Recall that ...

- * BFS and DFS are two systematic ways to explore a graph
 - * Both take time linear in the size of the graph with adjacency lists
- * Recover paths by keeping parent information
- BFS can compute shortest paths, in terms of number of edges
- * DFS numbering can reveal many interesting features

Shortest paths

- * Weighted graph
 - * G=(V,E) together with
 - * Weight function, w : E→Reals
- * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n
- * Cost of the path is $w(e_1) + w(e_2) + ... + w(e_n)$
- * Shortest path from v₀ to v_n: minimum cost

Adding edge weights

- * Label each edge with a number—cost
 - * Ticket price on a flight sector
 - * Tolls on highway segment
 - * Distance travelled between two stations
 - Typical time between two locations during peak hour traffic

Shortest paths ...

- * BFS finds path with fewest number of edges
- * In a weighted graph, need not be the shortest path

Shortest path problems

* Single source

- Find shortest paths from some fixed vertex, say1, to every other vertex
- * Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

This lecture...

- Single source shortest paths
- * For instance, shortest paths from 1 to 2,3,...,7

Shortest path problems

* All pairs

- * Find shortest paths between every pair of vertices i and j
- Railway routes, shortest way to travel between any pair of cities

- * Imagine vertices are oil depots, edges are pipelines
- Set fire to oil depot at vertex 1
 - * Fire travels at uniform speed along each pipeline
- * First oil depot to catch fire after 1 is nearest vertex
- Next oil depot is second nearest vertex
- *

Single source shortest paths

Single source shortest paths

Single source shortest paths

Single source shortest paths

- Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Single source shortest paths

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

Single source shortest paths

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

- Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Single source shortest paths

- * Compute expected time to burn of each vertex
- Update this each time a new vertex burns

Single source shortest paths

- * Compute expected time to burn of each vertex
- Update this each time a new vertex burns

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Single source shortest paths

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

Single source shortest paths

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

- Compute expected time to burn of each vertex
- Update this each time a new vertex burns

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Algorithmically

- * Maintain two arrays
 - BurntVertices[], initially False for all i
 - * ExpectedBurnTime[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set ExpectedBurnTime[1] = 0
- * Repeat, until all vertices are burnt
 - * Find j with minimum ExpectedBurnTime
 - * Set BurntVertices[j] = True
 - * Recompute ExpectedBurnTime[k] for each neighbour k of j

Single source shortest paths

- * Compute expected time to burn of each vertex
- * Update this each time a new vertex burns

Dijkstra's algorithm

Dijkstra's algorithm

Greedy algorithms

- * Algorithm makes a sequence of choices
- Next choice is based on "current best value"
 - * Never go back and change a choice
- * Dijkstra's algorithm is greedy
 - * Select vertex with minimum expected burn time
- * Need to prove that greedy strategy is optimal
- * Most times, greedy approach fails
 - * Current best choice may not be globally optimal

Dijkstra's algorithm

- Maintain two arrays
 - * Visited[], initially False for all i
 - * Distance[], initially ∞ for all i
 - * For ∞, use sum of all edge weights + 1
- * Set Distance[1] = 0
- * Repeat, until all vertices are burnt
 - * Find j with minimum Distance
 - * Set Visited[j] = True
 - * Recompute Distance[k] for each neighbour k of j

Correctness

- * Each new shortest path we discover extends an earlier one
- * By induction, assume we have identified shortest paths to all vertices already burnt

- * Next vertex to burn is v, via x
- * Cannot later find a shorter path from y to w to v

Dijkstra's algorithm

Complexity

- * Does adjacency list help?
 - Scan neighbours to update burn times
 - * O(m) across all iterations
- However, identifying minimum burn time vertex still takes O(n) in each iteration
- * Still O(n²)

Complexity

- * Outer loop runs n times
 - * In each iteration, we burn one vertex
 - * O(n) scan to find minimum burn time vertex
- * Each time we burn a vertex v, we have to scan all its neighbours to update burn times
 - * O(n) scan of adjacency matrix to find all neighbours
- * Overall O(n²)

Complexity

- Can maintain ExpectedBurnTime in a more sophisticated data structure
 - Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time
 - * find and delete minimum
 - * insert or update a value

Complexity

- * With such a tree
 - * Finding minimum burn time vertex takes O(log n)
 - With adjacency list, updating burn times take O(log n) each, total O(m) edges
- * Overall $O(n \log n + m \log n) = O((n+m) \log n)$

Why negative weights?

- * Weights represent money
 - * Taxi driver earns money from airport to city, travels empty to next pick-up point
 - * Some segments earn money, some lose money
- * Chemistry
 - * Nodes are compounds, edges are reactions
 - Weights are energy absorbed/released by reaction

Limitations

- * What if edge weights can be negative?
- * Our correctness argument is no longer valid

- * Next vertex to burn is v, via x
- Might find a shorter path later with negative weights from y to w to v

Handling negative edges

- * Negative cycle: loop with a negative total weight
 - Problem is not well defined with negative cycles
 - Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, other algorithms exist (will see later)
 - * Bellman-Ford
 - * Floyd-Warshall all pairs shortest path

Correctness for Dijsktra's algorithm

* By induction, assume we have identified shortest paths to all vertices already burnt

- * Next vertex to burn is v, via x
- * Cannot later find a shorter path from y to w to v

Negative weights ...

- * Negative cycle: loop with a negative total weight
 - Problem is not well defined with negative cycles
 - Repeatedly traversing cycle pushes down cost without a bound
- * With negative edges, but no negative cycles, shortest paths do exist

Negative weights

* Our correctness argument is no longer valid

- * Next vertex to burn is v, via x
- Might find a shorter path later with negative weights from y to w to v

About shortest paths

- * Shortest paths will never loop
 - * Never visit the same vertex twice
 - * At most length n-1
- * Every prefix of a shortest path is itself a shortest path
 - * Suppose the shortest path from s to t is

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$

* Every prefix $s \rightarrow v_1 \rightarrow ... \rightarrow v_r$ is a shortest path to v_r

Updating Distance()

- * When vertex j is "burnt", for each edge (j,k) update
 - Distance(k) = min(Distance(k), Distance(j)+weight(j,k))
- * Refer to this as update(j,k)
- * Dijkstra's algorithm
 - * When we compute update(j,k), Distance(j) is always guaranteed to be correct distance to j
- * What can we say in general?

Updating Distance() ...

update(j,k):
 Distance(k) = min(Distance(k), Distance(j)+weight(j,k))

- Dijkstra's algorithm performs a particular "greedy" sequence of updates
 - * Computes shortest paths without negative weights
- * With negative edges, this sequence does not work
- * Is there some sequence that does work?

Properties of update(j,k)

update(j,k):
 Distance(k) = min(Distance(k), Distance(j)+weight(j,k))

- * Distance(k) is no more than Distance(j)+weight(j,k)
- * If Distance(j) is correct and j is the second-last node on shortest path to k, Distance(k) is correct
- * Update is safe
 - * Distance(k) never becomes "too small"
 - * Redundant updates cannot hurt

Updating distance() ...

* Suppose the shortest path from s to t is

$$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$

- * If our update sequence includes ...,update(s,v₁), ...,update(v₁,v₂),...,update(v₂,v₃),...,update(v_m,t),..., in that order, Distance(t) will be computed correctly
 - * If Distance(j) is correct and j is the second-last node on shortest path to k, Distance(k) is correct after update(j,k)

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2
update(s,v ₁)	update(s,v ₁)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)
update(v2,v3)	update(v ₂ ,v ₃)
update(v _m ,t)	update(v _m ,t)

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1
update(s,v ₁)
update(v ₁ ,v ₂)
- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1
update(v ₂ ,v ₃)
apaate(v2, v3)
update(v _m ,t)

Bellman-Ford algorithm

- Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2	
update(s,v ₁)	update(s,v ₁)	
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	
update(v2,v3)	update(v2,v3)	
update(v _m ,t)	update(v _m ,t)	

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2		Iteration n-1
update(s,v ₁)	update(s,v ₁)		update(s,v ₁)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)		update(v ₁ ,v ₂)
update(v2,v3)	update(v2,v3)		update(v2,v3)
update(v _m ,t)	update(v _m ,t) update(v _m ,t)		update(v _m ,t)

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2		Iteration n-1
update(s,v ₁)	update(s,v ₁)		update(s,v ₁)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)		update(v ₁ ,v ₂)
update(v2,v3)	update(v2,v3)		update(v2,v3)
update(v _m ,t)	update(v _m ,t) update(v _m ,t)		update(v _m ,t)

Bellman-Ford algorithm

- * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2	 Iteration n-1	
update(s,v ₁)	update(s,v ₁)	 update(s,v ₁)	
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	 update(v ₁ ,v ₂)	
update(v2,v3)	update(v2,v3)	 update(v2,v3)	
update(v _m ,t)	update(v _m ,t)	 update(v _m ,t)	

Bellman-Ford algorithm

- Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices
- * Update all edges n-1 times!

Iteration 1	Iteration 2	 Iteration n-1
update(s,v ₁)	update(s,v ₁)	 update(s,v ₁)
update(v ₁ ,v ₂)	update(v ₁ ,v ₂)	 update(v ₁ ,v ₂)
update(v2,v3)	update(v2,v3)	 update(v2,v3)
update(v _m ,t) update(v _m ,t)		 update(v _m ,t)

Bellman-Ford algorithm

Example

Example

Iteration

Example

Iteration

	0	1	2	3	4	5
1	0	0	0	0	0	0
2	00	10	10	5	5	5
3	00	∞	∞	10	6	5
4	00	00	∞	∞	11	7
5	00	00	∞	∞	∞	14
6	00	00	12	8	7	7
7	00	00	9	9	9	9
8	00	8	8	8	8	8

Example

Iteration

	0	1	2	3	4	5	6	7
1	0	0	0	0	0	0	0	0
2	∞	10	10	5	5	5	5	5
3	∞	00	00	10	6	5	5	5
4	∞	00	00	∞	11	7	6	6
5	∞	∞	∞	∞	∞	14	10	9
6	00	∞	12	8	7	7	7	7
7	∞	∞	9	9	9	9	9	9
8	00	8	8	8	8	8	8	8
	2 3 4 5 6 7	1 0 2 ∞ 3 ∞ 4 ∞ 5 ∞ 6 ∞ 7 ∞	1 0 0 2 ∞ 10 3 ∞ ∞ 4 ∞ ∞ 5 ∞ ∞ 6 ∞ ∞ 7 ∞ ∞	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 0 2 ∞ 10 10 5 3 ∞ ∞ ∞ 10 4 ∞ ∞ ∞ ∞ 5 ∞ ∞ ∞ ∞ 6 ∞ ∞ 12 8 7 ∞ ∞ 9 9	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 0 0 0 0 0 0 0 0 0 0 2 ∞ 10 10 5 5 5 5 5 3 3 ∞ ∞ ∞ ∞ 10 6 5 5 4 ∞ ∞ ∞ ∞ 11 7 6 5 ∞ ∞ ∞ ∞ 12 8 7 7 7 7 ∞ ∞ ∞ 9 9 9 9 9 9

Example

Iteration

		0	1	2	3	4	5	6
	1	0	0	0	0	0	0	0
	2	00	10	10	5	5	5	5
	3	00	∞	00	10	6	5	5
25011	4	00	00	00	00	11	7	6
	5	00	∞	00	00	∞	14	10
	6	00	00	12	8	7	7	7
	7	00	∞	9	9	9	9	9
	8	00	8	8	8	8	8	8

Complexity

- * Outer loop runs n times
- * In each loop, for each edge (j,k), we run update(j,k)
 - Adjacency matrix O(n²) to identify all edges
 - * Adjacency list O(m)
- * Overall
 - * Adjacency matrix O(n³)
 - * Adjacency list O(mn)

Weighted graphs

- Negative weights are allowed, but not negative cycles
- * Shortest paths are still well defined
- Bellman-Ford algorithm computes single-source shortest paths
- * Can we compute shortest paths between all pairs of vertices?

Inductively exploring shortest paths

- Simplest shortest path from i to j is a direct edge (i,j)
- * General case:

$$i \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow i$$

- * All of {v₁,v₂,v₃...,v_m} are distinct, and different from i and j
- * Restrict what vertices can appear in this set

About shortest paths

- * Shortest paths will never loop
 - * Never visit the same vertex twice
 - * At most length n-1
- * Use this to inductively explore all possible shortest paths efficiently

Inductively exploring shortest paths ...

- * Recall that $V = \{1, 2, ..., n\}$
- * W^k(i,j): weight of shortest path from i to j among paths that only go via {1,2,...,k}
 - * {k+1,...,n} cannot appear on the path
 - * i, j themselves need not be in {1,2,...,k}
- * W⁰(i,j): direct edges
 - * {1,2,...,n} cannot appear between i and j

Inductively exploring shortest paths ...

- * From $W^{k-1}(i,j)$ to $W^{k}(i,j)$
 - * Case 1: Shortest path via {1,2,...,k} does not use vertex k
 - * $W^{k}(i,j) = W^{k-1}(i,j)$
 - * Case 2: Shortest path via {1,2,...,k} does go via k
 - * k can appear only once along this path
 - * Break up as paths i to k and k to j, each via {1,2,...,k-1}
 - * $W^{k}(i,j) = W^{k-1}(i,k) + W^{k-1}(k,j)$
- * Conclusion: $W^{k}(i,j) = min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$

Floyd-Warshall algorithm

- * Wo is adjacency matrix with edge weights
 - * W⁰[i][j] = weight(i,j) if there is an edge (i,j),
 ∞, otherwise
- * For k in 1,2,...,n
 - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$
- * Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

- * W⁰ is adjacency matrix with edge weights
 - * W⁰[i][j] = weight(i,j) if there is an edge (i,j),
 ∞, otherwise
- * For k in 1,2,...,n
 - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$
- * Wn contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

function FloydWarshall

Complexity

- * Easy to see that the complexity is O(n³)
 - * n iterations
 - * In each iteration, we update n² entries
- * A word about space complexity
 - Naive implementation is O(n³)—W[i][j][k]
 - Only need two "slices" at a time, W[i][j][k-1] and W[i][j][k]
 - * Space requirement reduces to O(n²)

Historical remarks

- * Floyd-Warshall is a hybrid name
- Warshall originally proposed an algorithm for transitive closure
 - Generating path matrix P[i][j] from adjacency matrix A[i][j]
- Floyd adapted it to compute shortest paths

Inductively computing P[i][j]

- * From $P^{k-1}(i,j)$ to $P^k(i,j)$
 - * Case 1: There is a path from i to j without using vertex k
 - * $P^{k}(i,j) = P^{k-1}(i,j)$
 - * Case 2: Path via {1,2,...,k} does go via k
 - * k can appear only once along this path
 - * Break up as paths i to k and k to j, each via {1,2,...,k-1}
 - * $P^{k}(i,j) = P^{k-1}(i,k)$ and $P^{k-1}(k,j)$
- * Conclusion: $P^{k}(i,j) = P^{k-1}(i,j)$ or $(P^{k-1}(i,k))$ and $P^{k-1}(k,j)$

Computing paths

- * A(i,j) = 1 iff there is an edge from i to j
- * Want P(i,j) = 1 iff there is a path from i to j
- Iteratively compute P^k(i,j) = 1 iff there is a path from i to j where all intermediate vertices are in {1,2,...,k}
 - * {k+1,...,n} cannot appear on the path
 - * i, j themselves need not be in {1,2,...,k}
- * $P^0(i,j) = A(i,j)$: direct edges
 - * {1,2,...,n} cannot appear between i and j

Warshall's algorithm

function Warshall

Example: Road network

- * District hit by a cyclone, damaging the roads
- * Government sets to work to restore the roads
- Priority is to ensure that all parts of the district can be reached
- * What set of roads should be restored first?

Spanning tree

- Minimum connectivity: no loops
 - Removing an edge from a loop cannot disconnect graph
- Connected acyclic graph tree
- * Spanning tree

Spanning tree

- Minimum connectivity: no loops
 - Removing an edge from a loop cannot disconnect graph
- Connected acyclic graph tree
- * Spanning tree

Spanning tree

- Minimum connectivity: no loops
 - Removing an edge from a loop cannot disconnect graph
- Connected acyclic graph tree
- * Spanning tree

Spanning tree with costs

- Restoration of each road has a cost
- Among the different spanning trees, choose the one with minimum cost
- Minimum cost spanning tree

Spanning tree with costs

Cost = 114 Cos

Cost = 44

- Restoration of each road has a cost
- Among the different spanning trees, choose the one with minimum cost
- Minimum cost spanning tree

Spanning tree with costs

Cost = 114

- Restoration of each road has a cost
- * Among the different spanning trees, choose the one with minimum cost
- Minimum cost spanning tree

Facts about trees

Definition: A tree is a connected acyclic graph

Fact 1: A tree on n vertices has exactly n-1 edges

- * Start with a tree and delete edges
- * Initially one single component
- * Deleting an edge must split a component into two
- * After n-1 edge deletions, n components, each an isolated vertex

Facts about trees

Fact 2: Adding an edge to a tree must create a cycle

- * Suppose we add an edge (i,j)
- * Tree is connected, so there is already a path p from i to j
- * New edge (i,j) plus path p creates a cycle

Facts about trees

Any two of the following facts about a graph G implies the third

- * G is connected
- * G is acyclic
- * G has n-1 edges

Facts about trees

Fact 3: In a tree, every pair of nodes is connected by a unique path

* If there are two paths from i to j, there must be a cycle

Building a minimum cost spanning trees

Two natural strategies

* Start with smallest edge and grow it into a tree

Prim's Algorithm

 Scan edges in ascending order of cost and connect components to form a tree

Kruskal's Algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Spanning tree

- * Weighted undirected graph, G = (V,E,w)
 - * Assume G is connected
- * Identify a spanning tree with minimum weight
 - * Tree connecting all vertices in V
- * Strategy 1:

return(TE)

- * Start with minimum cost edge
- * Keep extending the tree with smallest edge

Kruskal's algorithm

Prim's algorithm

Correctness

- * Prim's algorithm is a greedy algorithm
 - * Like Dijkstra's single source shortest path
- * A local heuristic is used to decide which edge to add next to the tree
- * Choices made are never reconsidered
- * Why does this sequence of local choices achieve a global optimum?

Minimum separator lemma

- * Let T be a minimum cost spanning tree, e = (u,w) not in T
- * u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - * Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - Drop f and add e to get a smaller spanning tree

Minimum separator lemma

- * Let V be partitioned into two non-empty sets U and W = V - U
- * Let e = (u,w) be minimum cost edge with u in U and w in W
 - Assume all edges have different weights (relax this condition later)
- Then every minimum cost spanning tree must include e

Minimum separator lemma

- Let T be a minimum cost spanning tree, e = (u,w) not in T
- u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - Drop f and add e to get a smaller spanning tree

Minimum separator lemma

- * Let T be a minimum cost spanning tree, e = (u,w) not in T
- u in U and w in W are connected by a path p in T
 - * p starts in U and ends in W
 - Let f = (u',w') be the first edge on p such that u' in U and w' in W
 - Drop f and add e to get a smaller spanning tree

Correctness of Prim's algorithm

- Correctness follows directly from minimum separator lemma
- At each stage, TV and (V-TV) form a non-trivial partition of V
- * The smallest edge connecting TV to (V-TV) must belong to every minimum cost spanning tree
 - * This is the edge that the algorithm picks

Minimum separator lemma

- Proof of the lemma is slightly subtle
- Not enough to replace any edge from U to W by e = (u,v)
- Need to identify such an edge on the path from u to v

Further observations

- * Need not start with smallest edge overall
 - * For any vertex v, smallest edge attached to v must be in the minimum cost spanning tree
 - * Consider the partition {v}, V-{v}
 - Can start with any such edge

Prim's algorithm revisited

- * Start with TV = {s} for any vertex s
- * For each vertex v outside TV, maintain
 - * Distance_TV(v), smallest edge weight from v to TV
 - * Neighbour_TV(v), nearest neighbour of v in TV
- At each stage, add to TV ("burn") vertex u with smallest Distance_TV(u)
 - * Update Distance_TV(v), Neighbour_TV(v) for each neighbour of u
- * Very similar to Dijkstra's algorithm!

Prim's algorithm

Prim's algorithm, refined

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm

Prim's algorithm (6,2) 18 3 6 (20,2) 10 6 10 7

Prim's algorithm

Complexity

- * Similar to Dijkstra's algorithm
- * Outer loop runs n times
 - * In each iteration, we add one vertex to the tree
 - * O(n) scan to find nearest vertex to add
- * Each time we add a vertex v, we have to scan all its neighbours to update distances
 - * O(n) scan of adjacency matrix to find all neighbours
- * Overall O(n²)

Prim's algorithm

Complexity

- Moving from adjacency matrix to adjacency list
 - * Across n iterations, O(m) to update neighbours
- Maintain distance information in a heap
 - Finding minimum and updating is O(log n)
- * Overall $O(n \log n + m \log n) = O((m+n) \log n)$

Minimum separator lemma

- * We assumed edge weights are distinct
- * Duplicate edge weights?
 - * Fix an overall ordering {1,2,...,m} of edges
 - * Edge e = ((u,v),i) is smaller than f = ((u',v'),j) if
 - * weight(e) < weight(f)</pre>
 - * weight(e) = weight(f) and i < j</pre>

Spanning tree

- * Weighted undirected graph, G = (V,E,w)
 - * Assume G is connected
- * Identify a spanning tree with minimum weight
 - * Tree connecting all vertices in V
- * Strategy 2:
 - * Order edges in ascending order by weight
 - * Keep adding edges to combine components

Multiple spanning trees

- * If edge weights repeat, the minimum cost spanning tree is not unique
 - * "Choose u such that Dist_TV(u) is minimum"
- * Different choices generate different trees
 - * Different ways of ordering edges {1,2,...,m}
- * In general, number of possible minimum cost spanning trees is exponential
 - * Greedy algorithm efficiently picks out one of them

Kruskal's algorithm

algorithm Kruskal_V1

```
Let E = [e_1, e_2, ..., e_m] be edges sorted by weight
```

```
TE = [] // List of edges added so far
i = 1 // Index of edge to try next
```

```
while TE.length() < n-1 //n-1 edges form a tree
  if adding E[i] to TE does not form a cycle
    TE.append(E[i])
    i = i+1</pre>
```


Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Kruskal's algorithm

Correctness

- * Kruskal's algorithm is also a greedy algorithm
- * We fix in advance that edges will be added in ascending order of weight
- * Why does this achieve a global optimum?

Minimum separator lemma

- * Let V be partitioned into two non-empty sets U and W = V - U
- * Let e = (u,w) be minimum cost edge with u in U and w in W
 - * Assume all edges have different weights
- Then every minimum cost spanning tree must include e

Correctness of Kruskal's algorithm ...

- * Suppose $e_j = (u,v)$ with u and v in disjoint components
 - * Let U = Component(u), W = V Component(u)
 - No smaller weight edge in [e₁,e₂,...,e_{j-1}] connects U and W
 - * By minimum separator lemma, e_j must be in the minimum cost spanning tree

Correctness of Kruskal's algorithm ...

- * Unlike Prim's algorithm, at intermediate stages TE is not a tree
- Edges in TE partition vertices into connected components
 - * Initially, each vertex is a separate component
 - * Adding e = (u,v) merges components of u and v
 - * If u and v are already in same component, e forms a cycle, hence discarded

Kruskal's algorithm revisited

- * To check if e = (u,v) forms a cycle, keep track of components
- * Initially, Component[i] = i for each vertex i
- * e = (u,v) can be added if Component[u] is different from Component[v]
 - * Merge the two components

Kruskal's algorithm, refined

```
algorithm Kruskal
Let E = [e_1, e_2, ..., e_m] be edges sorted by weight
                     //Initially, each vertex is isolated
for j in 1 to n
  Component[j] = j //Component names are 1..n
TE = \Gamma
                     //List of edges added so far
i = 1
                     //Index of edge to try next
while TE.length() < n-1 //n-1 edges form a tree
  Let E[i] = (u, v)
  if Component[u] != Component[v] //E[i] does not form cycle
    TE.append(E[i])
    for j in 1 to n //Merge Component[v] into Component[u]
      if Component[j] == Component[v]
        Component[i] = Component[u]
```

Complexity

- * Initially, sort edges, O(m log m)
 - * m is at most n², so this is also O(m log n)
- * Outer loop runs upto m times
 - * In each iteration, we examine one edge
 - * If we add the edge, we have to merge components
 - * O(n) scan to update components
 - * This is done once for each tree edge—O(n) times
- * Overall O(n²)

Bottleneck

- Naive strategy for labelling and merging components is inefficient
- * Components form a partition of the vertex set V
- Union-find data structure implements the following operations efficiently
 - * find(v)—find the component containing v
 - * union(u,v) merge the components of u and v
- * This will bring down the complexity to O(m log n)