
CHENNAIMATHEMATICAL INSTITUTE
M.Sc. / Ph.D. Programme in Computer Science

Entrance Examination, 24 May 2025

Instructions

• This question paper consists of two parts. There are 10 Part A questions worth 3 marks
each, and 7 Part B questions worth 10 marks each. The total marks are 100.

• Part A consists ofmultiple choice questions. Theremay bemultiple correct choices. You
have to select all the correct options and no incorrect option to get full marks. There is
no partial credit, and no negativemarking.

• For questions in Part A, you have to provide the answers on the computer. You only have
to choose the appropriate answer(s) from the choices provided. For example, if the an-
swer to a question is options (a) and (c), choose only (a) and (c) to score fullmarks for that
question.

• For questions in Part B, you have to write your answer with a short explanation in the
space provided for the question.

• In all questions related to graphs, unless otherwise specified, we use the word “graph”
tomean a finite undirected graph with no self-loops, and atmost one edge between any
pair of vertices.

Part A
1. Consider theautomaton inFigure 1,where the start state is q0, and thefinal states (indicated
by double circles) are q0, q3 and q5. Which of the following strings are accepted by it?

q0 q1 q2 q3q4q5

0

0

1
1 0

1

0

1 10

1

0

1

Figure 1: Automaton for Question A.1.

(a) 00111 (b) 00110110 (c) 011010 (d) ε

Answer: (a), (b) and (d).

The automaton above accepts all strings that consist of an even number of 1s, or exactly two
0s. Hence (a), (b) and (d) are accepted, while (c) is not. ⊣

2. Which of the following languages over {a, b} can be accepted using a DFA with a single ac-
cepting state?

(a) a∗ + b∗ (b) ab + ba (c) (a + b)∗(ab + ba) (d) (a + b)∗ab

1



Answer: (b) and (d).

(a) cannot be accepted by an automaton with a single final state. For if that were the case,
then a and b would end up in the same final state (call it qf ). Let qf

a
−⟶ q. If qf = q, then

both aa and ba are both accepted. If qf ≠ q, then neither aa nor ba is accepted. But then the
language accepted is not a∗ + b∗.
If (c) were accepted by an automatonwith a single final state, then ab and ba go to samefinal
state. Similar to the reasoning in the above paragraph, consider the strings aba and baa. ⊣

3. Aruna always eats paranthas or curd rice at lunch if pizza is not available. She eats curd rice
only if pickles are available. Yesterday,Aruna’smother had freshpickles ready at lunch time,
and also banned pizza delivery at home. What can you say about Aruna’s lunch yesterday?

(a) Aruna ate curd rice.

(b) Aruna did not eat curd rice.

(c) Aruna ate paranthas.

(d) Aruna ate both curd rice and paranthas.

Answer: (a), (b), (c) and (d).

Suppose the following letters stand for the accompanying statements.

• P: Aruna eats paranthas.
• C: Aruna eats curd rice.
• Z: Pizza is available.
• K: Pickles are available.

Then Aruna’s approach to life is represented by the formulas ¬Z → (P ∨ C) and C → K.
Hermother’s actions led to the formulas K and¬Z being true yesterday. It can be seen that
¬P∧C,P∧¬C andP∧C are all consistentwith the four formulas above. Thus all four choices
are possible. ⊣

4. Consider a biased coin which has probability p of turning up heads (and 1− p of turning up
tails), and consider an experiment where we toss the coin repeatedly. What is the expected

number of tosses before seeing a head? (Recall that this is given by the formula
∞
∑
k=1
kpk, where pk

is the probability that the coin turns up heads for the first time on the k-th toss.)
(a) 1/p2 (b) 1/(1 − p)2 (c) 1/p (d) 1/(1 − p)

Answer: (c).

If the coin ends up heads for the first time on the k-th toss, it means that there are k − 1

tails followed by a head. Thus pk = (1 − p)k−1p. Now letting S =
∞
∑
k=1
kpk, we have that S =

p
∞
∑
k=1
(1 − p)k−1. The summation is standard, and evaluates to 1/p2. So S = 1/p. ⊣

2



5. In a finite directed graph, every vertex has exactly three incoming edges. Which of the fol-
lowing statements is guaranteed to be true?

(a) Some vertex has at least three edges leaving it.

(b) Exactly three edges leave every vertex.

(c) Some vertex has exactly three edges leaving it.

(d) None of the above is true.

Answer: (a).

Suppose the number of vertices is n. Since every vertex has exactly three incoming edges,
thenumberof edges is 3n. If eachvertexhadatmost twooutgoingvertices, then thenumber
of edges would have to be ⩽ 2n. Thus at least one vertex has three edges leaving it.

(b) and (c) are not always true. Consider the graph G = ({a, b, c, d},E)with

E = {(a, a), (a, b), (a, c), (a, d), (b, a), (b, b), (b, c), (b, d), (c, a), (c, d), (d, b), (d, c)}.

All vertices have exactly three incoming edges, but no vertex has exactly three outgoing
edges. ⊣

6. Let X be a set of size n. What is the size of the set {(A,B) ∣ A,B ⊆ X,A ∩ B = ∅}?

(a) 3n − 2n (b) 3n (c) 4n (d) 2n+1

Answer: (b).

LetP = {(A,B) ∣ A,B ⊆ X and A ∩ B = ∅}. For each (A,B) ∈ P, we can associate a function
fAB ∶ X → {0, 1, 2} defined as follows:

fAB(x) =
⎧⎪
⎨⎪
⎩

0 if x ∉ A ∪ B
1 if x ∈ A ∖ B
2 if x ∈ B ∖ A

Conversely, given any function f ∶ X → {0, 1, 2}, we see that (Af ,Bf ) ∈ P, where Af = {x ∈
X ∣ f (x) = 1} and Bf = {x ∈ X ∣ f (x) = 2}.

Thus the set P is in one-to-one correspondence with the set of all functions from X to
{0, 1, 2}. Therefore its size is 3n. ⊣

7. Rohit Sharma is facing Shardul Thakur’s bowling in the IPL. 40% of Shardul’s deliveries to
Rohit are good length balls, 40% are short pitched, and 20% are overpitched. Rohit hits a
boundary 40% of the time off good length balls, and 80% of the time off short pitched and
overpitched balls. Given that Rohit has hit a boundary off Shardul’s last ball, what is the
probability that it was short-pitched?

(a) 1/4 (b) 1/3 (c) 1/5 (d) 1/2

3



Answer: (d).

If Shardul bowls 100 balls to Rohit, 40 are length balls, 40 are short-pitched and 20 are over-
pitched. Rohit hits 16 boundaries off the length balls, 32 boundaries off the short-pitched
balls, and 16 boundaries off the overpitched balls. Thus he hits 64 boundaries off the 100
balls, and 32 of these are off short-pitched balls. So Pr(short-pitched ∣ boundary) = 32/64 =
1/2. ⊣

The next two questions pertain to the following code which takes a non-negative integer as input.
function foo(n)

if (n = 0) then
return 0

else if (n = 1) then
return 1

else if (n = 2) then
return 3

else
return n + foo(n − 1) + foo(n − 2)

end if
end function

8. What is the value returned by foo(5)?

(a) 10 (b) 14 (c) 26 (d) 35

Answer: (c).

From the code we get: foo(0) = 0, foo(1) = 1, foo(2) = 3. Using these we get: foo(3) =
3 + 3 + 1 = 7, foo(4) = 4 + 7 + 3 = 14, and foo(5) = 5 + 14 + 7 = 26. ⊣

9. Which of the following best describes the running time of foo(m)?

(a) Linear inm.

(b) Quadratic inm.

(c) Cubic inm.

(d) Exponential inm.

Answer: (d).

Recall that the Fibonacci numbers are defined as: F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for
n ⩾ 2. Now let Gn be the number of recursive calls (including the top-level call) made to
foo(2) in the computation of foo(n). Then we see that G0 = G1 = 0 = F0,G2 = 1 = F1, and
for n ⩾ 3,Gn = Gn−1+Gn−2 = Fn−2+ Fn−3 = Fn−1. Thus the running time of foo(m) is at least
the value of Fm−1, which is exponential inm. ⊣

4



10. Consider the following two procedures proc1 and proc2,which run in parallel after initial-
ising x to 0. Running in parallel means that between any two lines of code in one process,
any number of lines of the other process may run. Note that x is a shared variable which
both processes can read/modify, while temp1 and temp2 are local variables that only the
corresponding processes can access.

int x = 0;

proc1 { proc2 {

int temp1 = x; int temp2 = x;

x = temp1 + 1; x = temp2 + 1;

temp1 = x; }

x = temp1 + 1;

}

Which of the following values are possible for x after both processes have come to a halt?

(a) 0 (b) 1 (c) 2 (d) 3

Answer: (b), (c) and (d).

Clearly the final value cannot be 0 since at least one of the processes will add at least 1 to x.

Use L.1, L.2, L.3, L.4 to number the statements of proc1, and R.1, R.2 to number the state-
ments of proc2. Here are the execution traces that achieve the final values specified by (b),
(c) and (d).

(b) R.1, L.1, L.2, L.3, L.4, R.2.

(c) L.1, R.1, R.2, L.2, L.3, L.4.

(d) L.1, L.2, L.3, L.4, R.1, R.2.

⊣

5



Part B
1. Consider the language

L = {x ∈ {a, b}∗ ∣ x ends with a palindrome of length at least 2}.

Is L regular or not? Justify your answer by either constructing a finite automaton, or by
giving a proof for the non-regularity of L.

Answer: L is regular. Let Σ = {a, b}. Any nonempty string x ∈ Σ∗ either ends with an a or
endswith a b. In the former case, it is inL iff it is of the form yabna for some y ∈ Σ∗ andn ⩾ 0,
and in the latter case, it is in L iff it is of the form ybanb for some y ∈ Σ∗ and n ⩾ 0. Presented
below is a nondeterministic automaton whose initial state is q0 and accepting states are q2
and q4. It stays in the initial state till the point where it guesses that it has read the prefix y,
and then guesses if it is in the first or the second case discussed above, according to which
it moves left or right, respectively.

q0 q3 q4q1q2

a, b

aa

b

b b

a

⊣

6



2. (a) Construct a finite automaton for the language L consisting of all binary strings with
equal number of occurrences of 01 and 10.

(b) Consider the language L = {1x0y1z ∣ x > 0, y ⩾ 0, z > 0} over the alphabet Σ = {0, 1}.
Construct a 3-state NFA for L and prove that it is correct.

Answer:

(a) Any string x over {0, 1} falls in one of the following categories:

• x = ε or x = 0n or x = 1n for some n > 0. Then x has zero occurrences of 01 and
10, so x ∈ L.

• x = 0n11n2…0n2k−11n2k for some k > 0, with ni > 0whenever 0 ⩽ i ⩽ 2k. Then x has
k occurrences of 01 and k − 1 occurrences of 10, so x ∉ L.

• x = 1n10n2… 1n2k−10n2k for some k > 0, with ni > 0whenever 0 ⩽ i ⩽ 2k. Then x has
k − 1 occurrences of 01 and k occurrences of 10, so x ∉ L.

• x = 0n11n2…0n2k−1 or x = 1n10n2… 1n2k−1 for some k > 0, with ni > 0 whenever
0 ⩽ i ⩽ 2k − 1. Then x has k − 1 occurrences of 01 and k − 1 occurrences of 10, so
x ∈ L.

Thus, x ∈ L iff x = ε or if x begins and ends with the same letter. Presented below is a
nondeterministic automaton for L.

q0q1q2 q3 q4
0

0, 1

0 1

0, 1

1

(b) Presented below is a nondeterministic automatonwhose initial state is q0 and accept-
ing state is q2.

q0 q1 q2

1

1

0

1

1

Letting δ be thenondeterministic transition function,weproveby inductionon length
of strings the following facts in order.

(a) δ∗(q0, u) = {q0, q1} iff u = 1x for some x > 0.
(b) δ∗(q1, v) = {q1} iff v = 0y for some y ⩾ 0.
(c) δ∗(q1,w) = {q2} iff w = 0y1z for some y ⩾ 0 and z > 0.

Combining (a) and (c) above, along with the fact that δ(q0,0) = ∅, it follows that
δ∗(q0, s) = {q0, q2} iff s = 1x0y1z for some x, z > 0 and y = 0, while δ∗(q0, s) = {q2}
iff s = 1x0y1z for some x, y, z > 0. In any case, q2 ∈ δ∗(q0, s) iff s = 1x0y1z, for some
x, z > 0 and y ⩾ 0.

⊣

7



3. (a) Let X,Y be finite sets. Show that a function f ∶ X → Y is a bijection if and only if
f (X ∖ A) = Y ∖ f (A) for every subset A of X.

(b) Let S be a nonempty set and P the set of all subsets of S. Let f ∶ P → P be a function
satisfying the following property: if X ⊆ Y , then f (X) ⊆ f (Y). Show that there exists
some subset T of S such that f (T) = T.

Answer:

(a) (⇒): Suppose f is a bijection and A ⊆ X. Since f is one-to-one, f (a) ≠ f (b) for any
a ∈ A and b ∉ A. Thus f (A) ∩ f (X ∖ A) = ∅ (†). Since f is onto, for any y ∈ Y , there
is x such that f (x) = y. If x ∈ A then y ∈ f (A), and if x ∉ A then y ∈ f (X ∖A). Thus
f (A) ∪ f (X ∖A) = Y (‡). Combining (†) and (‡), we have that f (A) = Y ∖ f (X ∖A), or
in other words, f (X ∖ A) = Y ∖ f (A).

(⇐): Suppose f is not a bijection, whichmeans that it is either not one-to-one, or not
onto. If f is not one-to-one, let u, v ∈ X such that u ≠ v and f (u) = f (v). Consider
the set A = {u} ⊆ X. Now f (u) ∈ f (A), but also f (u) = f (v) ∈ f (X ∖ A). Thus
f (A) ≠ Y ∖ f (X ∖ A). If, on the other hand, f is not onto, let u′ ∉ f (X). Taking
A = X, we have u′ ∉ f (A) but u′ ∈ Y = Y ∖∅ = Y ∖ f (∅) = Y ∖ f (X ∖ A). Thus, once
again, we have that f (A) ≠ Y ∖ f (X ∖ A).
In sum, if f (X ∖ A) = Y ∖ f (A) for every subset A of X, then f is bijective.

(b) A function f is called monotone if it satisfies the property that f (X) ⊆ f (Y) whenever
X ⊆ Y .

• Here is an argument that works when S is finite.
Define a sequence S0,S1,… as follows:

S0 = ∅
Si+1 = f (Si), for i ⩾ 0.

Clearly S0 = ∅ ⊆ S1. If we assume that Si ⊆ Si+1 for some i, then, bymonotonicity
of f , Si+1 = f (Si) ⊆ f (Si+1) = Si+2. Thus we see that S0,S1,… is a non-decreasing
sequence of subsets of S. Let S have n elements. Then there cannot be more than
n+ 1 distinct Si-s. This means that Sk = Sk+1 = f (Sk) for some k ⩾ 0. We take that
Sk to be our T.

• Here is a different argument which is much slicker, and which works for all sets
S, whether finite or infinite.
Consider the collection C = {T ⊆ S ∣ f (T) ⊆ T}. This collection is nonempty
– since f (S) ⊆ S, we have S ∈ C . Letting T0 = ⋂

T∈C

T, we have T0 ⊆ T for all

T ∈ C . By monotonicity of f , it follows that f (T0) ⊆ f (T) ⊆ T for each T ∈ C . We
therefore have that f (T0) ⊆ ⋂

T∈C

T = T0. By monotonicity of f again, f (f (T0)) ⊆

f (T0), and thus f (T0) ∈ C . Thus, by definition of T0, we have T0 ⊆ f (T0). We
conclude that there is a T ⊆ S such that f (T) = T.

⊣

8



4. Seventeen students take part in a tournament where each student plays against every other
student exactly once. In each contest, the pair of students can choose to play one of three
games – Chess, Go or Hex. Prove that there are three students that play the same game
among themselves (i.e., eachof the three contests involving theseplayers is a gameofChess,
or each is a game of Go, or each is a game of Hex).

Hint: Use the pigeonhole principle.

Answer:Wesay that a solution group is a subset of three studentswho all play the same game
against each other, which we call their solution game.

Consider an arbitrary studentA. She plays all the 16 others, so there is at least one game, say
Chess, she plays against 6 others (for otherwise, she would play each game against at most
5 people, which only adds up to 15 opponents at most).

Suppose now that these six students play only Go and Hex against each other. Pick an ar-
bitrary member of this group, say B. Now B has played five games against members of this
group, so must have played the same game, say Go, against three others (let us name them
C1,C2,C3). If C1,C2 and C3 only play Hex against each other, then {C1,C2,C3} is a solution
groupwithHexas the solutiongame. Otherwise, twoof these, sayC1 andC2, playGoagainst
each other. But now we have {B,C1,C2} as a solution group, with Go as the solution game.

Otherwise at least two students out of the six, say B1 and B2, play Chess against each other.
In this case {A,B1,B2} is a solution group, with Chess as the solution game. ⊣

9



5. Let G be a connected graph on n vertices, with no multiple edges or self-loops. Let deg(v)
denote the degree of vertex v in G. Let s, t be two vertices in G, let P be a shortest path from
s to t in G, and let V(P) be the set of vertices in the path P. Prove that

∑
v∈V(P)

deg(v) ⩽ 3n.

Answer: If P has at most three vertices then the claim is easily seen to be true, since each
vertex has degree at most (n − 1). So let us consider the case when P has four or more ver-
tices, and let these vertices be {v1, v2,… , vt}. Consider the partition of V(P) into the three
sets X = {v1, v4, v7,… },Y = {v2, v5, v8,… },Z = {v3, v6, v9,… }. No two vertices in X can have a
common neighbour in G, since this would imply a strictly shorter s-t path than P. So the
neighbourhoods of the vertices in X form a partition of some subset of the vertex set of G.
It follows that the sum of the degrees inG of all the vertices inX is atmost n. Repeating this
argument for Y and Z completes the proof. ⊣

10



6. We have an array A of n numbers, where n is a power of 2.

We build a full binary tree on top of the array A. The elements of the array are leaves of the
tree, numbered 1, 2,… , n, from left to right. At each internal node of the tree, we store the
sum of the values of the array elements in the subtree rooted under it.

Wewish to use this data structure to support operations psum(i), 1 ⩽ i ⩽ n, and add(y, i), 1 ⩽
i ⩽ n, defined below.

psum(i) ∶ return the value of
j=i
∑
j=1
A[j]

add(y, i) ∶ update A[i] to A[i] + y

(a) Draw the data structure built on top of the array A = [−2, 1, 4, −3, 6, 7, 9, −5].

(b) How will you update the data structure when you perform add(y, i)? Assuming arith-
metic operations are free, what is the time complexity of this update, as a function of
n?

(c) Give an algorithm to implement psum(i), 1 ⩽ i ⩽ n − 1 using this data structure? As-
suming arithmetic operations take unit time, what is the time complexity of psum(i)?
What is the complexity of psum(n)?

Answer:

(a) The data structure is given in Figure 2.

17

0

−1

−2 1

1

4 −3

17

13

6 7

4

9 −5

Figure 2: Data structure for the array A = [−2, 1, 4, −3, 6, 7, 9, −5].

(b) We assume that each node of the tree (including each leaf) has three pointer fields:
par, lchild and rchild, that point respectively to the parent node, left child and right
child. We also assume that there is a special nil node, and that the par field of the root,
and the lchild and rchild fields of each leaf, point to nil. Each node also has a field val,
which stores the value at that node. Further we assume that A itself is now an array of
leaf nodes.

11



The following pseudocode implements add(y, i).
procedure add(y, i)

v← A[i];
while (v ≠ nil) do

v.val← v.val + y;
v← v.par

end while
end procedure

Since the procedure touches each node on the path from leaf i to root, and since the
length of each such path in a full binary tree with n nodes is O(log n), the time taken
for the procedure isO(log n).

(c) Weassume the samefields as in thepreviouspart of thequestion. Wealso assume that
there is a variable root, that points to the root of the tree. The following pseudocode
implements psum′(r, s, i), which computes the sum of the leftmost i values of a tree
with root r, and with s leaves.
function psum′(r, s, i)

if (i = s) then
return r.val

else if (i ⩽ s/2) then
return psum′(r.lchild, s/2, i)

else
return psum′(r.lchild, s/2, s/2) + psum′(r.rchild, s/2, i − s/2)

end if
end function

function psum(i)
return psum′(root, n, i)

end function
Note that we adjust the third argument, i, whenwemake recursive calls to psum′. One
can prove thatwhen r is a leaf, then the call would be of the form psum′(r, 1, 1). The time
complexity of psum′(r, s, i) in general isO(s), as can be proved by induction on s. So the
time complexity of psum(i) is O(n) in general. But for the special case of psum(n) =
psum′(root, n, n), the time complexity isO(1).

⊣

12



7. The snakes and ladders game is played on a board with 100 squares, numbered 1 to 100. There
are some ladders and some snakes. Each ladder stands on some square and leads to ahigher
square. Each snake has its head on some square and tail on a lower square. It is possible
that there are squares which neither contain the head of a snake, or the foot of a ladder.
There are no squares which contain both the head of a snake and the foot of a ladder.

The game starts by placing a token on square 1, and the aim of the game is to make the
token reach square 100. We do this over a number of rounds. At each round, we choose a
number between 1 and 10 and advance the token by so many squares. If the token lands on
the head of a snake, it automa:wtically goes to the tail. If it lands at the foot of a ladder, it
automatically goes to its top.

(a) Is it possible to have boards where one can never reach square 100?

(b) Model the snakes and ladders board as a graph.

(c) Devise an algorithm tofind the smallest number of rounds required to go from square
1 to square 100.

Answer:

(a) It is possible to have such a board. If all squares from 90 to 99 have the head of a snake
on them, and 100does not have the top of a ladder, then there is noway to reach square
100. Sincewe start at 1 and since themaximumnumberwe can choose is 10, and since
100 cannotbe reachedbya ladder,wecannot reach 100without reachinga square from
90 to 99. But each such square contains the head of a snake, so one would fall below.

(b) We canmodel a board as a directed graph. Each square as a vertex, and each possible
transition from square x to square y in one move (either by choosing a number, or by
following a snake or a ladder) is an edge between x and y. Further, we attach a weight
to each edge,0 is it is by following a ladder or a snake, and n if y = x+n. We also retain
the edgewith least weight, in case there aremultiple edges between two vertices. This
models the fact that if a square x is at the bottom of a ladder or at the head of a snake,
the player does not have option to choose a number n and go to x + n. They must
necessarily follow the snake or ladder.

(c) We can apply Dijkstra’s algorithm to find the path with the least total weight from 1 to
100, if any path exists at all.

⊣

13


