Recall that ... - * BFS and DFS are two systematic ways to explore a graph - * Both take time linear in the size of the graph with adjacency lists - * Recover paths by keeping parent information - BFS can compute shortest paths, in terms of number of edges - * DFS numbering can reveal many interesting features #### Shortest paths - * Weighted graph - * G=(V,E) together with - * Weight function, w : E→Reals - * Let $e_1=(v_0,v_1)$, $e_2=(v_1,v_2)$, ..., $e_n=(v_{n-1},v_n)$ be a path from v_0 to v_n - * Cost of the path is $w(e_1) + w(e_2) + ... + w(e_n)$ - * Shortest path from v₀ to v_n: minimum cost #### Adding edge weights - * Label each edge with a number—cost - * Ticket price on a flight sector - * Tolls on highway segment - * Distance travelled between two stations - Typical time between two locations during peak hour traffic #### Shortest paths ... - * BFS finds path with fewest number of edges - * In a weighted graph, need not be the shortest path #### Shortest path problems #### * Single source - Find shortest paths from some fixed vertex, say1, to every other vertex - * Transport finished product from factory (single source) to all retail outlets - Courier company delivers items from distribution centre (single source) to addressees #### This lecture... - Single source shortest paths - * For instance, shortest paths from 1 to 2,3,...,7 #### Shortest path problems #### * All pairs - * Find shortest paths between every pair of vertices i and j - Railway routes, shortest way to travel between any pair of cities - * Imagine vertices are oil depots, edges are pipelines - Set fire to oil depot at vertex 1 - * Fire travels at uniform speed along each pipeline - * First oil depot to catch fire after 1 is nearest vertex - Next oil depot is second nearest vertex - * #### Single source shortest paths - Compute expected time to burn of each vertex - * Update this each time a new vertex burns #### Single source shortest paths - Compute expected time to burn of each vertex - Update this each time a new vertex burns #### Single source shortest paths - * Compute expected time to burn of each vertex - * Update this each time a new vertex burns - Compute expected time to burn of each vertex - Update this each time a new vertex burns - Compute expected time to burn of each vertex - * Update this each time a new vertex burns #### Single source shortest paths - * Compute expected time to burn of each vertex - Update this each time a new vertex burns #### Single source shortest paths - * Compute expected time to burn of each vertex - Update this each time a new vertex burns - Compute expected time to burn of each vertex - Update this each time a new vertex burns - * Compute expected time to burn of each vertex - * Update this each time a new vertex burns #### Single source shortest paths - Compute expected time to burn of each vertex - Update this each time a new vertex burns #### Single source shortest paths - * Compute expected time to burn of each vertex - * Update this each time a new vertex burns - Compute expected time to burn of each vertex - Update this each time a new vertex burns - * Compute expected time to burn of each vertex - * Update this each time a new vertex burns #### Algorithmically - * Maintain two arrays - BurntVertices[], initially False for all i - * ExpectedBurnTime[], initially ∞ for all i - * For ∞, use sum of all edge weights + 1 - * Set ExpectedBurnTime[1] = 0 - * Repeat, until all vertices are burnt - * Find j with minimum ExpectedBurnTime - * Set BurntVertices[j] = True - * Recompute ExpectedBurnTime[k] for each neighbour k of j #### Single source shortest paths - * Compute expected time to burn of each vertex - * Update this each time a new vertex burns #### Dijkstra's algorithm #### Dijkstra's algorithm #### Greedy algorithms - * Algorithm makes a sequence of choices - Next choice is based on "current best value" - * Never go back and change a choice - * Dijkstra's algorithm is greedy - * Select vertex with minimum expected burn time - * Need to prove that greedy strategy is optimal - * Most times, greedy approach fails - * Current best choice may not be globally optimal #### Dijkstra's algorithm - Maintain two arrays - * Visited[], initially False for all i - * Distance[], initially ∞ for all i - * For ∞, use sum of all edge weights + 1 - * Set Distance[1] = 0 - * Repeat, until all vertices are burnt - * Find j with minimum Distance - * Set Visited[j] = True - * Recompute Distance[k] for each neighbour k of j #### Correctness - * Each new shortest path we discover extends an earlier one - * By induction, assume we have identified shortest paths to all vertices already burnt - * Next vertex to burn is v, via x - * Cannot later find a shorter path from y to w to v #### Dijkstra's algorithm #### Complexity - * Does adjacency list help? - Scan neighbours to update burn times - * O(m) across all iterations - However, identifying minimum burn time vertex still takes O(n) in each iteration - * Still O(n²) #### Complexity - * Outer loop runs n times - * In each iteration, we burn one vertex - * O(n) scan to find minimum burn time vertex - * Each time we burn a vertex v, we have to scan all its neighbours to update burn times - * O(n) scan of adjacency matrix to find all neighbours - * Overall O(n²) #### Complexity - Can maintain ExpectedBurnTime in a more sophisticated data structure - Different types of trees (heaps, red-black trees) allow both of the following in O(log n) time - * find and delete minimum - * insert or update a value #### Complexity - * With such a tree - * Finding minimum burn time vertex takes O(log n) - With adjacency list, updating burn times take O(log n) each, total O(m) edges - * Overall $O(n \log n + m \log n) = O((n+m) \log n)$ #### Why negative weights? - * Weights represent money - * Taxi driver earns money from airport to city, travels empty to next pick-up point - * Some segments earn money, some lose money - * Chemistry - * Nodes are compounds, edges are reactions - Weights are energy absorbed/released by reaction #### Limitations - * What if edge weights can be negative? - * Our correctness argument is no longer valid - * Next vertex to burn is v, via x - Might find a shorter path later with negative weights from y to w to v #### Handling negative edges - * Negative cycle: loop with a negative total weight - Problem is not well defined with negative cycles - Repeatedly traversing cycle pushes down cost without a bound - * With negative edges, but no negative cycles, other algorithms exist (will see later) - * Bellman-Ford - * Floyd-Warshall all pairs shortest path # Correctness for Dijsktra's algorithm * By induction, assume we have identified shortest paths to all vertices already burnt - * Next vertex to burn is v, via x - * Cannot later find a shorter path from y to w to v #### Negative weights ... - * Negative cycle: loop with a negative total weight - Problem is not well defined with negative cycles - Repeatedly traversing cycle pushes down cost without a bound - * With negative edges, but no negative cycles, shortest paths do exist #### Negative weights * Our correctness argument is no longer valid - * Next vertex to burn is v, via x - Might find a shorter path later with negative weights from y to w to v #### About shortest paths - * Shortest paths will never loop - * Never visit the same vertex twice - * At most length n-1 - * Every prefix of a shortest path is itself a shortest path - * Suppose the shortest path from s to t is $$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$ * Every prefix $s \rightarrow v_1 \rightarrow ... \rightarrow v_r$ is a shortest path to v_r #### Updating Distance() - * When vertex j is "burnt", for each edge (j,k) update - Distance(k) = min(Distance(k), Distance(j)+weight(j,k)) - * Refer to this as update(j,k) - * Dijkstra's algorithm - * When we compute update(j,k), Distance(j) is always guaranteed to be correct distance to j - * What can we say in general? #### Updating Distance() ... update(j,k): Distance(k) = min(Distance(k), Distance(j)+weight(j,k)) - Dijkstra's algorithm performs a particular "greedy" sequence of updates - * Computes shortest paths without negative weights - * With negative edges, this sequence does not work - * Is there some sequence that does work? #### Properties of update(j,k) update(j,k): Distance(k) = min(Distance(k), Distance(j)+weight(j,k)) - * Distance(k) is no more than Distance(j)+weight(j,k) - * If Distance(j) is correct and j is the second-last node on shortest path to k, Distance(k) is correct - * Update is safe - * Distance(k) never becomes "too small" - * Redundant updates cannot hurt #### Updating distance() ... * Suppose the shortest path from s to t is $$s \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow t$$ - * If our update sequence includes ...,update(s,v₁), ...,update(v₁,v₂),...,update(v₂,v₃),...,update(v_m,t),..., in that order, Distance(t) will be computed correctly - * If Distance(j) is correct and j is the second-last node on shortest path to k, Distance(k) is correct after update(j,k) #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 | |---|---| | | | | update(s,v ₁) | update(s,v ₁) | | | | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) | | | | | update(v2,v3) | update(v ₂ ,v ₃) | | | | | update(v _m ,t) | update(v _m ,t) | | | | #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | |---| | | | update(s,v ₁) | | | | update(v ₁ ,v ₂) | | - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 | | update(v ₂ ,v ₃) | | apaate(v2, v3) | | | | update(v _m ,t) | | | #### Bellman-Ford algorithm - Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 | | |---|---|--| | | | | | update(s,v ₁) | update(s,v ₁) | | | | | | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) | | | | | | | update(v2,v3) | update(v2,v3) | | | | | | | update(v _m ,t) | update(v _m ,t) | | | | | | #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 | | Iteration n-1 | |---|---|--|---| | | | | | | update(s,v ₁) | update(s,v ₁) | | update(s,v ₁) | | | | | | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) | | update(v ₁ ,v ₂) | | | | | | | update(v2,v3) | update(v2,v3) | | update(v2,v3) | | | | | | | update(v _m ,t) | update(v _m ,t) update(v _m ,t) | | update(v _m ,t) | | | | | | #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 | | Iteration n-1 | |---|---|--|---| | | | | | | update(s,v ₁) | update(s,v ₁) | | update(s,v ₁) | | | | | | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) | | update(v ₁ ,v ₂) | | | | | | | update(v2,v3) | update(v2,v3) | | update(v2,v3) | | | | | | | update(v _m ,t) | update(v _m ,t) update(v _m ,t) | | update(v _m ,t) | | | | | | #### Bellman-Ford algorithm - * Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 |
Iteration n-1 | | |---|---|---|--| | | |
 | | | update(s,v ₁) | update(s,v ₁) |
update(s,v ₁) | | | | |
 | | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) |
update(v ₁ ,v ₂) | | | | |
 | | | update(v2,v3) | update(v2,v3) |
update(v2,v3) | | | | |
 | | | update(v _m ,t) | update(v _m ,t) |
update(v _m ,t) | | | | |
 | | #### Bellman-Ford algorithm - Initialize Distance(s) = 0, Distance(u) = ∞ for all other vertices - * Update all edges n-1 times! | Iteration 1 | Iteration 2 |
Iteration n-1 | |---|---|---| | | |
 | | update(s,v ₁) | update(s,v ₁) |
update(s,v ₁) | | | |
 | | update(v ₁ ,v ₂) | update(v ₁ ,v ₂) |
update(v ₁ ,v ₂) | | | |
 | | update(v2,v3) | update(v2,v3) |
update(v2,v3) | | | |
 | | update(v _m ,t) update(v _m ,t) | |
update(v _m ,t) | | | |
 | #### Bellman-Ford algorithm #### Example #### Example #### Iteration ## #### Example #### **Iteration** | | 0 | 1 | 2 | 3 | 4 | 5 | |---|----|----|----|----|----|----| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | 00 | 10 | 10 | 5 | 5 | 5 | | 3 | 00 | ∞ | ∞ | 10 | 6 | 5 | | 4 | 00 | 00 | ∞ | ∞ | 11 | 7 | | 5 | 00 | 00 | ∞ | ∞ | ∞ | 14 | | 6 | 00 | 00 | 12 | 8 | 7 | 7 | | 7 | 00 | 00 | 9 | 9 | 9 | 9 | | 8 | 00 | 8 | 8 | 8 | 8 | 8 | #### Example #### Iteration | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |---|----------------------------|---|--|--|---|--|--|--| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 2 | ∞ | 10 | 10 | 5 | 5 | 5 | 5 | 5 | | 3 | ∞ | 00 | 00 | 10 | 6 | 5 | 5 | 5 | | 4 | ∞ | 00 | 00 | ∞ | 11 | 7 | 6 | 6 | | 5 | ∞ | ∞ | ∞ | ∞ | ∞ | 14 | 10 | 9 | | 6 | 00 | ∞ | 12 | 8 | 7 | 7 | 7 | 7 | | 7 | ∞ | ∞ | 9 | 9 | 9 | 9 | 9 | 9 | | 8 | 00 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | | | 2
3
4
5
6
7 | 1 0
2 ∞
3 ∞
4 ∞
5 ∞
6 ∞
7 ∞ | 1 0 0
2 ∞ 10
3 ∞ ∞
4 ∞ ∞
5 ∞ ∞
6 ∞ ∞
7 ∞ ∞ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0 0 0 0 0
2 ∞ 10 10 5
3 ∞ ∞ ∞ 10
4 ∞ ∞ ∞ ∞
5 ∞ ∞ ∞ ∞
6 ∞ ∞ 12 8
7 ∞ ∞ 9 9 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 1 0 0 0 0 0 0 0 0 0 0 2 ∞ 10 10 5 5 5 5 5 3 3 ∞ ∞ ∞ ∞ 10 6 5 5 4 ∞ ∞ ∞ ∞ 11 7 6 5 ∞ ∞ ∞ ∞ 12 8 7 7 7 7 ∞ ∞ ∞ 9 9 9 9 9 9 | #### Example #### Iteration | | | 0 | 1 | 2 | 3 | 4 | 5 | 6 | |-------|---|----|----|----|----|----|----|----| | | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | | 2 | 00 | 10 | 10 | 5 | 5 | 5 | 5 | | | 3 | 00 | ∞ | 00 | 10 | 6 | 5 | 5 | | 25011 | 4 | 00 | 00 | 00 | 00 | 11 | 7 | 6 | | | 5 | 00 | ∞ | 00 | 00 | ∞ | 14 | 10 | | | 6 | 00 | 00 | 12 | 8 | 7 | 7 | 7 | | | 7 | 00 | ∞ | 9 | 9 | 9 | 9 | 9 | | | 8 | 00 | 8 | 8 | 8 | 8 | 8 | 8 | #### Complexity - * Outer loop runs n times - * In each loop, for each edge (j,k), we run update(j,k) - Adjacency matrix O(n²) to identify all edges - * Adjacency list O(m) - * Overall - * Adjacency matrix O(n³) - * Adjacency list O(mn) ## Weighted graphs - Negative weights are allowed, but not negative cycles - * Shortest paths are still well defined - Bellman-Ford algorithm computes single-source shortest paths - * Can we compute shortest paths between all pairs of vertices? # Inductively exploring shortest paths - Simplest shortest path from i to j is a direct edge (i,j) - * General case: $$i \rightarrow v_1 \rightarrow v_2 \rightarrow v_3 \dots \rightarrow v_m \rightarrow i$$ - * All of {v₁,v₂,v₃...,v_m} are distinct, and different from i and j - * Restrict what vertices can appear in this set ## About shortest paths - * Shortest paths will never loop - * Never visit the same vertex twice - * At most length n-1 - * Use this to inductively explore all possible shortest paths efficiently # Inductively exploring shortest paths ... - * Recall that $V = \{1, 2, ..., n\}$ - * W^k(i,j): weight of shortest path from i to j among paths that only go via {1,2,...,k} - * {k+1,...,n} cannot appear on the path - * i, j themselves need not be in {1,2,...,k} - * W⁰(i,j): direct edges - * {1,2,...,n} cannot appear between i and j # Inductively exploring shortest paths ... - * From $W^{k-1}(i,j)$ to $W^{k}(i,j)$ - * Case 1: Shortest path via {1,2,...,k} does not use vertex k - * $W^{k}(i,j) = W^{k-1}(i,j)$ - * Case 2: Shortest path via {1,2,...,k} does go via k - * k can appear only once along this path - * Break up as paths i to k and k to j, each via {1,2,...,k-1} - * $W^{k}(i,j) = W^{k-1}(i,k) + W^{k-1}(k,j)$ - * Conclusion: $W^{k}(i,j) = min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$ #### Floyd-Warshall algorithm - * Wo is adjacency matrix with edge weights - * W⁰[i][j] = weight(i,j) if there is an edge (i,j), ∞, otherwise - * For k in 1,2,...,n - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$ - * Wn contains weights of shortest paths for all pairs #### Floyd-Warshall algorithm - * W⁰ is adjacency matrix with edge weights - * W⁰[i][j] = weight(i,j) if there is an edge (i,j), ∞, otherwise - * For k in 1,2,...,n - * Compute $W^{k}(i,j)$ from $W^{k-1}(i,j)$ using $W^{k}(i,j) = \min(W^{k-1}(i,j), W^{k-1}(i,k) + W^{k-1}(k,j))$ - * Wn contains weights of shortest paths for all pairs #### Floyd-Warshall algorithm function FloydWarshall #### Complexity - * Easy to see that the complexity is O(n³) - * n iterations - * In each iteration, we update n² entries - * A word about space complexity - Naive implementation is O(n³)—W[i][j][k] - Only need two "slices" at a time, W[i][j][k-1] and W[i][j][k] - * Space requirement reduces to O(n²) #### Historical remarks - * Floyd-Warshall is a hybrid name - Warshall originally proposed an algorithm for transitive closure - Generating path matrix P[i][j] from adjacency matrix A[i][j] - Floyd adapted it to compute shortest paths ## Inductively computing P[i][j] - * From $P^{k-1}(i,j)$ to $P^k(i,j)$ - * Case 1: There is a path from i to j without using vertex k - * $P^{k}(i,j) = P^{k-1}(i,j)$ - * Case 2: Path via {1,2,...,k} does go via k - * k can appear only once along this path - * Break up as paths i to k and k to j, each via {1,2,...,k-1} - * $P^{k}(i,j) = P^{k-1}(i,k)$ and $P^{k-1}(k,j)$ - * Conclusion: $P^{k}(i,j) = P^{k-1}(i,j)$ or $(P^{k-1}(i,k))$ and $P^{k-1}(k,j)$ #### Computing paths - * A(i,j) = 1 iff there is an edge from i to j - * Want P(i,j) = 1 iff there is a path from i to j - Iteratively compute P^k(i,j) = 1 iff there is a path from i to j where all intermediate vertices are in {1,2,...,k} - * {k+1,...,n} cannot appear on the path - * i, j themselves need not be in {1,2,...,k} - * $P^0(i,j) = A(i,j)$: direct edges - * {1,2,...,n} cannot appear between i and j #### Warshall's algorithm function Warshall #### Example: Road network - * District hit by a cyclone, damaging the roads - * Government sets to work to restore the roads - Priority is to ensure that all parts of the district can be reached - * What set of roads should be restored first? #### Spanning tree - Minimum connectivity: no loops - Removing an edge from a loop cannot disconnect graph - Connected acyclic graph tree - * Spanning tree #### Spanning tree - Minimum connectivity: no loops - Removing an edge from a loop cannot disconnect graph - Connected acyclic graph tree - * Spanning tree #### Spanning tree - Minimum connectivity: no loops - Removing an edge from a loop cannot disconnect graph - Connected acyclic graph tree - * Spanning tree #### Spanning tree with costs - Restoration of each road has a cost - Among the different spanning trees, choose the one with minimum cost - Minimum cost spanning tree #### Spanning tree with costs Cost = 114 Cos Cost = 44 - Restoration of each road has a cost - Among the different spanning trees, choose the one with minimum cost - Minimum cost spanning tree #### Spanning tree with costs Cost = 114 - Restoration of each road has a cost - * Among the different spanning trees, choose the one with minimum cost - Minimum cost spanning tree #### Facts about trees Definition: A tree is a connected acyclic graph Fact 1: A tree on n vertices has exactly n-1 edges - * Start with a tree and delete edges - * Initially one single component - * Deleting an edge must split a component into two - * After n-1 edge deletions, n components, each an isolated vertex #### Facts about trees Fact 2: Adding an edge to a tree must create a cycle - * Suppose we add an edge (i,j) - * Tree is connected, so there is already a path p from i to j - * New edge (i,j) plus path p creates a cycle #### Facts about trees Any two of the following facts about a graph G implies the third - * G is connected - * G is acyclic - * G has n-1 edges #### Facts about trees Fact 3: In a tree, every pair of nodes is connected by a unique path * If there are two paths from i to j, there must be a cycle # Building a minimum cost spanning trees #### Two natural strategies * Start with smallest edge and grow it into a tree #### Prim's Algorithm Scan edges in ascending order of cost and connect components to form a tree Kruskal's Algorithm ## Prim's algorithm #### Prim's algorithm #### Prim's algorithm #### Prim's algorithm ## Prim's algorithm #### Kruskal's algorithm #### Kruskal's algorithm #### Kruskal's algorithm #### Spanning tree - * Weighted undirected graph, G = (V,E,w) - * Assume G is connected - * Identify a spanning tree with minimum weight - * Tree connecting all vertices in V - * Strategy 1: return(TE) - * Start with minimum cost edge - * Keep extending the tree with smallest edge #### Kruskal's algorithm #### Prim's algorithm #### Correctness - * Prim's algorithm is a greedy algorithm - * Like Dijkstra's single source shortest path - * A local heuristic is used to decide which edge to add next to the tree - * Choices made are never reconsidered - * Why does this sequence of local choices achieve a global optimum? #### Minimum separator lemma - * Let T be a minimum cost spanning tree, e = (u,w) not in T - * u in U and w in W are connected by a path p in T - * p starts in U and ends in W - * Let f = (u',w') be the first edge on p such that u' in U and w' in W - Drop f and add e to get a smaller spanning tree #### Minimum separator lemma - * Let V be partitioned into two non-empty sets U and W = V - U - * Let e = (u,w) be minimum cost edge with u in U and w in W - Assume all edges have different weights (relax this condition later) - Then every minimum cost spanning tree must include e #### Minimum separator lemma - Let T be a minimum cost spanning tree, e = (u,w) not in T - u in U and w in W are connected by a path p in T - * p starts in U and ends in W - Let f = (u',w') be the first edge on p such that u' in U and w' in W - Drop f and add e to get a smaller spanning tree #### Minimum separator lemma - * Let T be a minimum cost spanning tree, e = (u,w) not in T - u in U and w in W are connected by a path p in T - * p starts in U and ends in W - Let f = (u',w') be the first edge on p such that u' in U and w' in W - Drop f and add e to get a smaller spanning tree # Correctness of Prim's algorithm - Correctness follows directly from minimum separator lemma - At each stage, TV and (V-TV) form a non-trivial partition of V - * The smallest edge connecting TV to (V-TV) must belong to every minimum cost spanning tree - * This is the edge that the algorithm picks #### Minimum separator lemma - Proof of the lemma is slightly subtle - Not enough to replace any edge from U to W by e = (u,v) - Need to identify such an edge on the path from u to v #### Further observations - * Need not start with smallest edge overall - * For any vertex v, smallest edge attached to v must be in the minimum cost spanning tree - * Consider the partition {v}, V-{v} - Can start with any such edge #### Prim's algorithm revisited - * Start with TV = {s} for any vertex s - * For each vertex v outside TV, maintain - * Distance_TV(v), smallest edge weight from v to TV - * Neighbour_TV(v), nearest neighbour of v in TV - At each stage, add to TV ("burn") vertex u with smallest Distance_TV(u) - * Update Distance_TV(v), Neighbour_TV(v) for each neighbour of u - * Very similar to Dijkstra's algorithm! #### Prim's algorithm #### Prim's algorithm, refined #### Prim's algorithm ## Prim's algorithm #### Prim's algorithm #### Prim's algorithm #### Prim's algorithm # Prim's algorithm (6,2) 18 3 6 (20,2) 10 6 10 7 #### Prim's algorithm #### Complexity - * Similar to Dijkstra's algorithm - * Outer loop runs n times - * In each iteration, we add one vertex to the tree - * O(n) scan to find nearest vertex to add - * Each time we add a vertex v, we have to scan all its neighbours to update distances - * O(n) scan of adjacency matrix to find all neighbours - * Overall O(n²) #### Prim's algorithm #### Complexity - Moving from adjacency matrix to adjacency list - * Across n iterations, O(m) to update neighbours - Maintain distance information in a heap - Finding minimum and updating is O(log n) - * Overall $O(n \log n + m \log n) = O((m+n) \log n)$ #### Minimum separator lemma - * We assumed edge weights are distinct - * Duplicate edge weights? - * Fix an overall ordering {1,2,...,m} of edges - * Edge e = ((u,v),i) is smaller than f = ((u',v'),j) if - * weight(e) < weight(f)</pre> - * weight(e) = weight(f) and i < j</pre> #### Spanning tree - * Weighted undirected graph, G = (V,E,w) - * Assume G is connected - * Identify a spanning tree with minimum weight - * Tree connecting all vertices in V - * Strategy 2: - * Order edges in ascending order by weight - * Keep adding edges to combine components #### Multiple spanning trees - * If edge weights repeat, the minimum cost spanning tree is not unique - * "Choose u such that Dist_TV(u) is minimum" - * Different choices generate different trees - * Different ways of ordering edges {1,2,...,m} - * In general, number of possible minimum cost spanning trees is exponential - * Greedy algorithm efficiently picks out one of them #### Kruskal's algorithm algorithm Kruskal_V1 ``` Let E = [e_1, e_2, ..., e_m] be edges sorted by weight ``` ``` TE = [] // List of edges added so far i = 1 // Index of edge to try next ``` ``` while TE.length() < n-1 //n-1 edges form a tree if adding E[i] to TE does not form a cycle TE.append(E[i]) i = i+1</pre> ``` #### Kruskal's algorithm Correctness - * Kruskal's algorithm is also a greedy algorithm - * We fix in advance that edges will be added in ascending order of weight - * Why does this achieve a global optimum? #### Minimum separator lemma - * Let V be partitioned into two non-empty sets U and W = V - U - * Let e = (u,w) be minimum cost edge with u in U and w in W - * Assume all edges have different weights - Then every minimum cost spanning tree must include e # Correctness of Kruskal's algorithm ... - * Suppose $e_j = (u,v)$ with u and v in disjoint components - * Let U = Component(u), W = V Component(u) - No smaller weight edge in [e₁,e₂,...,e_{j-1}] connects U and W - * By minimum separator lemma, e_j must be in the minimum cost spanning tree # Correctness of Kruskal's algorithm ... - * Unlike Prim's algorithm, at intermediate stages TE is not a tree - Edges in TE partition vertices into connected components - * Initially, each vertex is a separate component - * Adding e = (u,v) merges components of u and v - * If u and v are already in same component, e forms a cycle, hence discarded ## Kruskal's algorithm revisited - * To check if e = (u,v) forms a cycle, keep track of components - * Initially, Component[i] = i for each vertex i - * e = (u,v) can be added if Component[u] is different from Component[v] - * Merge the two components #### Kruskal's algorithm, refined ``` algorithm Kruskal Let E = [e_1, e_2, ..., e_m] be edges sorted by weight //Initially, each vertex is isolated for j in 1 to n Component[j] = j //Component names are 1..n TE = \Gamma //List of edges added so far i = 1 //Index of edge to try next while TE.length() < n-1 //n-1 edges form a tree Let E[i] = (u, v) if Component[u] != Component[v] //E[i] does not form cycle TE.append(E[i]) for j in 1 to n //Merge Component[v] into Component[u] if Component[j] == Component[v] Component[i] = Component[u] ``` ## Complexity - * Initially, sort edges, O(m log m) - * m is at most n², so this is also O(m log n) - * Outer loop runs upto m times - * In each iteration, we examine one edge - * If we add the edge, we have to merge components - * O(n) scan to update components - * This is done once for each tree edge—O(n) times - * Overall O(n²) #### Bottleneck - Naive strategy for labelling and merging components is inefficient - * Components form a partition of the vertex set V - Union-find data structure implements the following operations efficiently - * find(v)—find the component containing v - * union(u,v) merge the components of u and v - * This will bring down the complexity to O(m log n)