
NCM IST, Mathematics for Computer Science

Problems in sorting and searching

18 June, 2018

1. Given two sets A and B of n numbers each, give an efficient algorithm to report all the
elements that are common to both A and B. If the integers in A are in the range 1 to
100, can you design a better algorithm?

2. Given two sets A and B of n integers each, and a query integer x, give an efficient algorithm
to determine whether x = a + b for some a ∈ A and b ∈ B. If the integers in A are in the
range 1 to 100, can you design a better algorithm?

3. Let A be an array of N integers out of which the first n of them are positive and the
remaining are negative. You don’t know n.

• Give an O(logN) algorithm to compute n.

• Give an O(log n) algorithm to compute n.

4. Given an integer a and a positive integer n, describe a method to compute an using only
multiplications. How many multiplications does your algorithm use? How many does it
use to compute a100?

5. Given a list of n numbers, give an efficient algorithm to determine whether they are all
distinct.

6. Given a list of 2n distinct numbers, give an efficient algorithm to determine whether the
list can be grouped into n groups of two elements each such that the sum of the pairs in
each group is the same.

7. Give an algorithm to find the second largest element from a list of n numbers. Focus on
minimizing the number of comparisons (Hint: there is an algorithm that takes n + o(n)
comparisons).

8. Suppose I modify a given sorted list of 4n distinct numbers as follows:

Keep elements in even positions (positions 2, 4, 6, ... 4n) as they are. Form n disjoint
pairs (i, j) on the odd numbered positions where i = 2k + 1 for some k = 0 to n− 1 and
j = 2k + 1 for some k = n to 2n− 1.

Now swap elements in positions i and j for every such pair. (I.e. every element in an odd
numbered position in the first half of the array is swapped with some element in an odd
numbered position in the second half of the array. No element is involved in more than
one swap (i.e. the swaps are disjoint). You don’t know these (i, j) pairs except that an
element in an odd numbered position in the first half of the array is swapped with some
element in an odd numbered position in the second half.

Now given an element x, explain how you can determine whether or not x is in the (new
reshuffled) array in O(log n) time.


