NCM IST, Mathematics for Computer Science Convex functions, multiplicative weight updates

26 June, 2018

- 1. For two vectors a, b in \mathcal{R}^n show that $2 < a, b > = ||a||^2 + ||b||^2 ||a b||^2$.
- 2. Using the analysis done in class for a single function f, show that there is an algorithm which, given a starting point x_1 , and parameters ϵ and D, and a family f_1, \ldots, f_T of convex functions which are G-Lipschitz, produces a sequence of points x_1, x_2, \ldots, x_T such that

$$\frac{1}{T}\sum_{t=1}^{t=T}(f_t(x_t) - f_t(x*)) \le \frac{DG}{\sqrt{T}}$$

for any x*satisfying $||x_1 - x * || \le D$ and T being $(\frac{DG}{\epsilon})^2$. Your algorithm should produce x_{t+1} knowing only f_1, \ldots, f_t .

- 3. Show that the strategy of following the opinion of the majority among the experts on a given day has very large regret.
- 4. Show that $-\ln(1-x) \le x + x^2$ for $|x| \le 1/2$.
- 5. Consider the problem of learning weights which fit a data set with inputs X in \mathcal{R}^D and outputs in \mathcal{R}^k . We wish to find W such that Y = WX + B for appropriately sized matrices. Solve this analytically.
- 6. Convex set A set $K \subseteq \mathbb{R}^n$ is convex if, for every two points in K, the line segment connecting them is contained in K, i.e., $\forall x, y \in K$ and $\forall \lambda \in [0, 1]$ we have $\lambda x + (1 \lambda)y \in K$.

Convex function Def 1 A function $f: K \to \mathbb{R}$ is convex if $\forall x, y \in K, \forall \lambda \in [0, 1]$,

 $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$

Convex function Def 2 A function $f: K \to \mathbb{R}$ is convex if $\forall x, y \in K$,

 $f(y) \ge f(x) + < \bigtriangledown f(x), y - x >$

Show that both the definitions of convex functions are equivalent. Show that a local minima of a convex function is a global minima.

7. Strictly convex function: A function $K \to \mathbb{R}$ is strictly convex, if $\forall x, y \in K$ and $x \neq y$, $\forall \lambda \in (0, 1)$,

 $f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$

Show that a strictly convex function has a unique minima.