Recall that ... Shortest paths

* BFS and DFS are two systematic ways to explore a

graph * Weighted graph

* Both take time linear in the size of the graph with * G=(VE) together with

adjacency lists * Weight function, w : E—Reals

* Recover paths by keeping parent information * Let e1=(Vo,v1), @ = (V1,V2), ..., €n = (Vn1,vn) be a path

* BFS can compute shortest paths, in terms of from vo to va

number of edges * Cost of the path is w(e1) + w(e2) + ... + w(en)

* DFS numbering can reveal many interesting features * Shortest path from vo to vy : minimum cost

Adding edge weights Shortest paths ...

* BFS finds path with fewest number of edges
* |Label each edge with a number—cost

: ; _ * |In a weighted graph, need not be the shortest path
* Ticket price on a flight sector

* Tolls on highway segment
80

* Distance travelled between two stations

2 s 2 =
* Typical time between two locations during peak 10 20
hour traffic 10 5

Shortest path problems

* Single source

* Find shortest paths from some fixed vertex, say
1, to every other vertex

* Transport finished product from factory (single
source) to all retail outlets

* Courier company delivers items from
distribution centre (single source) to addressees

This lecture...

* Single source shortest paths

* For instance, shortest paths from 1 to 2,3,...,7

Shortest path problems

* All pairs

* Find shortest paths between every pair of
vertices i and j

* Railway routes, shortest way to travel between
any pair of cities

Single source shortest paths

* Imagine vertices are oil depots, edges are pipelines
* Set fire to oil depot at vertex 1

* Fire travels at uniform speed along each pipeline

*

First oil depot to catch fire after 1 is nearest vertex

*

Next oil depot is second nearest vertex

Single source shortest paths

Single source shortest paths

Single source shortest paths
t=16

M(

Single source shortest paths

t=16

W

80 6

- @ t=30

T
5 6
10 5

1
t=0

10

(s

—~
Il

—
(=}

Single source shortest paths

Single source shortest paths
t=16

%

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
86

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns
86

30 45
e
20
3 10 /5Q
%30

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Algorithmically

* Maintain two arrays
* BurntVertices[], initially False for all i
* ExpectedBurnTime[], initially « for all i
* For «, use sum of all edge weights + 1

* Set ExpectedBurnTime[1] = @

* Repeat, until all vertices are burnt
* Find j with minimum ExpectedBurnTime
* Set BurntVertices[j] = True

* Recompute ExpectedBurnTime[k] for each neighbour k of j

Single source shortest paths

* Compute expected time to burn of each vertex

* Update this each time a new vertex burns

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for 1 = 1| 1o n

BVI1i] = False; EBT[i] = infinity
EBfls] — 0

for © — | to h
Choose u such that BV[u] == False
and EBT[u] is minimum
BV[u] = True
for each edge (u,v) with BV[v] == False
if EBT[v] > EBT[u] + weight(u,v)
EBT[v] = EBT[u] + weight(u,Vv)

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for 1 = 1 to 1
Visited[i] = False; Distance[i] = infinity

Distance[s] = @

for ¢+ = L to R
Choose u such that Visited[u] == False
and Distance[u] is minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
i1f Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distancel[u] + weight(u,v)

Greedy algorithms

* Algorithm makes a sequence of choices

Next choice is based on “current best value”

*

* Never go back and change a choice

*

Dijkstra’s algorithm is greedy

* Select vertex with minimum expected burn time

*

Need to prove that greedy strategy is optimal

*

Most times, greedy approach fails

* Current best choice may not be globally optimal

Dijkstra’s algorithm

* Maintain two arrays
* Visited[], initially False for all i
* Distance[], initially o for all i
* For «, use sum of all edge weights + 1

* Set Distance[1] = @

* Repeat, until all vertices are burnt
* Find j with minimum Distance
* Set Visited[j] = True

* Recompute Distance[k] for each neighbour k of j

Correctness

* Each new shortest path we discover extends an
earlier one

* By induction, assume we have identified shortest
paths to all vertices already burnt

Burnt vertices

© ©

* Next vertex to burn is v, via x

* Cannot later find a shorter path fromytow to v

Dijkstra’s algorithm

function ShortestPaths(s){ // assume source is s
for i = 1 ko n
Visited[i] = False; Distance[i] = infinity

Distance[s] = @

for ¢+ = L to R
Choose u such that Visited[u] == False
and Distance[u] is minimum
Visited[u] = True
for each edge (u,v) with Visited[v] == False
i1f Distance[v] > Distance[u] + weight(u,v)
Distance[v] = Distancel[u] + weight(u,v)

Complexity

* Does adjacency list help?
* Scan neighbours to update burn times
* O(m) across all iterations

* However, identifying minimum burn time vertex
still takes O(n) in each iteration

* Still O(n2)

Complexity

* QOuter loop runs n times
* |n each iteration, we burn one vertex
* O(n) scan to find minimum burn time vertex

* Each time we burn a vertex v, we have to scan all its
neighbours to update burn times

* O(n) scan of adjacency matrix to find all neighbours

* Overall O(n?)

Complexity

* Can maintain ExpectedBurnTime in a more
sophisticated data structure

* Different types of trees (heaps, red-black trees)
allow both of the following in O(log n) time

* find and delete minimum

* insert or update a value

Complexity

* With such a tree
* Finding minimum burn time vertex takes O(log n)

* With adjacency list, updating burn times take
O(log n) each, total O(m) edges

* QOverall O(n log n + m log n) = O((n+m) log n)

Why negative weights?

* Weights represent money

* Taxi driver earns money from airport to city,
travels empty to next pick-up point

* Some segments earn money, some lose money
* Chemistry
* Nodes are compounds, edges are reactions

* Weights are energy absorbed/released by reaction

Limitations

* What if edge weights can be negative?
* Our correctness argument is no longer valid

* Next vertex to burn is v, via x

* Might find a shorter path later with negative weights
fromytowtov

Handling negative edges

* Negative cycle: loop with a negative total weight
* Problem is not well defined with negative cycles

* Repeatedly traversing cycle pushes down cost
without a bound

* With negative edges, but no negative cycles, other
algorithms exist (will see later)

* Bellman-Ford

* Floyd-Warshall all pairs shortest path

Correctness for Dijsktra’s
algorithm

* By induction, assume we have identified shortest
paths to all vertices already burnt

Burnt vertices

©

* Next vertex to burn is v, via x

* Cannot later find a shorter path fromytow to v

Negative weights ...

* Negative cycle: loop with a negative total weight
* Problem is not well defined with negative cycles

* Repeatedly traversing cycle pushes down cost
without a bound

* With negative edges, but no negative cycles,
shortest paths do exist

Negative weights

* Our correctness argument is no longer valid

Burnt vertices

© O

* Next vertex to burn is v, via x

* Might find a shorter path later with negative weights
fromytowtov

About shortest paths

* Shortest paths will never loop
* Never visit the same vertex twice
* At most length n-1
* Every prefix of a shortest path is itself a shortest path
* Suppose the shortest path from sto tis
SV 2 s Uy o b

* Every prefix s = v1 = — v, is a shortest path to v,

Updating Distance()

* When vertex j is “burnt”, for each edge (j,k) update
Distance(k) = min(Distance(k), Distance(j)+weight(j,k))

* Refer to this as update(j,k)

* Dijkstra’s algorithm

* When we compute update(j,k), Distance()) is always
guaranteed to be correct distance to j

* \What can we say in general?

Updating Distance() ...

update(j,k):
Distance(k) = min(Distance(k), Distance(j)+weight(j,k))

* Dijkstra’s algorithm performs a particular “greedy”
sequence of updates

* Computes shortest paths without negative weights
* With negative edges, this sequence does not work

* |s there some sequence that does work?

Properties of update(j,k)

update(j,k):
Distance(k) = min(Distance(k), Distance(j)+weight(j,k))

* Distance(k) is no more than Distance(j)+weight(j,k)

* |f Distance(j) is correct and j is the second-last node on
shortest path to k, Distance(k) is correct

* Update is safe
* Distance(k) never becomes “too small”

* Redundant updates cannot hurt

Updating distance() ...

* Suppose the shortest path from sto tis
SO Ve Vs e

* |f our update sequence includes ...,update(s,v1),
...,update(vi,v2),...,update(vs,va),...,update(vm,t),...,
in that order, Distance(t) will be computed
correctly

* |f Distance(j) is correct and j is the second-last
node on shortest path to k, Distance(k) is
correct after update(j,k)

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = oo for all other vertices

* Update all edges n-1 times!

Bellman-Ford algorithm

* Initialize Distance(s) = 0, Distance(u) = « for all other vertices

* Update all edges n-1 times!

Iteration 1 Iteration 2

update(s,vi) | update(s,v1)

update(v1,ve) | update(v1,v2)

update(vs,va) | update(va,vs)

update(vm,t)

update(vm,t)

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = « for all other vertices

* Update all edges n-1 times!

Iteration 1

update(s,v4)

update(v1,v2)

update(va,Vva)

update(vm,t)

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = oo for all other vertices

* Update all edges n-1 times!

Iteration 1 lteration 2

update(s,v1)

update(s,v1)

update(v1,vo)

update(v1,vo)

update(vo,vs)

update(vo,va)

update(vm,t)

update(vm,t)

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = oo for all other vertices

* Update all edges n-1 times!

Bellman-Ford algorithm

* Initialize Distance(s) = 0, Distance(u) = « for all other vertices

* Update all edges n-1 times!

Iteration 1

Iteration 2

Iteration n-1

update(s,v4)

update(s,v1)

update(s,v4)

update(v1,v2)

update(v1,v2)

update(v1,v2)

update(vz,va)

update(vz,vs)

update(vz,va)

update(vm,t)

update(vm,t)

update(vm,t)

Iteration 1

Iteration 2

Iteration n-1

update(s,v1)

update(s,v1)

update(s,v1)

update(v1,vo)

update(v1,v2)

update(v1,v2)

update(vz,vs)

update(vz,va)

update(vz,vs)

update(vm,t)

update(vm,t)

update(vm,t)

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = « for all other vertices

* Update all edges n-1 times!

Bellman-Ford algorithm

* |nitialize Distance(s) = 0, Distance(u) = oo for all other vertices

* Update all edges n-1 times!

Iteration 1

Iteration 2

Iteration n-1

update(s,v1)

update(s,v1)

update(s,v1)

update(v1,v2)

update(v1,v2)

update(v1,v2)

update(va,Vva)

update(vo,vs)

update(va,va)

update(vm,t)

update(vm,t)

update(vm,t)

lteration 2

Iteration n-1

Iteration 1

update(s,v1)

update(s,v4)

update(s,v1)

update(v1,vo)

update(v1,v2)

update(v1,v2)

update(vo,vs)

update(vo,va)

update(vo,vs)

update(vm,t)

update(vm,t)

update(Vm,t) \

Bellman-Ford algorithm

function BellmanFord(s)//source s, with -ve weights

for 4 — 1 o' n
Distance[i] = infinity

Distance[s] = @

for i = 1 to n-1 //repeat n-1 times
for each edge(j,k) in E
Distance(k) = min(Distance(k),
Distance(j) + weight(j,k))

Example

Example

Iteration

Example Example
Iteration Iteration
o 1 JorLFo
/ 2 / N oo:
i) -4 =
11 T 11 oo
@) : @
N 3 N
8 ®- .
Example
Iteration Iteration
@l’@ : 5555
L N\ : a0
2 i10i10i 5 5 |
5 (o000 o0 oo
5 i
7. 7 o 9.9 9
®- 5 .

Example Example

lteration Iteration

7
1 0
2 5
3 5
5 9
7 9
8 &

Complexity

Iteration

: 2 : 2] * Quter loop runs n times

1 (00

5 5 5 * |n each loop, for each edge (j,k), we run update(j,k)

3 5 5 * Adjacency matrix — O(n?) to identify all edges
= iz ig
=g ¢ + Adjacency list — O(m)
=K 14110

5 . * Overall

7 9:9: * Adjacency matrix — O(n°)

8 8 6

* Adjacency list — O(mn)

Weighted graphs

*

*

*

Negative weights are allowed, but not negative
cycles

Shortest paths are still well defined

Bellman-Ford algorithm computes single-source
shortest paths

Can we compute shortest paths between all pairs
of vertices?

Inductively exploring
shortest paths

* Simplest shortest path from i to j is a direct edge
(i.))
* General case:

[PV N s oy

* All of {v1,v2 v3 .. vm} are distinct, and different
fromiand |

* Restrict what vertices can appear in this set

About shortest paths

* Shortest paths will never loop

* Never visit the same vertex twice

* At most length n-1

* Use this to inductively explore all possible shortest

paths efficiently

Inductively exploring
shortest paths ...

* Recall thatV = {1,2,...,n}

* WK(i,j) : weight of shortest path from i to j among
paths that only go via {1,2,...,k}

* {k+1,...,n} cannot appear on the path
* i, j themselves need not be in {1,2,...,k}
* WO(i,j) : direct edges

* {1,2,...,n} cannot appear between i and j

Inductively exploring
shortest paths ...

* From W '(i,j) to WX(i,))
* Case 1: Shortest path via {1,2,...,k} does not use vertex k
* W) = W)
* Case 2: Shortest path via {1,2,...,k} does go via k
* Kk can appear only once along this path
* Break up as pathsito k and k to j, each via {1,2,...,k-1}
» W) = WGik) + Wk)
* Conclusion: WX(i,j) = min(W*(i,j) , W*(i,k) + W*(k,}))

Floyd-Warshall algorithm

* WO is adjacency matrix with edge weights

* WOTi][j] = weight(i,j) if there is an edge (i,)),
o0, Ootherwise

* Forkin1,2,...,n

* Compute WK(i,j) from WK-(i,j) using
WH(i,j) = min(WkT1(i,j) , WET(i,k) + We(k,j))

* W" contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

* WO is adjacency matrix with edge weights

* WO[i][i] = weight(i,j) if there is an edge (i,)),
oo, Otherwise

* Forkint2 .n

* Compute WK(i,j) from WK-(i,j) using
WH(i,j) = min(W*(i,j) , WT(i,k) + WE(k,]))

* W" contains weights of shortest paths for all pairs

Floyd-Warshall algorithm

function FloydWarshall

for i = 1 to n
forr 3= 1 to'n
Wiiili11[0] = infinity

for each edge (i,j) in E
WLil[j1[@] = weight(i,])

for k =1 to n
for i = 1 ton
For = d-io.n
WEi1[31[k] = minCW[i][31[k-11,
WLi][k][k-11 + WLkI[31Ck-11D

Example

O—0)
,V
4

Example

10
v
-4

N N
®-
Example Example
O—0Q . O—0Q
/ s /_4 \
n ne
o o

eJ o 8 8 8 8 8 8 8
N
W MWJ_MWMW
B

- AN®M T W ON~©

W2

Example

2134 51678

1

8
o
o
(oo}
o
(oo}
(oo}
(oo}

10
o0
1
(oo}
o0
=
-4

* |n each iteration, we update n? entries

* Easy to see that the complexity is O(n®)
* n iterations

Complexity

* A word about space complexity

* Naive implementation is O(n®)—WI[i][j][k]

* Only need two “slices” at a time, WIi][j][k-1] and

WI(K]
* Space requirement reduces to O(n?)

g o 8 8 8 8 8 8 8

R e R

- B MWQMWMW

B

—AN®M T WON~©®
E

2318 +4 456 7 '8

1

8
©o
oo
oo
©o
oo
(o0}
(o0}

o 8 8 8 8 8 8 8
ey
e A
S QOm
mw1 : MwmA_qu
S
—AN®M S WON~©
=

Historical remarks

* Floyd-Warshall is a hybrid name

* Warshall originally proposed an algorithm for
transitive closure

* Generating path matrix P[i][j] from adjacency
matrix A[i][j]

* Floyd adapted it to compute shortest paths

Inductively computing PJi][]]

* From P*(i,j) to P¥(i,)
* Case 1: There is a path from i to j without using vertex k
* Pij) = P“'(i)
* Case 2: Path via {1,2,...,k} does go via k
* k can appear only once along this path
* Break up as paths i to k and k to j, each via {1,2,...,k-1}
* PX(i,j) = P¥"(,k) and P*(k,j)
* Conclusion: P(i,j) = P*'(i,j) or (P*"'(i,k) and P*'(k,}))

Computing paths

* A(i,j) = 1 iff there is an edge from i to |
* Want P(i,j) = 1 iff there is a path from i toj

* |teratively compute PX(i,j) = 1 iff there is a path from i to j
where all intermediate vertices are in {1,2,...,k}

* {k+1,...,n} cannot appear on the path
* |, j themselves need not be in {1,2,...,k}
* P%i,j) = A(,j): direct edges

* {1,2,...,n} cannot appear between i and |

Warshall’s algorithm

function Warshall

for i = 1 to n
forr 3= 1 to'n
P[11[j1[@] = False

for each edge (i,j) in E
P[i]1[31[@] = True

P[l][J][k] = PIL1[j1Ek-1] or
(PL[i]1Ck1[k-1] and PLk1[j1[k-11)

Example: Road network

*

*

*

be reached

*

District hit by a cyclone, damaging the roads
Government sets to work to restore the roads

Priority is to ensure that all parts of the district can

What set of roads should be restored first?

Spanning tree

Minimum connectivity:
no loops

* Removing an edge
from a loop cannot
disconnect graph

Connected acyclic
graph — tree

Spanning tree

Spanning tree

* Minimum connectivity:

no loops

* Removing an edge
from a loop cannot
disconnect graph

* Connected acyclic

graph — tree

* Spanning tree

Spanning tree

@ 5

*

*

Minimum connectivity:
no loops

* Removing an edge
from a loop cannot
disconnect graph

Connected acyclic
graph — tree

Spanning tree

Spanning tree with costs

* Restoration of each
road has a cost

* Among the different
spanning trees,
choose the one with
minimum cost

* Minimum cost
spanning tree

Spanning tree with costs

* Restoration of each
road has a cost

Cost =114 Cost = 44

* Among the different
spanning trees,
choose the one with
minimum cost

* Minimum cost
spanning tree

Spanning tree with costs

* Restoration of each
road has a cost

Cost =114

* Among the different
spanning trees,
choose the one with
minimum cost

* Minimum cost
spanning tree

Facts about trees

Definition: A tree is a connected acyclic graph

Fact 1: A tree on n vertices has exactly n-1 edges

* Start with a tree and delete edges

* |nitially one single component

* Deleting an edge must split a component into two

* After n-1 edge deletions, n components, each an
isolated vertex

Facts about trees

Fact 2: Adding an edge to a tree must create a cycle
* Suppose we add an edge (i,j)

* Tree is connected, so there is already a path p
fromito |

* New edge (i,j) plus path p creates a cycle

Facts about trees

Any two of the following facts about a graph G
implies the third

* G is connected
* G is acyclic

* G has n-1 edges

Facts about trees

Fact 3: In a tree, every pair
of nodes is connected by a \/\ _

unique path 1 \//l

* |f there are two paths
from i to j, there must be
a cycle

Building a minimum cost
spanning trees

Two natural strategies
* Start with smallest edge and grow it into a tree
Prim’s Algorithm

* Scan edges in ascending order of cost and
connect components to form a tree

Kruskal’s Algorithm

Prim’s algorithm

Prim’s algorithm

Prim’s algorithm

Kruskal’s algorithm

Kruskal’s algorithm

Spanning tree

* Weighted undirected graph, G = (V,E,w)
* Assume G is connected

* |dentify a spanning tree with minimum weight
* Tree connecting all vertices in V

* Strategy 1:
* Start with minimum cost edge

* Keep extending the tree with smallest edge

Prim’s algorithm
algorithm Prim_V1

Let e = (1,]) be minimum cost edge in E

e
TV

[e] //List of edges in tree
[1,7] //List of vertices connected by tree

for i = 3 to n
choose edge f = (u,v) of minimum cost
such that u in TV and v not in TV
TE.append(f)
TV.append(v)

return(TE)

Correctness

* Prim’s algorithm is a greedy algorithm
* Like Dijkstra’s single source shortest path

* A |ocal heuristic is used to decide which edge to
add next to the tree

* Choices made are never reconsidered

* Why does this sequence of local choices achieve
a global optimum?

Minimum separator lemma

* Let T be a minimum cost
spanning tree, e = (u,w) notin T

* uinUand win W are
connected by a pathpin T

* p starts in U and ends in W

* Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

* Drop fand add eto get a
smaller spanning tree

Minimum separator lemma

* Let V be partitioned into two non-empty sets U
andW=V-U

* Let e = (u,w) be minimum cost edge with uin U
and win W

* Assume all edges have different weights (relax
this condition later)

* Then every minimum cost spanning tree must
include e

Minimum separator lemma

* Let T be a minimum cost
spanning tree, e = (u,w) notin T

* uinUand win W are
connected by apathpinT

* p starts in U and ends in W

* Let f = (u’,w’) be the first
edge on p such that u’ in U
and w’ in W

* Drop fand add eto get a
smaller spanning tree

Minimum separator lemma

* Let T be a minimum cost

* uinUand win W are
connected by apathpinT

* p starts in U and ends in W

* Let f = (Uu”,W’) be the first
edge on p such that u’ in U
and w’ in W

* Drop fand add eto get a
smaller spanning tree

Correctness of Prim’s
algorithm

* Correctness follows directly from minimum
separator lemma

* At each stage, TV and (V-TV) form a non-trivial
partition of V

* The smallest edge connecting TV to (V-TV) must
belong to every minimum cost spanning tree

* This is the edge that the algorithm picks

spanning tree, e = (u,w) notin T
Minimum separator lemma

‘;D

* Proof of the lemma is
slightly subtle

* Not enough to replace
any edge from U to W by
e =(u,v)

* Need to identify such an
edge on the path from u
tov

Further observations

* Need not start with smallest edge overall

* For any vertex v, smallest edge attached to v
must be in the minimum cost spanning tree

* Consider the partition {v}, V-{v}

* Can start with any such edge

Prim’s algorithm revisited Prim’s algorithm

* Start with TV = {s} for any vertex s
* For each vertex v outside TV, maintain
* Distance_TV(v), smallest edge weight from v to TV

* Neighbour_TV(v), nearest neighbour of v in TV

* At each stage, add to TV (“burn”) vertex u with smallest
Distance_TV(u)

* Update Distance_TV(v), Neighbour_TV(v) for each
neighbour of u

* \ery similar to Dijkstra’s algorithm!

Prim’s algorithm, refined Prim’s algorithm

function Prim
Forc i — 1 to h
visited[i] = False; Nbr_TV[i] = -1; Dist_TV[i] = infinity

TE = [] //List of spanning tree edges
visited[1] = True
for each edge (1,3)

Nbr_TV[j] = 1; Dist_TV[j] = weight(l1,j)

for 1 = 2 ton
Choose u such that Visited[u] == False
and Dist_TV[u] is minimum

Visited[u] = True
TE .append{Cu,Nbr_TV[u])}
for each edge (u,v) with Visited[v] == False
if Dist_TV[v] > weight(Cu,Vv)
Dist_TV[v] = weight(Cu,v); Nbr_TV[i] = u

Prim’s algorithm

(18,1)

S

Prim’s algorithm

(18,1)

18 6

Prim’s algorithm

(18,1)

70
18 6 &)

e 9
L \2) ? 6
e) /Q
10 5

Prim’s algorithm

(6,2)

18 6

Prim’s algorithm

(6,2)

G/@\UL’\CD/@

Prim’s algorithm

(70,3)

70@

(20 2)

o E =g

18

Prim’s algorithm

70@

(20 2)

o Eep

18

Prim’s algorithm

(70,3)

18 6

Prim’s algorithm

(70 3)
70

L (10 9)

Prim’s algorithm

(70 3)
70

1 (10 9)

Prim’s algorithm

(70,3)

18 6

Prim’s algorithm

(70,3)

18 6

Prim’s algorithm

(70,3)
()
5
20
10

Complexity

*

Similar to Dijkstra’s algorithm

*

Outer loop runs n times
* |n each iteration, we add one vertex to the tree
* O(n) scan to find nearest vertex to add

Each time we add a vertex v, we have to scan all its
neighbours to update distances

*

* O(n) scan of adjacency matrix to find all neighbours

Overall O(n2)

*

Complexity

* Moving from adjacency matrix to adjacency list
* Across n iterations, O(m) to update neighbours
* Maintain distance information in a heap
* Finding minimum and updating is O(log n)

* Overall O(n log n + m log n) = O((m+n) log n)

Minimum separator lemma

* We assumed edge weights are distinct
* Duplicate edge weights?
* Fix an overall ordering {1,2,...,m} of edges
* Edge e = ((u,v),i) is smaller than f = ((u’,v’),)) if
* weight(e) < weight(f)

* weight(e) = weight(f) and i < |

Spanning tree

* Weighted undirected graph, G = (V,E,w)
* Assume G is connected

* |dentify a spanning tree with minimum weight
* Tree connecting all vertices in V

* Strategy 2:
* Order edges in ascending order by weight

* Keep adding edges to combine components

Multiple spanning trees

* |If edge weights repeat, the minimum cost spanning
tree is not unique

* “Choose u such that Dist_TV(u) is minimum”
* Different choices generate different trees
* Different ways of ordering edges {1,2,...,m}

* In general, number of possible minimum cost
spanning trees is exponential

* Greedy algorithm efficiently picks out one of them

Kruskal’s algorithm

algorithm Kruskal_V1
Let E = [e1,ez2,..,en] be edges sorted by weight

TE = [] // List of edges added so far
1 =1 // Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
if adding E[i] to TE does not form a cycle
TE.append(E[1i])
1= 1+1

Kruskal’s algorithm

Kruskal’s algorithm

70 70
e L
10 10
L 10 \2/ 20 ! 0 ; 10 \2/ 20] G
10 5 10 5
@ (D)
Kruskal’s algorithm Kruskal’s algorithm
70 70
18 6 & 18 6)
10 10
1 10 \2/ 20 ? 0 . 10 \2/ 20 - G
10 5 10 5
@)

Kruskal’s algorithm

Kruskal’s algorithm

70 70
e L
10 10
L 10 @/ 20 ! 0 ; 10 \2/ 20] 0
10 5 10 5
@ @)
Kruskal’s algorithm Kruskal’s algorithm
70 70
18 6 & 18 6)
10 10
1 10 @J 20 2 0 . 10 \ZJ 20 (5) /@
10 5 10 5
@

Kruskal’s algorithm

70@

18 6

10
2 5
1 10 2 99 0
10 5

Kruskal’s algorithm

70 ()

18 6

10

2 (5) 6

. 0 ' 90 /D
10 5

Kruskal’s algorithm

18 6

Correctness

* Kruskal’s algorithm is also a greedy algorithm

* We fix in advance that edges will be added in
ascending order of weight

* \Why does this achieve a global optimum?

Minimum separator lemma

* Let V be partitioned into two non-empty sets U
andW=V-U

* Let e = (u,w) be minimum cost edge with u in U
and win W

* Assume all edges have different weights

* Then every minimum cost spanning tree must
include e

Correctness of Kruskal’s
algorithm ...

* Suppose ej = (u,v) with u and v in disjoint
components
* Let U = Component(u), W = V - Component(u)

* No smaller weight edge in [e1,ez,...,6j-1]
connects U and W

* By minimum separator lemma, e; must be in the
minimum cost spanning tree

Correctness of Kruskal’s
algorithm ...

* Unlike Prim’s algorithm, at intermediate stages TE is
not a tree

* Edges in TE partition vertices into connected
components

* |nitially, each vertex is a separate component
* Adding e = (u,v) merges components of u and v

* If u and v are already in same component, e
forms a cycle, hence discarded

Kruskal’s algorithm
revisited

* To check if e = (u,v) forms a cycle, keep track of
components

* |nitially, Component][i] = i for each vertex i

* e = (u,v) can be added if Component[u] is different
from Component[v]

* Merge the two components

Kruskal’s algorithm, refined

algorithm Kruskal
Let E = [ei1,ez,..,en] be edges sorted by weight

for jand te n //Initially, each vertex is isolated
Component[j] = j //Component names are 1..n

FE = //List of edges added so far
i =l //Index of edge to try next

while TE.length() < n-1 //n-1 edges form a tree
Let E[i] = Cu,Vv)
if Component[u] !'= Component[v] //E[i] does not form cycle
TE.append(E[1i])
for j in 1 to n //Merge Component[v] into Component[u]
if Component[j] == Component[v]
Component[j] = Component[u]

Bottleneck

* Naive strategy for labelling and merging
components is inefficient

* Components form a partition of the vertex set V

* Union-find data structure implements the following
operations efficiently

* find(v)—find the component containing v
* union(u,v) —merge the components of u and v

* This will bring down the complexity to O(m log n)

Complexity

* Initially, sort edges, O(m log m)
* m is at most n?, so this is also O(m log n)
* QOuter loop runs upto m times
* |n each iteration, we examine one edge
* |f we add the edge, we have to merge components
* O(n) scan to update components
* This is done once for each tree edge—O(n) times

* Overall O(n?)

