) ∼eΣ

-closed?

[Mus’94] Muscholl Über die Erkennbarkeit unendlicher Spuren. 1994

[PWW’96] Peled & Wilke & Wolper. An algorithmic approach for checking closure properties of

temporal logic specifications and ω-regular languages. 1996.
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Is a specification implementable?

Theorem

Let A be an Mvpa over Σ̃ such that L(A) is ∼eΣ
-closed.

There is a Cvpa C over Σ̃ such that L(C) = L.

Theorem

The following problem is undecidable:

Input: Concurrent alphabet Σ̃ and Mvpa A over Σ̃
Question: Is L(A) ∼eΣ

-closed?
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Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p )∗ for some p ∈ P.
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∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1
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Mvpa and k-phase words

Notation

Let Wk(Σ̃) denote the set of k-phase words over Σ̃.

For an Mvpa A, let Lk(A) = L(A) ∩ Wk(Σ̃).

Theorem ([LMP’07])

The following problem is decidable:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question: Does Lk(A) 6= ∅ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP’07])

Let k ∈ N and let A be an Mvpa over Σ̃. One can effectively construct
an Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.
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A decidable sufficient criterion for implementability

Definition

A set L ⊆ Wk(Σ̃) is a k-phase representation if, for all u, v ∈ Σ∗ and
(a, b) ∈ IeΣ

with {uabv , ubav} ⊆ Wk(Σ̃), we have uabv ∈ L iff ubav ∈ L.
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{u t1 r1 r2
m n |m, n ≥ 2, u ∈ { , }∗, |u| c1

= m, |u| c2
= n}c1 c2

is a 2-phase representation.
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(a, b) ∈ IeΣ

with {uabv , ubav} ⊆ Wk(Σ̃), we have uabv ∈ L iff ubav ∈ L.

{u t1 r1 r2
m n |m, n ≥ 2, u ∈ { , }∗, |u| c1

= m, |u| c2
= n}c1 c2

is a 2-phase representation.

Any ∼eΣ
-closed subset of Wk(Σ̃) is a k-phase representation.
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The closure of a k-phase representation

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(Ap) = { t1 (( c1 t2 + t2 c1 ) t1 )n r1
i( t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 (( c2 t1 + t1 c2 ) t2 )n r2
i( t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

L(A) = {w ∈ Σ∗ | w ↾ Σp ∈ L(Ap) and w ↾ Σq ∈ L(Aq)}
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L(Ap) = { t1 (( c1 t2 + t2 c1 ) t1 )n r1
i( t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 (( c2 t1 + t1 c2 ) t2 )n r2
i( t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

L(A) = {w ∈ Σ∗ | w ↾ Σp ∈ L(Ap) and w ↾ Σq ∈ L(Aq)}

L2(A) is a 2-phase representation and we have [L2(A)]∼
Σ̃

= L(A).
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From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|
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There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.
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Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?
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-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof (Question 1)

From A construct Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

Build Mvpa B over Σ̃ recognizing words of the form uabv with
(a, b) ∈ IeΣ

, uabv ∈ L(A), and ubav ∈ L(A′).

Lk(A) is ∼eΣ
-closed iff Lk(B) 6= ∅.

For Question 2, build A′ such that L(A′) = (Σ∗ \ Lk(A)) ∩ Wk(Σ̃).
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Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...
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From words to nested Mazurkiewicz traces

word w t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1
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From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1
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nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

linearizations t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r2 r1 r1

t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

...
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From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

T (w) = (E ,≤, µ, λ) where ≤, µ ⊆ E × E and λ : E → Σ
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The nested-trace language of a Cvpa C

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(C) = {T (w) | w ∈ L(C)}
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The nested-trace language of a Cvpa C
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c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X
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32

54
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t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

∈ L(C)
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MSO logic for nested traces

Definition

Monadic second-order logic MSO(Σ̃):

ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ
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ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

|= ∀x∀y [(λ(x) ∈ {c1, c2} ∧ λ(y) ∈ {r1, r2}) → x ≤ y ]
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MSO logic for nested traces

Definition

Monadic second-order logic MSO(Σ̃):

ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

|= ∀x∀y [(λ(x) ∈ {c1, c2} ∧ λ(y) ∈ {r1, r2}) → x ≤ y ]

6|= ∀y [λ(y) ∈ {r1, r2} → ∃x(x , y) ∈ µ]
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Thomas’ Theorem

Let Σ̃ be a concurrent alphabet.

Remark

Suppose Σ = Σint. Then,

an MSO formula over nested traces is an MSO formula over traces.

a Cvpa over Σ̃ is an asynchronous automaton over Σ̃.

Theorem ([Tho’90])

Suppose Σ = Σint. Let L be a set of (nested) traces over Σ̃. The
following are equivalent:

There is a Cvpa C over Σ̃ such that L(C) = L.

There is an MSO sentence ϕ over Σ̃ such that L(ϕ) = L.

[Tho’90] Thomas. On logical definability of trace languages. 1990.
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Cvpa cannot be complemented

Theorem ([B’08])

Mvpa/Cvpa can in general not be complemented.

MSO is strictly more expressive than Mvpa/Cvpa.

[B’08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.
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MSO is strictly more expressive than Mvpa/Cvpa.

 restrict to k-phase traces

[B’08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.
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k-phase traces

Definition

Let k ∈ N. A k-phase trace (over Σ̃) is a nested trace T such that there
is a k-phase word w ∈ Σ∗ with T (w) = T .

Let Trk(Σ̃) denote the set of k-phase traces.
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Let k ∈ N. A k-phase trace (over Σ̃) is a nested trace T such that there
is a k-phase word w ∈ Σ∗ with T (w) = T .

Let Trk(Σ̃) denote the set of k-phase traces.

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

is a 2-phase trace
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MSO characterization of Cvpa wrt. k-phase traces

Theorem

For every Cvpa C over Σ̃, there is ϕ ∈ MSO(Σ̃) such that L(ϕ) = L(C).

Theorem

Let k ∈ N. For every ϕ ∈ MSO(Σ̃), there is a Cvpa C over Σ̃ such that

L(C) = L(ϕ) ∩ Trk(Σ̃)

Proof

By induction.

Lemma: If L ⊆ Trk(Σ̃) is recognizable, then so is L ∩ Trk(Σ̃).

Trk(Σ̃) is recognizable.

Atomic formulas standard.

Cvpa are closed under union, intersection, and projection.
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Summary

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

MSO

...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...
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Future work: Temporal logic for nested traces

Combine works on

temporal logic for nested words [AAB+’08]

temporal logic for traces
◮ global [DG’02], interpreted over configurations:

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

◮ local [GK’07], interpreted over events:

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

[AAB+’08] Alur & Arenas & Barcelo & Etessami & Immerman & Libkin.

First-Order and Temporal Logics for Nested Words. 2008.

[DG’02] Diekert & Gastin. LTL is expressively complete for Mazurkiewicz traces. 2002.

[GK’07] Gastin & Kuske. Uniform satisfiability in PSPACE for local temporal logics

over Mazurkiewicz traces. 2007.
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Future work: Nested MSCs

Extend Zielonka-like theorems and logical characterizations of

unbounded message-passing automata [BL’06]

existentially bounded message passing automata [GKM’06]

universally bounded message-passing automata [HMN+’05]

by visibly pushdown stacks.

[BL’06] B. & Leucker. Message-Passing Automata are expressively equivalent to EMSO Logic. 2006.

[GKM’06] Genest & Kuske & Muscholl. A Kleene theorem and model checking algorithms

for existentially bounded communicating automata. 2006.

[HMNST’05] Henriksen & Mukund & Narayan Kumar & Sohoni & Thiagarjan.

A Theory of Regular MSC Languages. 2005.
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Thank you!
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