
Realizability of Concurrent Recursive Programs

Benedikt Bollig

LSV, ENS Cachan, CNRS
France

joint work with Manuela-Lidia Grindei and Peter Habermehl

Workshop on Automata, Concurrency, and Timed Systems
CMI, Chennai, January 2009

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 1 / 37

Concurrent recursive programs

Analysis

amounts to verifying multi-stack pushdown systems

abstraction of unrestricted systems
◮ overapproximation [BET’03]

◮ underapproximation [QR’05]

restricting the degree of synchronization and parallelism [SV’06]

Synthesis

language and automata theoretic framework needed

generalization of asynchronous automata and Mazurkiewicz traces

[BET’03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003.

[QR’05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[SV’06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 2 / 37

Concurrent recursive programs

Analysis

amounts to verifying multi-stack pushdown systems

abstraction of unrestricted systems
◮ overapproximation [BET’03]

◮ underapproximation [QR’05]

restricting the degree of synchronization and parallelism [SV’06]

Synthesis

language and automata theoretic framework needed

generalization of asynchronous automata and Mazurkiewicz traces

[BET’03] Bouajjani & Esparza & Touili. A generic approach to the static analysis of concurrent programs with procedures. 2003.

[QR’05] Qadeer & Rehof. Context-bounded model checking of concurrent software. 2005.

[SV’06] Sen & Viswanathan. Model checking multithreaded programs with asynchronous atomic methods. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 2 / 37

Outline

Example of a concurrent recursive program

Model of concurrent recursive programs:
Concurrent visibly pushdown automata (Cvpa)

Specifications: Multi-stack visibly pushdown automata (Mvpa)

Synthesis of Cvpa from Mvpa

A decidable criterion for realizability of bounded-phase specifications

An MSO characterization of bounded-phase Cvpa

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 3 / 37

Example of a concurrent recursive program

p(int x)

1 wait(turn = 0); turn := 1;
2 if x > 0 then return f(x,p(x-1));
3 else return x;

q(int y)

1 wait(turn = 1); turn := 0;
2 if y > 0 then return g(y,q(y-1));
3 else return y;

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 4 / 37

Example of a concurrent recursive program

p(int x)

1 wait(turn = 0); turn := 1;
2 if x > 0 then return f(x,p(x-1));
3 else return x;

q(int y)

1 wait(turn = 1); turn := 0;
2 if y > 0 then return g(y,q(y-1));
3 else return y;

Σp = {c1, r1, t1, t2} Σq = {c2, r2, t1, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 4 / 37

Example of a concurrent recursive program

p(int x)

1 wait(turn = 0); turn := 1;
2 if x > 0 then return f(x,p(x-1));
3 else return x;

q(int y)

1 wait(turn = 1); turn := 0;
2 if y > 0 then return g(y,q(y-1));
3 else return y;

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σp = {c1, r1, t1, t2} Σq = {c2, r2, t1, t2}

turn = 0 turn = 1 turn = 1turn = 0

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 4 / 37

Example of a concurrent recursive program

p(int x)

1 wait(turn = 0); turn := 1;
2 if x > 0 then return f(x,p(x-1));
3 else return x;

q(int y)

1 wait(turn = 1); turn := 0;
2 if y > 0 then return g(y,q(y-1));
3 else return y;

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

turn = 0 turn = 1 turn = 1turn = 0

Σcall
p

= {c1}
Σret
p

= {r1}

Σint
p

= {t1, t2}

Σcall
q

= {c2}
Σret
q

= {r2}

Σint
q

= {t1, t2}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 4 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t2t1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

c2t1 t2

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥
Y

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

c1t1 t2 c2

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

⊥
Y

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1t1 t2 c2 c1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

⊥
Y

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

c1t1 t2 c2 c1 t1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

X

⊥
Y

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t2t1 t2 c2 c1 t1 c1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

X

⊥
Y

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

r2t1 t2 c2 c1 t1 c1 t2

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

X

⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1t1 t2 c2 c1 t1 c1 t2 r2

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

X

⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

r1t1 t2 c2 c1 t1 c1 t2 r2 t1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥
X

⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

r1t1 t2 c2 c1 t1 c1 t2 r2 t1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

r2t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

r1t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(Ap) = { t1 ((c1 t2 + t2 c1) t1)n r1
i(t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 ((c2 t1 + t1 c2) t2)n r2
i(t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

Concurrent visibly pushdown automaton

⊥ ⊥

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(Ap) = { t1 ((c1 t2 + t2 c1) t1)n r1
i(t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 ((c2 t1 + t1 c2) t2)n r2
i(t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

L(A) = {w ∈ Σ∗ | w ↾ Σp ∈ L(Ap) and w ↾ Σq ∈ L(Aq)}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 5 / 37

The architecture of a concurrent recursive program

Definition

We fix the following parameters:

P a finite set of processes

Σ̃ = ((Σcall
p , Σret

p , Σint
p))p∈P a concurrent pushdown alphabet:

◮ Σcall
p , Σret

p , Σint
p are pairwise disjoint for all p ∈ P

◮ (Σcall
p ∪ Σret

p) ∩ (Σcall
q ∪ Σret

q) = ∅ for all p, q ∈ P with p 6= q

Notation

Σp = Σcall
p ∪ Σret

p ∪ Σint
p and Σ =

⋃
p∈P Σp

Σcall =
⋃

p∈P Σcall
p call actions

Σret =
⋃

p∈P Σret
p return actions

Σint = Σ \ (Σcall ∪ Σret) internal actions

proc(a) = {p ∈ P | a ∈ Σp} processes involved in a ∈ Σ

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 6 / 37

The architecture of a concurrent recursive program

Definition

We fix the following parameters:

P a finite set of processes

Σ̃ = ((Σcall
p , Σret

p , Σint
p))p∈P a concurrent pushdown alphabet:

◮ Σcall
p , Σret

p , Σint
p are pairwise disjoint for all p ∈ P

◮ (Σcall
p ∪ Σret

p) ∩ (Σcall
q ∪ Σret

q) = ∅ for all p, q ∈ P with p 6= q

Notation

Σp = Σcall
p ∪ Σret

p ∪ Σint
p and Σ =

⋃
p∈P Σp

Σcall =
⋃

p∈P Σcall
p call actions

Σret =
⋃

p∈P Σret
p return actions

Σint = Σ \ (Σcall ∪ Σret) internal actions

proc(a) = {p ∈ P | a ∈ Σp} processes involved in a ∈ Σ

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 6 / 37

Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is a structure

((Sp)p∈P , Γ, (δa)a∈Σ, ι, F)

Sp is a finite set of local states

Γ contains the stack symbols including a special symbol ⊥

δa ⊆ Sa × (Γ \ {⊥}) × Sa if a ∈ Σcall

δa ⊆ Sa × Γ × Sa if a ∈ Σret

δa ⊆ Sa × Sa if a ∈ Σint

where Sa =
∏

p∈proc(a) Sp is the set of a-local states

ι ∈
∏

p∈P Sp initial state

F ⊆
∏

p∈P Sp set of final states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 / 37

Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is a structure

((Sp)p∈P , Γ, (δa)a∈Σ, ι, F)

Sp is a finite set of local states

Γ contains the stack symbols including a special symbol ⊥

δa ⊆ Sa × (Γ \ {⊥}) × Sa if a ∈ Σcall

δa ⊆ Sa × Γ × Sa if a ∈ Σret

δa ⊆ Sa × Sa if a ∈ Σint

where Sa =
∏

p∈proc(a) Sp is the set of a-local states

ι ∈
∏

p∈P Sp initial state

F ⊆
∏

p∈P Sp set of final states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 / 37

Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is a structure

((Sp)p∈P , Γ, (δa)a∈Σ, ι, F)

Sp is a finite set of local states

Γ contains the stack symbols including a special symbol ⊥

δa ⊆ Sa × (Γ \ {⊥}) × Sa if a ∈ Σcall

δa ⊆ Sa × Γ × Sa if a ∈ Σret

δa ⊆ Sa × Sa if a ∈ Σint

where Sa =
∏

p∈proc(a) Sp is the set of a-local states

ι ∈
∏

p∈P Sp initial state

F ⊆
∏

p∈P Sp set of final states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 / 37

Definition of concurrrent visibly pushdown automaton

Definition

A concurrent visibly pushdown automaton (Cvpa) over Σ̃ is a structure

((Sp)p∈P , Γ, (δa)a∈Σ, ι, F)

Sp is a finite set of local states

Γ contains the stack symbols including a special symbol ⊥

δa ⊆ Sa × (Γ \ {⊥}) × Sa if a ∈ Σcall

δa ⊆ Sa × Γ × Sa if a ∈ Σret

δa ⊆ Sa × Sa if a ∈ Σint

where Sa =
∏

p∈proc(a) Sp is the set of a-local states

ι ∈
∏

p∈P Sp initial state

F ⊆
∏

p∈P Sp set of final states

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 7 / 37

Semantics of concurrent visibly pushdown automaton
Let C = ((Sp)p∈P , Γ, (δa)a∈Σ, ι, F) be a Cvpa.

Definition

set of configurations of C:

∏
p∈P

Sp ×
∏

p∈P
(Γ∗ \ {⊥}){⊥}

global transition:
(s, σ)

a
=⇒ (s ′, σ′)

a ∈ Σcall
p (sproc(a), a, A, s ′proc(a)) ∈ δa and σ′

p = A · σp for some A ∈ Γ

a ∈ Σret
p (sproc(a), a, A, s ′proc(a)) ∈ δa for some A ∈ Γ such that

either A 6= ⊥ and σp = A · σ′

p, or A = ⊥ and σp = σ′

p = ⊥

a ∈ Σint (sproc(a), a, s
′

proc(a)) ∈ δa

All other components remain unchanged.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 8 / 37

Semantics of concurrent visibly pushdown automaton
Let C = ((Sp)p∈P , Γ, (δa)a∈Σ, ι, F) be a Cvpa.

Definition

set of configurations of C:

∏
p∈P

Sp ×
∏

p∈P
(Γ∗ \ {⊥}){⊥}

global transition:
(s, σ)

a
=⇒ (s ′, σ′)

a ∈ Σcall
p (sproc(a), a, A, s ′proc(a)) ∈ δa and σ′

p = A · σp for some A ∈ Γ

a ∈ Σret
p (sproc(a), a, A, s ′proc(a)) ∈ δa for some A ∈ Γ such that

either A 6= ⊥ and σp = A · σ′

p, or A = ⊥ and σp = σ′

p = ⊥

a ∈ Σint (sproc(a), a, s
′

proc(a)) ∈ δa

All other components remain unchanged.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 8 / 37

Semantics of Cvpa ...

... can also be described in terms of Mvpa:

Definition ([LMP’07])

A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a structure

A = (S , Γ, ∆, ι, F)

∆ ⊆ S × Σcall × (Γ \ {⊥}) × S
∪ S × Σret × Γ × S
∪ S × Σint × S

set of configurations: S ×
∏

p∈P(Γ∗ \ {⊥}){⊥}

notion of a ‘process’ meaningless

processes only determine number of stacks

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 9 / 37

Semantics of Cvpa ...

... can also be described in terms of Mvpa:

Definition ([LMP’07])

A multi-stack visibly pushdown automaton (Mvpa) over Σ̃ is a structure

A = (S , Γ, ∆, ι, F)

∆ ⊆ S × Σcall × (Γ \ {⊥}) × S
∪ S × Σret × Γ × S
∪ S × Σint × S

set of configurations: S ×
∏

p∈P(Γ∗ \ {⊥}){⊥}

notion of a ‘process’ meaningless

processes only determine number of stacks

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 9 / 37

Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37

Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37

Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 10 / 37

Closure property of Cvpa

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 11 / 37

Closure property of Cvpa

Definition

IeΣ
= {(a, b) ∈ Σ × Σ | proc(a) ∩ proc(b) = ∅}

a and b are called independent if (a, b) ∈ IeΣ

Definition

∼eΣ
⊆ Σ∗ × Σ∗ is the least congruence with ab ∼eΣ

ba for all (a, b) ∈ IeΣ
.

Lemma

Let C be a Cvpa. For all u, v ∈ Σ∗ with u ∼eΣ
v :

u ∈ L(C) iff v ∈ L(C)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 12 / 37

Closure property of Cvpa

Definition

IeΣ
= {(a, b) ∈ Σ × Σ | proc(a) ∩ proc(b) = ∅}

a and b are called independent if (a, b) ∈ IeΣ

Definition

∼eΣ
⊆ Σ∗ × Σ∗ is the least congruence with ab ∼eΣ

ba for all (a, b) ∈ IeΣ
.

Lemma

Let C be a Cvpa. For all u, v ∈ Σ∗ with u ∼eΣ
v :

u ∈ L(C) iff v ∈ L(C)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 12 / 37

Closure property of Cvpa

Definition

IeΣ
= {(a, b) ∈ Σ × Σ | proc(a) ∩ proc(b) = ∅}

a and b are called independent if (a, b) ∈ IeΣ

Definition

∼eΣ
⊆ Σ∗ × Σ∗ is the least congruence with ab ∼eΣ

ba for all (a, b) ∈ IeΣ
.

Lemma

Let C be a Cvpa. For all u, v ∈ Σ∗ with u ∼eΣ
v :

u ∈ L(C) iff v ∈ L(C)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 12 / 37

Zielonka’s Theorem

Let Σ̃ be a concurrent pushdown alphabet.

Remark

Suppose Σ = Σint. Then,

an Mvpa over Σ̃ is a finite automaton over Σ.

a Cvpa over Σ̃ is an asynchronous automaton over Σ̃.

Theorem ([Zie’87])

Suppose Σ = Σint. Let L ⊆ Σ∗ be a ∼eΣ
-closed regular language.

There is a Cvpa C over Σ̃ such that L(C) = L.

[Zie’87] Zielonka. Notes on finite asynchronous automata. 1987.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 13 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that L(A) is ∼eΣ
-closed.

There is a Cvpa C over Σ̃ such that L(C) = L(A). The size of C is

doubly exponential in |A|

triply exponential in |Σ|

Proof

Interpret A = (S , Γ, ∆, ι, F) as finite automaton over Σ × Γ.

Apply Zielonka’s Theorem to obtain Cvpa C over ((∅, ∅, Σp × Γ))p∈P .

Interpret C as Cvpa over Σ̃.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 14 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that L(A) is ∼eΣ
-closed.

There is a Cvpa C over Σ̃ such that L(C) = L(A). The size of C is

doubly exponential in |A|

triply exponential in |Σ|

Proof

Interpret A = (S , Γ, ∆, ι, F) as finite automaton over Σ × Γ.

Apply Zielonka’s Theorem to obtain Cvpa C over ((∅, ∅, Σp × Γ))p∈P .

Interpret C as Cvpa over Σ̃.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 14 / 37

From Mvpa to Cvpa

c1, X

c1, X
′

t1

c2, Y

r1, X
′

r1, X

c2, Y
′

t1
r2, Y

r2, Y
′

Mvpa A

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X
′)

(r1, X)

(c2, Y
′)

(t1,⊥)
(r2, Y)

(r2, Y
′)

finite automaton B1

over Σ × Γ

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X
′)

(r1, X)

(c2, Y
′)

(t1,⊥)
(r2, Y)

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X
′)

(r1, X)

(c2, Y
′)

(t1,⊥)
(r2, Y)

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Fix lexicographic order c2 <lex r1.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X
′)

(r1, X)

(c2, Y
′)

(t1,⊥)
(r2, Y)

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Fix lexicographic order c2 <lex r1.

There is a loop-connected finite automaton for the normal forms of
B1 wrt. <lex of size |B1| · (|Σ| + 1)! [Kus’07].

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X
′)

(r1, X)

(c2, Y
′)

(t1,⊥)
(r2, Y)

(r2, Y
′)

finite automaton B1

over Σ × Γ

Consider the concurrent pushdown alphabet Ω̃ = ((∅, ∅, Σp × Γ))p∈P .

Fix lexicographic order c2 <lex r1.

There is a loop-connected finite automaton for the normal forms of
B1 wrt. <lex of size |B1| · (|Σ| + 1)! [Kus’07].

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y) (r1, X)

(t1,⊥)
(r2, Y)

(r2, Y
′)

loop-connected

finite automaton B2

for normal forms

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 15 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y) (r1, X)

(t1,⊥)
(r2, Y)

(r2, Y
′)

loop-connected

finite automaton B2

for normal forms

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y) (r1, X)

(t1,⊥)
(r2, Y)

(r2, Y
′)

loop-connected

finite automaton B2

for normal forms

There is an I-diamond finite automaton for [L(B2)]∼eΩ

of size exp(|B2|, |Σ|) [MP’99,Kus’07].

[MP’99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999.

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y) (r1, X)

(t1,⊥)
(r2, Y)

(r2, Y
′)

loop-connected

finite automaton B2

for normal forms

There is an I-diamond finite automaton for [L(B2)]∼eΩ

of size exp(|B2|, |Σ|) [MP’99,Kus’07].

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

[MP’99] Muscholl & Peled. Message sequence graphs and decision problems on Mazurkiewicz traces. 1999.

[Kus’07] Kuske. Weighted asynchronous cellular automata. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 16 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

There is a Cvpa C over Ω̃ such that L(C) = L(B3).
It is of size exp(|B3|, |Σ|) [GM’06]

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

There is a Cvpa C over Ω̃ such that L(C) = L(B3).
It is of size exp(|B3|, |Σ|) [GM’06]

(c1, X)

(c1, X
′)

(t1,⊥) (r1, X) (t1,⊥)

(t1,⊥) (c2, Y) (t1,⊥)

(r2, Y)

(r2, Y
′)

Cvpa C over Ω̃

for L(B3)

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

There is a Cvpa C over Ω̃ such that L(C) = L(B3).
It is of size exp(|B3|, |Σ|) [GM’06]

c1, X

c1, X
′

t1 r1, X t1

t1 c2, Y t1

r2, Y

r2, Y
′

Cvpa C ′ over Σ̃

for L(A)

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

From Mvpa to Cvpa

(c1, X)

(c1, X
′)

(t1,⊥)

(c2, Y)

(r1, X)

(r1, X)

(c2, Y)

(t1,⊥)
(r2, Y)

(r2, Y
′)

I-diamond

finite automaton B3

for [L(B2)]∼
Ω̃

There is a Cvpa C over Ω̃ such that L(C) = L(B3).

It is of size exp(|B3|, |Σ|) [GM’06] / (3 · |Σ| · |Γ| · |B3|)
2|Σ|·|Γ|

[BM’06].

c1, X

c1, X
′

t1 r1, X t1

t1 c2, Y t1

r2, Y

r2, Y
′

Cvpa C ′ over Σ̃

for L(A)

[GM’06] Genest & Muscholl. Constructing Exponential-size Deterministic Zielonka Automata. 2006.

[BM’06] Baudru & Morin. Unfolding Synthesis of Asynchronous Automata. 2006.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 17 / 37

Is a specification implementable?

Theorem ([Zie’87])

Suppose Σ = Σint. Let L ⊆ Σ∗ be a ∼eΣ
-closed regular language.

There is a Cvpa C over Σ̃ such that L(C) = L.

Theorem ([Mus’94,PWW’96])

Suppose Σ = Σint. The following problem is PSPACE-complete:

Input: Mvpa A over Σ̃
Question: Is L(A) ∼eΣ

-closed?

[Mus’94] Muscholl Über die Erkennbarkeit unendlicher Spuren. 1994

[PWW’96] Peled & Wilke & Wolper. An algorithmic approach for checking closure properties of

temporal logic specifications and ω-regular languages. 1996.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 18 / 37

Is a specification implementable?

Theorem

Let A be an Mvpa over Σ̃ such that L(A) is ∼eΣ
-closed.

There is a Cvpa C over Σ̃ such that L(C) = L.

Theorem

The following problem is undecidable:

Input: Concurrent alphabet Σ̃ and Mvpa A over Σ̃
Question: Is L(A) ∼eΣ

-closed?

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 19 / 37

Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p)∗ for some p ∈ P.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 20 / 37

Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p)∗ for some p ∈ P.

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r1 r2

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 20 / 37

Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p)∗ for some p ∈ P.

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

1 2 3 4
4-phase word

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r1 r2

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 20 / 37

Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p)∗ for some p ∈ P.

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

1 2 3 4
4-phase word

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r1 r2

1 2 3
3-phase word

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 20 / 37

Restriction to k-phase words

Definition

Let k ∈ N. A word w ∈ Σ∗ is called a k-phase word over Σ̃ if it can be
written as w1 · . . . · wk where wi ∈ (Σcall ∪ Σint ∪ Σret

p)∗ for some p ∈ P.

t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

1 2 3 4
4-phase word

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r1 r2

1 2 3
3-phase word

∼ t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

1 2
2-phase word

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 20 / 37

Mvpa and k-phase words

Notation

Let Wk(Σ̃) denote the set of k-phase words over Σ̃.

For an Mvpa A, let Lk(A) = L(A) ∩ Wk(Σ̃).

Theorem ([LMP’07])

The following problem is decidable:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question: Does Lk(A) 6= ∅ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP’07])

Let k ∈ N and let A be an Mvpa over Σ̃. One can effectively construct
an Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 21 / 37

Mvpa and k-phase words

Notation

Let Wk(Σ̃) denote the set of k-phase words over Σ̃.

For an Mvpa A, let Lk(A) = L(A) ∩ Wk(Σ̃).

Theorem ([LMP’07])

The following problem is decidable:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question: Does Lk(A) 6= ∅ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP’07])

Let k ∈ N and let A be an Mvpa over Σ̃. One can effectively construct
an Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 21 / 37

Mvpa and k-phase words

Notation

Let Wk(Σ̃) denote the set of k-phase words over Σ̃.

For an Mvpa A, let Lk(A) = L(A) ∩ Wk(Σ̃).

Theorem ([LMP’07])

The following problem is decidable:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question: Does Lk(A) 6= ∅ hold?

The time complexity is doubly exponential wrt. k.

Theorem ([LMP’07])

Let k ∈ N and let A be an Mvpa over Σ̃. One can effectively construct
an Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

[LMP’07] La Torre & Madhusudan & Parlato. A Robust Class of Context-Sensitive Languages 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 21 / 37

A decidable sufficient criterion for implementability

Definition

A set L ⊆ Wk(Σ̃) is a k-phase representation if, for all u, v ∈ Σ∗ and
(a, b) ∈ IeΣ

with {uabv , ubav} ⊆ Wk(Σ̃), we have uabv ∈ L iff ubav ∈ L.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 22 / 37

A decidable sufficient criterion for implementability

Definition

A set L ⊆ Wk(Σ̃) is a k-phase representation if, for all u, v ∈ Σ∗ and
(a, b) ∈ IeΣ

with {uabv , ubav} ⊆ Wk(Σ̃), we have uabv ∈ L iff ubav ∈ L.

{u t1 r1 r2
m n |m, n ≥ 2, u ∈ { , }∗, |u| c1

= m, |u| c2
= n}c1 c2

is a 2-phase representation.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 22 / 37

A decidable sufficient criterion for implementability

Definition

A set L ⊆ Wk(Σ̃) is a k-phase representation if, for all u, v ∈ Σ∗ and
(a, b) ∈ IeΣ

with {uabv , ubav} ⊆ Wk(Σ̃), we have uabv ∈ L iff ubav ∈ L.

{u t1 r1 r2
m n |m, n ≥ 2, u ∈ { , }∗, |u| c1

= m, |u| c2
= n}c1 c2

is a 2-phase representation.

Any ∼eΣ
-closed subset of Wk(Σ̃) is a k-phase representation.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 22 / 37

The closure of a k-phase representation

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(Ap) = { t1 ((c1 t2 + t2 c1) t1)n r1
i(t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 ((c2 t1 + t1 c2) t2)n r2
i(t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

L(A) = {w ∈ Σ∗ | w ↾ Σp ∈ L(Ap) and w ↾ Σq ∈ L(Aq)}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 23 / 37

The closure of a k-phase representation

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(Ap) = { t1 ((c1 t2 + t2 c1) t1)n r1
i(t2 + ε) r1

j | n, i , j ∈ N, i + j = n + 1}

L(Aq) = { t1 t2 ((c2 t1 + t1 c2) t2)n r2
i(t1 + ε) r2

j | n, i , j ∈ N, i + j = n + 1}

L(A) = {w ∈ Σ∗ | w ↾ Σp ∈ L(Ap) and w ↾ Σq ∈ L(Aq)}

L2(A) is a 2-phase representation and we have [L2(A)]∼
Σ̃

= L(A).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 23 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

From Mvpa to Cvpa

Theorem

Let A be an Mvpa over Σ̃ such that Lk(A) is a k-phase representation.

There is a Cvpa C over Σ̃ such that L(C) = [Lk(A)]∼eΣ
. The size of C is

doubly exponential in |A| and k

triply exponential in |Σ|

Proof

Set Ω̃ = ((Σcall
p ×{1, . . . , k}, Σret

p ×{1, . . . , k}, Σint
p ×{1, . . . , k}))p∈P .

Build Mvpa B over Ω̃ for words (a1, ph1) . . . (an, phn) such that
a1 . . . an ∈ Lk(A) and phi = min{j ≤ k | a1 . . . ai is j-phase word}.

Consider <lex ⊆ Ω∗ × Ω∗ such that i < j implies (a, i) <lex (b, j).

L(B) contains its normal forms wrt. <lex.

Rest of construction as before.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 24 / 37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 / 37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof (Question 1)

From A construct Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

Build Mvpa B over Σ̃ recognizing words of the form uabv with
(a, b) ∈ IeΣ

, uabv ∈ L(A), and ubav ∈ L(A′).

Lk(A) is ∼eΣ
-closed iff Lk(B) 6= ∅.

For Question 2, build A′ such that L(A′) = (Σ∗ \ Lk(A)) ∩ Wk(Σ̃).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 / 37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof (Question 1)

From A construct Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

Build Mvpa B over Σ̃ recognizing words of the form uabv with
(a, b) ∈ IeΣ

, uabv ∈ L(A), and ubav ∈ L(A′).

Lk(A) is ∼eΣ
-closed iff Lk(B) 6= ∅.

For Question 2, build A′ such that L(A′) = (Σ∗ \ Lk(A)) ∩ Wk(Σ̃).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 / 37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof (Question 1)

From A construct Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

Build Mvpa B over Σ̃ recognizing words of the form uabv with
(a, b) ∈ IeΣ

, uabv ∈ L(A), and ubav ∈ L(A′).

Lk(A) is ∼eΣ
-closed iff Lk(B) 6= ∅.

For Question 2, build A′ such that L(A′) = (Σ∗ \ Lk(A)) ∩ Wk(Σ̃).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 / 37

Decidability of sufficient criterion

Theorem

The following problems are decidable in elementary time:

Input: Concurrent alphabet Σ̃, Mvpa A over Σ̃, and k ∈ N

Question 1: Is Lk(A) ∼eΣ
-closed?

Question 2: Is Lk(A) a k-phase representation?

Proof (Question 1)

From A construct Mvpa A′ over Σ̃ such that L(A′) = Σ∗ \ Lk(A).

Build Mvpa B over Σ̃ recognizing words of the form uabv with
(a, b) ∈ IeΣ

, uabv ∈ L(A), and ubav ∈ L(A′).

Lk(A) is ∼eΣ
-closed iff Lk(B) 6= ∅.

For Question 2, build A′ such that L(A′) = (Σ∗ \ Lk(A)) ∩ Wk(Σ̃).

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 25 / 37

Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 26 / 37

Specification formalisms for distributed systems

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

monadic second-order logic
...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 26 / 37

From words to nested Mazurkiewicz traces

word w t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

From words to nested Mazurkiewicz traces

word w t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

t1 t2 c1 c2 t1 c1 t2 r2 t1 r2 r1 r1 r1

linearizations t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r2 r1 r1

t1 t2 c1 c2 t1 c1 t2 r2 t1 r1 r1 r2 r1

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

From words to nested Mazurkiewicz traces

word wnested t1 t2 c2 c1 t1 c1 t2 r2 t1 r1 r1 r2 r1

nested trace
T (w)

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

T (w) = (E ,≤, µ, λ) where ≤, µ ⊆ E × E and λ : E → Σ

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 27 / 37

The nested-trace language of a Cvpa C

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

L(C) = {T (w) | w ∈ L(C)}

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 28 / 37

The nested-trace language of a Cvpa C

0 1

2 3

4 5

6 7

t1

t2

t2

c1, X c1, X

t2

r1, Xr1, X

r1,⊥ r1,⊥

t2

r1, X r1, X

10

32

54

76

t2

t1

t1

c2, Yc2, Y

t1

r2, Y r2, Y

r2,⊥r2,⊥

t1

r2, Yr2, Y

Σcall
p

= {c1}

Σret
p

= {r1}
Σint
p

= {t1, t2}

Σcall
q

= {c2}

Σret
q

= {r2}
Σint
q

= {t1, t2}

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

∈ L(C)

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 28 / 37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(Σ̃):

ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 29 / 37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(Σ̃):

ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

|= ∀x∀y [(λ(x) ∈ {c1, c2} ∧ λ(y) ∈ {r1, r2}) → x ≤ y]

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 29 / 37

MSO logic for nested traces

Definition

Monadic second-order logic MSO(Σ̃):

ϕ ::= x ≤ y | (x , y) ∈ µ | λ(x) = a |

x ∈ X | ¬ϕ | ϕ1 ∨ ϕ2 | ∃xϕ | ∃Xϕ

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

|= ∀x∀y [(λ(x) ∈ {c1, c2} ∧ λ(y) ∈ {r1, r2}) → x ≤ y]

6|= ∀y [λ(y) ∈ {r1, r2} → ∃x(x , y) ∈ µ]

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 29 / 37

Thomas’ Theorem

Let Σ̃ be a concurrent alphabet.

Remark

Suppose Σ = Σint. Then,

an MSO formula over nested traces is an MSO formula over traces.

a Cvpa over Σ̃ is an asynchronous automaton over Σ̃.

Theorem ([Tho’90])

Suppose Σ = Σint. Let L be a set of (nested) traces over Σ̃. The
following are equivalent:

There is a Cvpa C over Σ̃ such that L(C) = L.

There is an MSO sentence ϕ over Σ̃ such that L(ϕ) = L.

[Tho’90] Thomas. On logical definability of trace languages. 1990.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 30 / 37

Cvpa cannot be complemented

Theorem ([B’08])

Mvpa/Cvpa can in general not be complemented.

MSO is strictly more expressive than Mvpa/Cvpa.

[B’08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 31 / 37

Cvpa cannot be complemented

Theorem ([B’08])

Mvpa/Cvpa can in general not be complemented.

MSO is strictly more expressive than Mvpa/Cvpa.

 restrict to k-phase traces

[B’08] B. On the Expressive Power of 2-Stack Visibly Pushdown Automata. 2008.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 31 / 37

k-phase traces

Definition

Let k ∈ N. A k-phase trace (over Σ̃) is a nested trace T such that there
is a k-phase word w ∈ Σ∗ with T (w) = T .

Let Trk(Σ̃) denote the set of k-phase traces.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 32 / 37

k-phase traces

Definition

Let k ∈ N. A k-phase trace (over Σ̃) is a nested trace T such that there
is a k-phase word w ∈ Σ∗ with T (w) = T .

Let Trk(Σ̃) denote the set of k-phase traces.

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

is a 2-phase trace

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 32 / 37

MSO characterization of Cvpa wrt. k-phase traces

Theorem

For every Cvpa C over Σ̃, there is ϕ ∈ MSO(Σ̃) such that L(ϕ) = L(C).

Theorem

Let k ∈ N. For every ϕ ∈ MSO(Σ̃), there is a Cvpa C over Σ̃ such that

L(C) = L(ϕ) ∩ Trk(Σ̃)

Proof

By induction.

Lemma: If L ⊆ Trk(Σ̃) is recognizable, then so is L ∩ Trk(Σ̃).

Trk(Σ̃) is recognizable.

Atomic formulas standard.

Cvpa are closed under union, intersection, and projection.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 33 / 37

MSO characterization of Cvpa wrt. k-phase traces

Theorem

For every Cvpa C over Σ̃, there is ϕ ∈ MSO(Σ̃) such that L(ϕ) = L(C).

Theorem

Let k ∈ N. For every ϕ ∈ MSO(Σ̃), there is a Cvpa C over Σ̃ such that

L(C) = L(ϕ) ∩ Trk(Σ̃)

Proof

By induction.

Lemma: If L ⊆ Trk(Σ̃) is recognizable, then so is L ∩ Trk(Σ̃).

Trk(Σ̃) is recognizable.

Atomic formulas standard.

Cvpa are closed under union, intersection, and projection.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 33 / 37

MSO characterization of Cvpa wrt. k-phase traces

Theorem

For every Cvpa C over Σ̃, there is ϕ ∈ MSO(Σ̃) such that L(ϕ) = L(C).

Theorem

Let k ∈ N. For every ϕ ∈ MSO(Σ̃), there is a Cvpa C over Σ̃ such that

L(C) = L(ϕ) ∩ Trk(Σ̃)

Proof

By induction.

Lemma: If L ⊆ Trk(Σ̃) is recognizable, then so is L ∩ Trk(Σ̃).

Trk(Σ̃) is recognizable.

Atomic formulas standard.

Cvpa are closed under union, intersection, and projection.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 33 / 37

Summary

Specification

finite automata
rational expressions
temporal logics (LTL, CTL, LTrL, ...)
Mvpa

MSO

...

|
|
|
| Synthesis
−−−−−−−−−−−→

Implementation

asynchronous automata
message-passing automata
Cvpa

...

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 34 / 37

Future work: Temporal logic for nested traces

Combine works on

temporal logic for nested words [AAB+’08]

temporal logic for traces
◮ global [DG’02], interpreted over configurations:

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

◮ local [GK’07], interpreted over events:

t1 t2

c2

c1

t1

c1

t2

r2

t1

r1 r1

r2

r1

[AAB+’08] Alur & Arenas & Barcelo & Etessami & Immerman & Libkin.

First-Order and Temporal Logics for Nested Words. 2008.

[DG’02] Diekert & Gastin. LTL is expressively complete for Mazurkiewicz traces. 2002.

[GK’07] Gastin & Kuske. Uniform satisfiability in PSPACE for local temporal logics

over Mazurkiewicz traces. 2007.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 35 / 37

Future work: Nested MSCs

Extend Zielonka-like theorems and logical characterizations of

unbounded message-passing automata [BL’06]

existentially bounded message passing automata [GKM’06]

universally bounded message-passing automata [HMN+’05]

by visibly pushdown stacks.

[BL’06] B. & Leucker. Message-Passing Automata are expressively equivalent to EMSO Logic. 2006.

[GKM’06] Genest & Kuske & Muscholl. A Kleene theorem and model checking algorithms

for existentially bounded communicating automata. 2006.

[HMNST’05] Henriksen & Mukund & Narayan Kumar & Sohoni & Thiagarjan.

A Theory of Regular MSC Languages. 2005.

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 36 / 37

Thank you!

Benedikt Bollig (LSV) Concurrent Recursive Programs ACTS, Chennai, January 2009 37 / 37

