Realizability of Concurrent Recursive Programs

Benedikt Bollig

LSV, ENS Cachan, CNRS
France

joint work with Manuela-Lidia Grindei and Peter Habermehl

Workshop on Automata, Concurrency, and Timed Systems
CMI, Chennai, January 2009

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 1/37

Concurrent recursive programs

Analysis
@ amounts to verifying multi-stack pushdown systems

@ abstraction of unrestricted systems

> overapproximation [BET'03]
» underapproximation [QR'05]

@ restricting the degree of synchronization and parallelism [SV'06]

[BET'03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003.
[QR'05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[SV'06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 2 /37

Concurrent recursive programs

Analysis
@ amounts to verifying multi-stack pushdown systems

@ abstraction of unrestricted systems

> overapproximation [BET'03]
» underapproximation [QR'05]

@ restricting the degree of synchronization and parallelism [SV'06]

Synthesis

@ language and automata theoretic framework needed

@ generalization of asynchronous automata and Mazurkiewicz traces

[BET'03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003.
[QR'05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[SV'06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 2 /37

Outline

©

Example of a concurrent recursive program

Model of concurrent recursive programs:
Concurrent visibly pushdown automata (CvpA)

Specifications: Multi-stack visibly pushdown automata (MvPA)

©

©

Synthesis of CvPA from MvPA

A decidable criterion for realizability of bounded-phase specifications

©

An MSO characterization of bounded-phase Cvpra

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 3/37

Example of a concurrent recursive program

Benedikt Bollig (LSV) Concurrent Recursive Programs

Example of a concurrent recursive program

Benedikt Bollig (LSV) Concurrent Recursive Programs

Example of a concurrent recursive program

turn =0 turn =1 turn =0 turn =1

Benedikt Bollig (LSV) Concurrent Recursive Programs

Example of a concurrent recursive program

turn =0 turn =1 turn =0 turn =1

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
Tt = {n} e = {n)

Yot = {t, t2} it — {1, 1}

5]

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
Tt = {n} e = {n)

Yot = {t, t2} it — {1, 1}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
Tt = {n} e = {n)

Yot = {t, t2} it — {1, 1}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

= {t, &} L

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

Zg‘t={t1,t2} ZE{“: {tl,tg}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

anll {Cl} zcall _ {Cz}
zret {rl} Zret — {r2}
th {th i’z} zmt {th t2}

a5 - t1

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

Zg‘t = {i’l, tz} Zg‘t = {tl, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

Zg‘t = {tl, tz} Zg‘t = {tl, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

Zg‘t = {tl, tz} Zg‘t = {tl, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

anll {Cl} zcall _ {Cz}
zret {rl} Zret — {r2}
th {th i’z} zmt {th t2}

t tg-tl.tg.tl n

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

anll
zret
Zlnt

{a}
{n}

{t1, t2}

66 E na o A

Benedikt Bollig (LSV) Concurrent Recursive Programs

zcall _ {Cz}
Zret — {I’2}
zmt {th t2}

Concurrent visibly pushdown automaton

anll
zret
Zlnt

{a}
{n}

{t1, t2}

hth@atatbntnnn

Benedikt Bollig (LSV) Concurrent Recursive Programs

zcall _ {Cz}
Zret — {I’2}
zmt {th t2}

Concurrent visibly pushdown automaton

anll
zret
Zlnt

{a}
{n}

{t1, t2}

R

Benedikt Bollig (LSV) Concurrent Recursive Programs

zcall _ {Cz}
Zret — {I’2}
zmt {th t2}

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
£ = {n} Tt = ()

Zg‘t = {i’l, tz} Zg‘t = {tl, t2}

b6 E 6 a G R

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

antll {Cl} zcatll {c2}
zre {rl} Zre _ {rz}
Zlnt {th 1’2} th {th tZ}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {c2}
Tt = {n} 1t = ()

Zg‘t = {i’l, tz} Zg‘t = {tl, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
Tt = {n} e = {n)

Yot = {t, t2} it — {1, 1}

L(Ay) = {1 ((er 2 + tien) &) (& +)|’ | nijeN, i+j=n+1}
LA) ={tt (@t +ti@) k) m (4 +)@ | nijeN i+j=n+1}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

Concurrent visibly pushdown automaton

Z;all — {Cl} zgall — {CZ}
Tt = {n} e = {n)

Yot = {t, t2} it — {1, 1}

L(Ay) = {1 ((er 2 + tien) &) (& +)|’ | nijeN, i+j=n+1}
LA)={ti (@t + tl@) k)@ (t +)@’ [nijeN i+j=n+1}
LA ={weX |w|X,el(A)andw]|X,e LA}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5/37

The architecture of a concurrent recursive program
Definition
We fix the following parameters:
@ P a finite set of processes
0oy = ((Zf;’"”,Z;,et, Zi;t))Pe’p a concurrent pushdown alphabet:
» Yol yret Tt are pairwise disjoint for all p € P

» (TP N (N UTEY) =0 for all p,g € P with p# g

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 6 /37

The architecture of a concurrent recursive program
Definition
We fix the following parameters:
@ P a finite set of processes
0oy = ((Zf;’"”,Z;,et, Zi;t))Pefp a concurrent pushdown alphabet:
» Yol yret Tt are pairwise disjoint for all p € P
» (TP N (N UTEY) =0 for all p,g € P with p# g

Notation
0T, =TSyt Tt and ¥ = |
o Yl — Uper fo” call actions
0 1 =J,ep Ij* return actions
o Yt — ¥\ (X u xret) internal actions
o proc(a) ={p€P|acX,} processes involved in a € ¥

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 6 /37

pEP

Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (CVPA) over X is a structure

((Sp)pepv r, (53)3627 Ly F)

@ S, is a finite set of local states

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 /37

Definition of concurrrent visibly pushdown automaton
Definition

A concurrent visibly pushdown automaton (CVPA) over ¥ is a structure

((Sp)pepv r, (53)3627 Ly F)

@ S, is a finite set of local states

@ [contains the stack symbols including a special symbol L

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 /37

Definition of concurrrent visibly pushdown automaton
Definition

A concurrent visibly pushdown automaton (CVPA) over X is a structure

((Sp)pEPv r, (53)3627 Ly F)

@ S, is a finite set of local states
@ [contains the stack symbols including a special symbol L
00, C S, x(MT\{L}) xS, ifacxe

0, C S, xI xS, if ac X"t
0, C S, xS, if a € Xint
where 5o =[] ,cproc(a) Sp s the set of a-local states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 /37

Definition of concurrrent visibly pushdown automaton
Definition

A concurrent visibly pushdown automaton (CVPA) over X is a structure

((Sp)pGPv r, (53)3627 Ly F)

©

Sp is a finite set of local states

©

[contains the stack symbols including a special symbol |
62 C S, x(T\{L}) xS, ifacxe!
0, C S, xI xS, if ac Yt
0, C S, xS, if a c Xint
where S, =[]

©

peproc(a) Op 1S the set of a-local states

v € [[pep Sp initial state
F C [1pep Sp set of final states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 /37

Semantics of concurrent visibly pushdown automaton
Let C = ((Sp)pep. T, (02)sex,t, F) be a CvPA.

Definition
@ set of configurations of C:

1.5 x IL (" \{+hiL}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 8 /37

Semantics of concurrent visibly pushdown automaton
Let C = ((Sp)pep. T, (02)sex,t, F) be a CvPA.
Definition

@ set of configurations of C:
IS x IL 0\ {thH{L}

@ global transition:
(s,0) == (s',0")
a € X (Sproc(a)s @ A, Shroc(a)) € 02 and o), = A- o, for some A€ T

a € X" (Sproc(a)s @ A Sproc(a)) € 0a for some A € T such that
either A% L ando, =A-0,, or A= 1L and o, =0, =L

ac yint (Sproc(a)a a, S;Jroc(a)) € 6a

All other components remain unchanged.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 8 /37

Semantics of CvPA ...
. can also be described in terms of MVPA:
Definition ([LMP'07])

A multi-stack visibly pushdown automaton (MVPA) over ¥ is a structure
A= (S5T,AF)

o AC Sxyalx (r\{L}) xS
U SxX®xlxS
U SxXYntxs

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 9 /37

Semantics of CVPA ...

. can also be described in terms of MVPA:
Definition ([LMP'07])

A multi-stack visibly pushdown automaton (MVPA) over ¥ is a structure
A= (S5T,AF)

e AC Sxxe@l x(r\{L}) xS
U SxX®xlxS
U SxXYntxs

@ set of configurations: S x [[,cp(I \ {L}){L}
@ notion of a ‘process’ meaningless

@ processes only determine number of stacks

[LMP'07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 9 /37

Specification formalisms for distributed systems

Specification

finite automata

rational expressions

temporal logics (LTL, CTL, LTrL, ...)
MvpA

monadic second-order logic

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37

Specification formalisms for distributed systems

Specification

finite automata

rational expressions

temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic

Synthesis |mp|ementat|on

asynchronous automata
message-passing automata
Cvpra

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37

Specification formalisms for distributed systems

Specification

Mvpra

Implementation

Synthesis

CvPA

Benedikt Bollig (LSV) Concurrent Recursive Programs

Closure property of Cvpa

Z;all — {Cl} zgall — {c2}
Tt = {n} 1t = ()

ot = {n. b} L

Benedikt Bollig (LSV) Concurrent Recursive Programs

Closure property of Cvpa

Definition
Is = {(a, b) € X x X | proc(a) N proc(b) = 0}
a and b are called independent if (a, b) € /=

Benedikt Bollig (LSV) Concurrent Recursive Programs

Closure property of Cvpa

Definition
Is = {(a, b) € X x X | proc(a) N proc(b) = 0}
a and b are called independent if (a, b) € /=

Definition
~s € ¥T* x " is the least congruence with ab ~5 ba for all (a, b) € /5.

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 12 / 37

Closure property of Cvpa

Definition
Is = {(a, b) € X x X | proc(a) N proc(b) = 0}
a and b are called independent if (a, b) € /=

Definition

~s € ¥T* x " is the least congruence with ab ~5 ba for all (a, b) € /5.

v

Lemma

Let C be a CvPA. For all u,v € L* with u ~5 v:

ue L(C) iff velL(C)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 12 / 37

Zielonka's Theorem

Let ¥ be a concurrent pushdown alphabet.

Remark
Suppose ¥ = Y™ Then,

@ an MVPA over X is a finite automaton over X.

@ a CvVPA over X is an asynchronous automaton over .

Theorem ([Zie'87])
Suppose ¥ = ¥'". Let L C ¥* be a ~s-closed regular language.

There is a CvPA C over ¥ such that L(C) = L.

[Zie'87] Zielonka. Notes on finite asynchronous automata. 1987.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 13 / 37

From MvPA to CvpPA

Theorem
Let A be an MVPA over ¥ such that L(A) is ~s-closed.

There is a CvPA C over ¥ such that L(C) = L(A). The size of C is
@ doubly exponential in | A|

o triply exponential in |X|

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 14 / 37

From MvPA to CvpPA

Theorem
Let A be an MVPA over ¥ such that L(A) is ~s-closed.

There is a CvPA C over ¥ such that L(C) = L(A). The size of C is
@ doubly exponential in | A|

o triply exponential in |X|

Proof

@ Interpret A = (S,I, A, ¢, F) as finite automaton over © x I
@ Apply Zielonka's Theorem to obtain Cvpra C over ((0,0,%, X T))pep.
@ Interpret C as CVPA over Y.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 14 / 37

From MvPA to CvpPA

Mvra A

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From MvPA to CvpPA

finite automaton B;
over ¥ X [

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From MvPA to CvpPA

finite automaton B;
over ¥ X [

@ Consider the concurrent pushdown alphabet Q= ((0,0,%5 x T))pep-

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From MvPA to CvpPA

finite automaton B;
over ¥ X [

@ Consider the concurrent pushdown alphabet Q= (0,0, x) pep.

@ Fix lexicographic order ¢ <jex 1.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From MvPA to CvpPA

finite automaton B;
over ¥ X [

o Consider the concurrent pushdown alphabet Q = (0,0, ¥, x M))pep-
@ Fix lexicographic order ¢ <jex 1.

@ There is a loop-connected finite automaton for the normal forms of
B1 wrt. <|e of size ‘31’ . (’Z‘ + 1)! [Kus'07].

[Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From MvPA to CvpPA

finite automaton B;
over ~ x [

o Consider the concurrent pushdown alphabet Q = ((0, 0, Yo X)pep.

@ Fix lexicographic order ¢» <jex r1-

@ There is a loop-connected finite automaton for the normal forms of

B1 wrt. < of size ‘61’ . (’Z‘ + 1)' [Kus'07].

(C17 X)
O30
(C17X/)

(C27 Y)

(t17 J—)

(I’17X)
(t17 J-)

(I’27 Y)
O30
(r27 Y/)

[Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

loop-connected
finite automaton B,
for normal forms

From MvPA to CvpPA

(c1, X) X (c2.Y) O (rl,x)(b en) loop-connected
’ t1, ti, ’ .
o.—o SIS *O——0_30 finite automaton B,

(C17X) (I‘z7 Y/)

for normal forms

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From MvPA to CvpPA

(CQ,Y) Q (rl,X)

(@ X) (1)) () |.00.p—c0nnected
OO O O O30 | finite automaton B,
(Clyxl) (I‘z7 Y/)

for normal forms

@ There is an |-diamond finite automaton for [L(B2)]~
of size exp(|Bz|, |X|) [MP'99,Kus'07].

[MP’99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999.
[Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From MvPA to CvpPA

(e2,Y) QO (r,X)

(@ X) (1)) () |.00.p—connected
OO O O O30 | finite automaton B,
(CLX/) (I‘g7 Y/)

for normal forms

@ There is an |-diamond finite automaton for [L(B2)]~
of size exp(|Bz|, |X|) [MP'99,Kus'07].

(1, X) [-diamond
finite automaton 33

for [L(B2)]-,

[MP’99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999.
[Kus'07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From MvPA to CvpPA

[-diamond
finite automaton 33

fOI’ [L(Bg)

s

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From MvPA to CvpPA

[-diamond
finite automaton 33

for [L(B2)]-,

o There is a CvPA C over Q such that L(C) = L(B3).
It is of size exp(|Bs],|X]|) [GM'06]

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From MvPA to CvpPA

[-diamond
finite automaton 33

for [L(B2)]-,

o There is a CvPA C over Q such that L(C) = L(B3).
It is of size exp(|Bs],|X]|) [GM'06]

.
(c1, X") CvPpA C over

R (n.Y) for L(Bs)

O »O——>0__30
—’O(thj_) (e2,Y) (t1, 1) (Y

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From MvPA to CvpPA

[-diamond
finite automaton 33

for [L(B2)]-,

o There is a CvPA C over Q such that L(C) = L(B3).
It is of size exp(|Bs],|X]|) [GM'06]

Cl,X X
o o0—tso— o0— o _
a, X! Cvpra C' over ©
L oY for L(A)
-0 t 129, oY =OT’O<:::©

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From MvPA to CvpPA

[-diamond
finite automaton 33

for [L(B2)]-,

o There is a CvPA C over Q such that L(C) = L(B3).
It is of size exp(|Bs|, |Z|) [cM0s] / (3- |- || - |1Bs)*™"" [Bm06).

(5] X
’ t X t
0 30—0— O—® -
X ; CvprA (' over &
! N for L(A)
-0——0O »O——0__30
1 ©, Y 1 r, y!

[GM'06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.
[BM'06] Baudru & Morin. Unfolding Synthesis of Asynchronous Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

Is a specification implementable?

Theorem ([Zie'87])
Suppose ¥ =¥". Let L C ¥* be a ~s-closed regular language.
There is a CvPA C over ¥ such that L(C) = L.

Theorem ([Mus'94,PWW'96])

Suppose ¥ = Y "*. The following problem is PSPACE-complete:

INPUT: MvpA A over ¥
QUESTION: Is L(A) ~5-closed?

[Mus'94] Muscholl Uber die Erkennbarkeit unendlicher Spuren. 1994
[PWW'96] Peled & Wilke & Wolper. An algorithmic approach for checking closure properties of

temporal logic specifications and w-regular languages. 1996.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 18 / 37

Is a specification implementable?

Theorem
Let A be an MVPA over . such that L(A) is ~s-closed.

There is a CvPA C over Y. such that L(C) = L.

Theorem
The following problem is undecidable:

INPUT: Concurrent alphabet Y and MvpPA A over ¥
QUESTION: Is L(A) ~s-closed?

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 19 / 37

Restriction to k-phase words

Definition
Let k € IN. A word w € X* is called a k-phase word over Y if it can be
written as wy - ... - wy where w; € (XU ¥int U Y5t)* for some p € P.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009

20 / 37

Restriction to k-phase words

Definition

Let k € IN. A word w € L* is called a k-phase word over Y if it can be
written as wy - ... - wj where w; € (@' U £ U X¢)* for some p € P

Benedikt Bollig (LSV) Concurrent Recursive Programs

Restriction to k-phase words

Definition
Let k € IN. A word w € L* is called a k-phase word over Y if it can be
written as wy - ... - wj where w; € (@' U £ U X¢)* for some p € P
4-phase word
1 2 3| 4

Benedikt Bollig (LSV) Concurrent Recursive Programs

Restriction to k-phase words

Definition
Let k € IN. A word w € X* is called a k-phase word over Y if it can be
written as wy - ... - wj where w; € (@' U £ U X¢)* for some p € P
4-phase word
1 2 3|4
~Y
3-phase word
1 2 3

Benedikt Bollig (LSV) Concurrent Recursive Programs

Restriction to k-phase words

Definition
Let k € N. A word w € ¥* is called a k-phase word over ¥ if it can be
written as wy - ... - wy where w; € (XU ¥int U Z;aet)* for some p € P
1 b t t ty 4-phase word
1 2 3|4
~ [t b 5] t ty 3-phase word
1 2 3
~ |t b t t 5] 2-phase word
1 2

Benedikt Bollig (LSV) Concurrent Recursive Programs

MvVPA and k-phase words
Notation

o Let Wk(f) denote the set of k-phase words over ..

@ For an MvPA A, let L(A) = L(A) N W (X).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 21 /37

MvVPA and k-phase words

Notation

o Let Wk(f) denote the set of k-phase words over ..

@ For an MVPA A, let Li(A) = L(A) N W(X).

Theorem ([LMP'07])
The following problem is decidable:

INPUT: Concurrent alphabet Y, MvPA A over Y, and k € N
QUESTION: Does Li(A) # 0 hold?

The time complexity is doubly exponential wrt. k.

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009

21 /37

MvVPA and k-phase words
Notation

o Let Wk(f) denote the set of k-phase words over ..

@ For an MVPA A, let Li(A) = L(A) N W(X).

Theorem ([LMP'07])
The following problem is decidable:

INPUT: Concurrent alphabet Y, MvPA A over Y, and k € N
QUESTION: Does Li(A) # 0 hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP'07])

Let k € IN and let A be an MVPA over >. One can effectively construct
an MvprA A’ over ¥ such that L(A") = X*\ Lx(A).

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 21 /37

A decidable sufficient criterion for implementability

Definition

A set L C W, (X) is a k-phase representation if, for all u,v € ¥* and
(a, b) € Iz with {uabv, ubav} C W (X), we have uabv € L iff ubav € L.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 22 /37

A decidable sufficient criterion for implementability

Definition

Aset L C Wk(i) is a k-phase representation if, for all u,v € ¥* and
(a, b) € Iz with {uabv, ubav} C W (X), we have uabv € L iff ubav € L.

{u t1 .m.n| m,n>2 u€ {.,.}* |u\- =m, |u|- = n}

is a 2-phase representation.

Benedikt Bollig (LSV) Concurrent Recursive Programs

A decidable sufficient criterion for implementability

Definition

A set L C W, (X) is a k-phase representation if, for all u,v € ¥* and
(a, b) € Iz with {uabv, ubav} C W (X), we have uabv € L iff ubav € L.

{u t1 .m.n| m,n>2 u€ {.,.}* |u\- =m, |u]- = n}

is a 2-phase representation.

Any ~s-closed subset of W (X) is a k-phase representation.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 22 /37

The closure of a k-phase representation

zcall {Cl}
S = fn)
th — {tl t2}

L(Ay) = {{ta (el &2 + [t 1Eq)
L(A) ={ts (@@ tr + t1]&) t

LA ={weX |w|X,el(A4A)andw|X,eLl(A)}
B e e T Y, S S Y — TS Chennai, January 2000

zcall ()}
| Bl

O

rn, X n,X n,Y rn,Y

t)" (& +e)f’ | nijeN, i+j=n+1}
)IB (G - | nijeN, i+j=n+1}

23 /37

The closure of a k-phase representation

-
zcall {Cl} 0 @

zcall {CZ}
Zvet ={n} t Zvet {rn}
th, {t, t} c, X a, X th, {t1, 12}
t.
O>——=0
I‘1,X I‘1,X I‘Q,Y I‘z,Y

t2

L(Ay) = {t (el &2 + [t20em) &)l ‘(&2 +)|’ | n, i, j €N, i+j=n+1}
LA)={ta (@t + a@)t)m (4 +)@' | nijcN, i+j=n+1}

LA ={weX |w|X,el(A4A)andw|X,eLl(A)}

L(A) is a 2-phase representation and we have [Ly(.A)].. = L(.A).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 23 /37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.
There is a CVPA C over ¥ such that L(C) = [Li(A)
@ doubly exponential in | A| and k
o triply exponential in |X|

J~s- The size of C is

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.
There is a CVPA C over ¥ such that L(C) = [Li(A)
@ doubly exponential in | A| and k
o triply exponential in |X|

J~s- The size of C is

Proof

0 Set Q= (X" x {1,.... k}, X0 x {1,... k}, Z % {1,..., k}))pep-

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.

There is a CvPA C over ¥ such that L(C) = [Lk(A)]~s- The size of C is
@ doubly exponential in | A| and k

o triply exponential in |X|

Proof

0 Set Q= (X" x {1,.... k}, X0 x {1,... k}, Z % {1,..., k}))pep-

o Build Mvpa B over Q for words (a1, phy) ... (an, ph,) such that
ay...ap € Li(A) and ph; = min{j < k | a1 ... aj is j-phase word}.

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.

There is a CvPA C over ¥ such that L(C) = [Lk(A)]~s- The size of C is
@ doubly exponential in | A| and k

o triply exponential in |X|

Proof

0 Set Q= (X" x {1,.... k}, X0 x {1,... k}, Z % {1,..., k}))pep-

o Build MvPA B over Q for words (a1, phy) .. . (an, ph,) such that
ay...ap € Li(A) and ph; = min{j < k | a1 ... aj is j-phase word}.

o Consider <jex € Q* x Q* such that i < j implies (a,) <jex (b, J).

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.
There is a CvPA C over ¥ such that L(C) = [Lk(A)]~s- The size of C is
@ doubly exponential in | A| and k
o triply exponential in |X|

Proof

0 Set Q= (X" x {1,.... k}, X0 x {1,... k}, Z % {1,..., k}))pep-

o Build MvPA B over Q for words (a1, phy) .. . (an, ph,) such that
ay...ap € Li(A) and ph; = min{j < k | a1 ... aj is j-phase word}.

o Consider <jex € Q* x Q* such that i < j implies (a,) <jex (b, J).

@ L(B) contains its normal forms wrt. <jex.

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009

24 /37

From MvPA to CvpPA

Theorem

Let A be an MVPA over Y such that L (A) is a k-phase representation.
There is a CvPA C over ¥ such that L(C) = [Lk(A)]~s- The size of C is
@ doubly exponential in | A| and k
o triply exponential in |X|

Proof

0 Set Q= (X" x {1,.... k}, X0 x {1,... k}, Z % {1,..., k}))pep-

o Build MvPA B over Q for words (a1, phy) .. . (an, ph,) such that
ar...an € Ly(A) and ph; = min{j < k| a1 ... a; is j-phase word}.

o Consider <jex € Q* x Q* such that i < j implies (a,) <jex (b, J).

@ L(B) contains its normal forms wrt. <jex.

@ Rest of construction as before.

v

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

Decidability of sufficient criterion

Theorem
The following problems are decidable in elementary time:

INPUT: Concurrent alphabet ¥, MvPA A over ¥, and k € N

QUESTION 1: Is L(A) ~5-closed?
QUESTION 2: Is Li(A) a k-phase representation?

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 /37

Decidability of sufficient criterion
Theorem

The following problems are decidable in elementary time:

INPUT: Concurrent alphabet Y, MvPA A over %, and k € N

Is Li(A) ~s-closed?
Is Ly(A) a k-phase representation?

QUESTION 1:
QUESTION 2:

Proof (Question 1)

o From A construct MvPA A’ over ¥ such that L(A') = ¥*\ L,(A).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 /37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

InpPUT: Concurrent alphabet Y, MvPA A over Y, and k € N

Is Li(A) ~s-closed?
Is Ly(A) a k-phase representation?

QUESTION 1:
QUESTION 2:

Proof (Question 1)

o From A construct MvPA A’ over ¥ such that L(A’) = X*\ Li(A).

o Build Mvpa B over & recognizing words of the form wabv with
(a,b) € Iz, uabv € L(A), and ubav € L(A).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 /37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

InpPUT: Concurrent alphabet Y, MvPA A over Y, and k € N

Is Li(A) ~s-closed?
Is Ly(A) a k-phase representation?

QUESTION 1:
QUESTION 2:

Proof (Question 1)

o From A construct MvPA A’ over ¥ such that L(A’) = X*\ Li(A).

o Build Mvpa B over & recognizing words of the form wabv with
(a,b) € Iz, uabv € L(A), and ubav € L(A).

o Li(A) is ~g-closed iff L (B) # (.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 /37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

InpPUT: Concurrent alphabet Y, MvPA A over Y, and k € N

QUESTION 1: Is L(A) ~5-closed?

QUESTION 2: Is Li(A) a k-phase representation?

Proof (Question 1)

o From A construct MvPA A’ over ¥ such that L(A’) = X*\ Li(A).

o Build Mvpa B over & recognizing words of the form wabv with
(a,b) € Iz, uabv € L(A), and ubav € L(A).

o Li(A) is ~g-closed iff L (B) # (.

@ For Question 2, build A’ such that L(A") = (* \ Le(A)) N W ().

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 /37

Specification formalisms for distributed systems

Specification

finite automata

rational expressions

temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic

Synthesis |mp|ementat|on

asynchronous automata
message-passing automata
Cvpra

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 26 / 37

Specification formalisms for distributed systems

Specification

monadic second-order logic

Implementation

Synthesis

CvPA

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

wod w - [a]e[e]alalale]r]a[a]n]n]n]

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

D noe

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

nested word w

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

nested word w

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

nested word w

nested trace

T(w)

inearizations [[b]af@lt a6 el 4 [ale]a]k]

Benedikt Bollig (LSV) Concurrent Recursive Programs

From words to nested Mazurkiewicz traces

nested word w

T(w)=(E,<,p,\) where <,u CExEand \: E— X

Benedikt Bollig (LSV) Concurrent Recursive Programs

The nested-trace language of a CvpraA C

Z;all — {Cl} Z;all — {CZ}
£ = {n} Tt = ()

zi)"t = {tl, I‘z} Zi{‘t = {tl, tz}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 28 / 37

The nested-trace language of a CvpraA C

Z;all — {Cl} zgall — {52}
£ = {n} Tt = ()

Zi)"t = {tl, I‘z} zi{“ = {tl, tz}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 28 / 37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(X):

pu=x<y | (xy)ep | Mx)=a |
xeX | = | p1Ver | Ixp | Xy

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 29 /37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(X):

pu=x<y | (x,y)ep | Mx)=a |
xe€X | mp | o1V | Ixp | IXe

— xVy[(A(x) € {c1, 2} ANY) € {rn,n}) = x <]

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009

29 / 37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(X):

pu=x<y | (xy)ep | Mx)=a |
xeX | = | p1Ver | Ixp | Xy

= v I() € {en @) AA) € {ri,) — x <]

= W) € {nm} — 3x(x,y) € 4

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 29 / 37

Thomas' Theorem

Let ¥ be a concurrent alphabet.

Remark
Suppose ¥ = Y™ Then,

@ an MSO formula over nested traces is an MSO formula over traces.

@ a CVPA over ¥ is an asynchronous automaton over .

Theorem ([Tho'90])
Suppose = = X"t Let L be a set of (nested) traces over .. The
following are equivalent:

@ There is a CVvPA C over ¥ such that L(C)="L.

o There is an MSO sentence ¢ over 3. such that L () = L.

[Tho'90] Thomas. On logical definability of trace languages. 1990.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 30/ 37

CVPA cannot be complemented

Theorem ([B'08])
@ MvpA/CVPA can in general not be complemented.
@ MSO is strictly more expressive than MvpA /CVPA.

[B’'08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 31/37

CVPA cannot be complemented

Theorem ([B'08])
@ Mvpra/CVPA can in general not be complemented.
@ MSO is strictly more expressive than MvPA /CVPA.

~~ restrict to k-phase traces

[B’'08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 31/37

k-phase traces

Definition

Let k € IN. A k-phase trace (over ¥) is a nested trace T such that there
is a k-phase word w € ¥* with T(w) = T.

Let Tri(X) denote the set of k-phase traces.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 32 /37

k-phase traces

Definition

Let k € IN. A k-phase trace (over ¥) is a nested trace T such that there
is a k-phase word w € ¥* with T(w) = T.

Let Tri(X) denote the set of k-phase traces.

is a 2-phase trace

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 32 /37

MSO characterization of CVPA wrt. k-phase traces

Theorem
For every CVPA C over ¥, there is o € MSO(X) such that L(p) = L(C). J

Benedikt Bollig (LSV) Concurrent Recursive Programs

MSO characterization of CVPA wrt. k-phase traces
Theorem

For every CVPA C over ¥, there is ¢ € MSO(X) such that L(¢) = £(C).

Theorem

Let k € IN. For every o € MSO(X), there is a CVPA C over ¥ such that

L(C) = £(p) N Tri(E)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 33 /37

MSO characterization of CVPA wrt. k-phase traces
Theorem

For every CVPA C over ¥, there is o € MSO(X) such that L(p) = L(C).

Theorem

Let k € IN. For every o € MSO(X), there is a CVPA C over ¥ such that

L(C) = £(p) N Tri(E)

Proof
@ By induction.
o Lemma: If L C Tri(X) is recognizable, then so is £ N Tr(X).
o Tri(X) is recognizable.
@ Atomic formulas standard.

@ CvPA are closed under union, intersection, and projection.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 33 /37

Summary

Specification

Mvpra
MSO

Implementation

Synthesis

CvPA

Benedikt Bollig (LSV) Concurrent Recursive Programs

Future work: Temporal logic for nested traces

Combine works on

@ temporal logic for nested words [AAB*'08]
@ temporal logic for traces
» global [DG'02], interpreted over configurations:

» local [GK'07], interpreted over events:

LN

[AAB*'08] Alur & Arenas & Barcelo & Etessami & Immerman & Libkin.
First-Order and Temporal Logics for Nested Words. 2008.
[DG'02] Diekert & Gastin. LTL is expressively complete for Mazurkiewicz traces. 2002.
[GK'07] Gastin & Kuske. Uniform satisfiability in PSPACE for local temporal logics
over Mazurkiewicz traces. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 35 /37

Future work: Nested MSCs

Extend Zielonka-like theorems and logical characterizations of

@ unbounded message-passing automata [BL'06]
@ existentially bounded message passing automata [GKM'06]

@ universally bounded message-passing automata [HMN*'05]

by visibly pushdown stacks.

[BL'06] B. & Leucker. Message-Passing Automata are expressively equivalent to EMSO Logic. 2006.
[GKM'06] Genest & Kuske & Muscholl. A Kleene theorem and model checking algorithms
for existentially bounded communicating automata. 2006.
[HMNST'05] Henriksen & Mukund & Narayan Kumar & Sohoni & Thiagarjan.
A Theory of Regular MSC Languages. 2005.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 36 / 37

Thank you!

Benedikt Bollig (LSV) Concurrent Recursive Programs

