
“Basics of WQO theory, with some
applications in computer science”

aka “WQOs for dummies”

Ph. Schnoebelen

LSV, CNRS, Cachan

CMI Silver Jubilee Lecture
Chennai, Feb. 23rd, 2015



INTRODUCTION
Well-quasi-orderings, or WQOs, are a generalization of well-orderings
They are to partial orderings what well-orderings are to linear
orderings

The properties of WQOs have proved very useful in logic,
combinatorics, graph theory, and computer science

WQOs, or their properties, have been rediscovered many times. It is
certainly worthwhile to know their basic properties

Křı́z & Thomas 1990 list four reasons to be interested in WQOs:
1.

2. excluded minor theorems

3. surprising algorithmic consequences

4. applications in logic and proof theory
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They are to partial orderings what well-orderings are to linear
orderings

The properties of WQOs have proved very useful in logic,
combinatorics, graph theory, and computer science

WQOs, or their properties, have been rediscovered many times. It is
certainly worthwhile to know their basic properties

Křı́z & Thomas 1990 list four reasons to be interested in WQOs:
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2. excluded minor theorems

3. surprising algorithmic consequences

4. applications in logic and proof theory
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OUTLINE

1. Basics and examples

2. Building more WQOs

3. From WQOs to BQOs

4. A hint of Graph Minor Theory
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Basics and examples
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(RECALLS) ORDERED SETS

Def. A non-empty (X,6) is a quasi-ordering (QO) def⇔ 6 is a reflexive
and transitive relation
• like partial ordering (PO) but not requiring antisymmetry
• QO technically simpler but essentially equivalent to PO

Examples.
• (N,6), also (R,6), (N∪ {ω},6), . . .

• divisibility: (Z, | ) where x | y def⇔∃a : a.x= y
also Gaussian integers: (Z[i], | )

• tuples: (N3,6×), where (0,1,2)<× (10,1,5) and (1,2,3)#×(3,1,2)

Notation. x≡ y def⇔ x6 y6 x

x < y
def⇔ x6 y∧y � x x#y def⇔ x � y∧y � x
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SIMPLE ORDERINGS ON WORDS – 1
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SIMPLE ORDERINGS ON WORDS – 2
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SIMPLE ORDERINGS ON WORDS – 3

aaa

aab

aba

abb

baa

bab

bba

bbb

aa

ab

ba

bb

a

b

ε

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·Factor ordering: (Σ∗,6fact)

8/32



SIMPLE ORDERINGS ON WORDS – 4
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(RECALLS) ORDERED SETS

Def. (X,6) is linear if for any x,y ∈ X either x6 y or y6 x (I.e.,
there is no x#y)

Def. (X,6) is well-founded (WF) if there is no infinite strictly
decreasing sequence x0 > x1 > x2 > · · ·

linear? well-founded?
N,6
Z, |

N∪ {ω},6
N

3,6×
Σ∗,6pref
Σ∗,6lex
Σ∗,6∗
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WELL-QUASI-ORDERING (WQO)

Def1. (X,6) is a WQO def⇔ any infinite sequence x0,x1,x2, . . . contains
an increasing pair: xi 6 xj for some i < j

Def2. (X,6) is a WQO def⇔ any infinite sequence x0,x1,x2, . . . contains
an infinite increasing subsequence: xn0 6 xn1 6 xn2 6 · · ·

Def3. (X,6) is a WQO def⇔ there is no infinite strictly decreasing
sequence x0 > x1 > x2 > · · · —i.e., (X,6) is well-founded (WF)— and
no infinite set {x0,x1,x2, . . .} of mutually incomparable elements xi#xj
when i , j —we say that (X,6) has no infinite antichain (FAC)—

Fact. These three definitions are equivalent

Recall Infinite Ramsey Theorem: “Let X be some countably infinite
set and colour the elements of X(n) (the subsets of X of size n) in c
different colours. Then there exists some infinite subset M of X s.t.
the size n subsets of M all have the same colour”
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when i , j —we say that (X,6) has no infinite antichain (FAC)—

Fact. These three definitions are equivalent

• Clearly, Def2⇒ Def1 and Def1⇒ Def3
But the reverse implications are non-trivial

• In fact proving Def3⇒ Def1 or Def1⇒ Def2 for a specific structure
has been a key lemma in many works (both before and after the
introduction of the concept of WQOs)

NB. For finite X, it is the Pigeonhole Principle
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PROVING DEF3 ⇒ DEF2

x0 x1 x2 x3 x4 · · ·

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic
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PROVING DEF3 ⇒ DEF2

x0 x1 x2 x3 x4 · · ·
>

#
>
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there is an infinite subset {xi}i∈I that is monochromatic
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

What color?
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

>

Blue⇒ infinite strictly decreasing sequence, contradicts WF
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

#

Red⇒ infinite antichain, contradicts FAC
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PROVING DEF3 ⇒ DEF2

Infinite Ramsey Theorem:

there is an infinite subset {xi}i∈I that is monochromatic

xn0 xn1 xn2 xn3 xn4 · · ·.. .. .. .. .. ..

≤

Must be green⇒ infinite increasing sequence! QED
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SPOT THE WQOS

linear? well-founded? WQO?
N,6 X X
Z, | × X

N∪ {ω},6 X X

N
3,6× × X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X
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N∪ {ω},6 X X X

N
3,6× × X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X

More generally
Fact. For linear orderings: Well-founded⇔WQO
Cor. Any ordinal is WQO
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N∪ {ω},6 X X X

N
3,6× × X
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Σ∗,6lex X ×
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(Z, | ): The prime numbers {2,3,5,7,11, . . .} are an infinite antichain
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linear? well-founded? WQO?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X
Σ∗,6lex X ×
Σ∗,6∗ × X

More generally
(Generalized) Dickson’s lemma. If (X1,61), . . . , (Xn,6n)’s are
WQOs, then

∏n
i=1Xi,6× is WQO

Proof. Easy with Def2. Otherwise, an application of the Infinite
Ramsey Theorem

(Usual) Dickson’s Lemma. (Nk,6×) is WQO for any k
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SPOT THE WQOS

linear? well-founded? WQO?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X ×
Σ∗,6lex X × ×
Σ∗,6∗ × X

(Σ∗,6pref) has an infinite antichain

bb, bab, baab, baaab, . . .

(Σ∗,6lex) is not well-founded:

b >lex ab >lex aab >lex aaab >lex · · ·
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SPOT THE WQOS

linear? well-founded? WQO?
N,6 X X X
Z, | × X ×

N∪ {ω},6 X X X

N
3,6× × X X

Σ∗,6pref × X ×
Σ∗,6lex X × ×
Σ∗,6∗ × X X

(Σ∗,6∗) is WQO (Haine’s Theorem)

Also by the more general Higman’s Lemma (see later)
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MORE EQUIVALENT DEFINITIONS

Def4. (Finite Basis Property). (X,6) is a WQO def⇔ every subset Y ⊆ X
contains a finite basis B, i.e., such that ∀y ∈ Y : ∃b ∈ B : b6 y

Def5. (Ascending Chain Condition). (X,6) is a WQO def⇔ every strictly
increasing sequence U0 (U1 (U2 . . . of upward-closed subsets
(also: final segments) of X is finite

Def6. (X,6) is a WQO def⇔ every linear extension of 6 on X/≡ is a
well-ordering

Def7. (X,6) is a WQO def⇔ the powerset P(X) ordered by embedding
is well-founded

Def8. etc.
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APPLICATIONS IN COMPUTER SCIENCE

Termination proofs, automated or by hand: WQOs more versatile
than well-orderings

Language theory: any language closed by subwords (or by
superwords) is regular

Graphs algorithms: see later

Complexity: WQO-based algorithms have known complexity upper
bounds

Program verification: safety properties are decidable for monotonic
systems
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MONOTONIC COUNTER MACHINES

`0 `1 `2 `3
c1++

c2>0? c2-- c3:=0

c1>=10?c1:=c3

1c2

0c1

4c3

A run of M: (`0,0,1,4)−→ (`1,1,1,4)−→ (`2,1,0,4)−→ (`3,1,0,0)

Ordering states: (`1,0,0,0)6 (`1,0,1,2) but (`1,0,0,0) � (`2,0,1,2).
This is WQO as a product of WQOs: (Loc,=)× (N3,6×)

Monotonicity:

if s1 −→ s2 and s ′1 > s1 then s ′1 −→ ·· · −→ s ′2 for some s ′2 > s2

Holds because guards are upward-closed and assignments are
monotonic functions of the variables

Thm. Safety and termination properties are decidable for monotonic
systems over a WQO (Finkel 1987, Abdulla et al. 1997, . . . )
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RELATIONAL AUTOMATA

`0 `1 `2

c1<c2? c2:=??; c1:=c3

c3:=-1 c1=10>c2=c3?

0c2

1c1

−4c3

Guards: comparisons between counters and constants
Updates: assignments with counter values, constants, and “??”

One does not use 6× to compare states!! Rather

(a1, . . . ,ak)6sparse (b1, . . . ,bk)
def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
Fact. (Zk,6sparse) is WQO

Monotonicity: using

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10)
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def⇔∀i, j= 1, . . . ,k :

(
ai 6 aj iff bi 6 bj

)
∧
(
|ai−aj|6 |bi−bj|

)
Fact. (Zk,6sparse) is WQO

Monotonicity: using

(`,a1, . . . ,ak)6 (` ′,b1, . . . ,bk)
def⇔

`= ` ′∧ (a1, . . . ,ak,−1,10)6sparse (b1, . . . ,bk,−1,10)
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Building more WQOs
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SEQUENCES AND HIGMAN’S LEMMA

Def. The sequence extension of a QO (X,6) is the QO (X∗,6∗)
—also: X<ω— of finite sequences over X ordered by embedding:

u= x1 · · ·xn 6∗ y1 · · ·ym = v
def⇔ x1 6 yl1 ∧ · · ·∧ xn 6 yln

for some 16 l1 < l2 < · · ·< ln 6m
def⇔u6× v

′ for a length-n subsequence v ′ of v

Higman’s Lemma (1952). X WQO implies X∗ WQO

With (Σ∗,6∗) and Haines’ Theorem, we were considering the
sequence extension of (Σ,=) which is finite, hence necessarily WQO

Higman’s Lemma applies to the sequence extension of more complex
WQOs, e.g., N2:

Does | 0
1 | 2

0 | 0
2 6∗ | 2

0 | 0
2 | 0

2 | 2
2 | 2

0 | 0
1 ?
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TREES

(T [X],v) has all finite rooted trees with labels from a WQO, ordered
with embedding:

Kruskal’s Tree Theorem (1960). X WQO implies T [X] WQO
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From WQOs to BQOs
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WELL-QUASI ORDERING INFINITARY CONSTRUCTIONS?

All the above constructions
∏n
i=1Xi, or X∗, or T [X], or .. have a

restriction of a finitary kind

Very early, Rado showed that X WQO does not imply that Xω

—infinite sequences over X ordered by embedding,— or even P(X),
is WQO

This was the starting point of better-quasi-orderings (BQO)
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RADO’S STRUCTURE [1954]

Lj

Cj

R
def
= {(a,b) ∈N2 | a < b}

(a,b)6 (a ′,b ′) def⇔
{

a= a ′∧b6 b ′

∨ b < a ′

Lj
def
= {(a, j) ∈ R | a < j}

Cj
def
= {(j,b) ∈ R | j < b}<

<
<

<
<

<
<
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Fact. (R,6) is a WQO but (Rω,6ω) or (P(R),v) are not
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TOWARDS BQOS

Question: On what condition is Xω WQO?
Answer [Rado 1954]: If and only if X does not contains (an
isomorphic copy of) Rado’s structure

Question: Now assume X does not contain R. Then Xω is WQO. But
what about (Xω)ω?
Answer: (Xω) is WQO but may still contain R :-(

One can characterize the WQOs X such that Xω does not contain R,
again using forbidden substructures

NB. Recall that WF⇔ “does not contain (ω,>)”
and that FAC⇔ “does not contain (ω,=)”

Caveat. This may go on forever (it does)
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A SMALL GLIMPSE AT BQOS

The general question is when is Xα WQO for a given countable α?
Or more generally: when is X<ω1 WQO?

Nash-Williams (1965) defined a BQO as any QO X that does not lead
to “bad X-patterns” (with a complex combinatorial definition of
patterns)
These BQOs are between well-orderings and WQOs

He proved X BQO implies X<ω1 BQO

This is the general answer since X<ω1 WQO implies X BQO (Pouzet
1972)
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A hint of Graph Minor Theory
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GRAPHS TOO CAN BE ORDERED

There are many ways of embedding a smaller graph into a larger
graph

Four definitions for G 4H (from stronger to weaker):
induced subgraph: delete some vertices of H (and their edges)
subgraph: delete some vertices and edges of H
topological minor: a subdivision of G is a subgraph of H
minor: take a subgraph of H and contract some edges (fusing
adjacent vertices)

Kuratowksi’s Theorem (1930):
A graph G is planar iff it does not contain K5 or K3,3 as a minor
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EXAMPLE: PETERSEN’S GRAPH

Contains K3,3 as a minor. Hence is not planar!
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EXCLUDED MINORS
Any property of graphs that can be characterized by (finitely many)
excluded minors is easy to test algorithmically: e.g., planarity

NB. This must be a minor-closed property but there are many
examples: G is a tree (a forest) iff it does not contain K3 (as a minor),
it is series-parallel iff it does not contain K4, etc.

Robertson-Seymour Theorem (1983–2004) Finite graphs are
WQOs under the minor ordering
Cor. Any minor-closed property is characterized by excluded minors

Applications. Find the excluded minors for your minor-closed
property of interest (e.g., embeddable on a given surface, or
embeddable in R3 with no links, or no knots, etc.) and you have a
polynomial-time decision algorithm for it

More generally, many hard problems become simpler when restricted
to graphs that exclude a minor

Other WQOs on graphs: Graphs are not WQOs under subgraph or
even topological minors (Ding 1996) but many subclasses of graphs
are. Example: cographs are WQOs under induced subgraph ordering
(Damaschke 1990)
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CONCLUDING REMARKS

WQOs are fun !

Every computer scientist is likely to use
the basics at some point

See gentle tutorial notes Algorithmic
aspects of WQO Theory by sylvain
schmitz & myself for complexity of
WQO-based algorithms
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