Graphs, formally

G=0MVE
* Set of vertices V
* Set of edges E
* E is a subset of pairs (v,v)): ECV xV
* Undirected graph: (v,v’) and (v’,v) are the same edge
* Directed graph:
* (v,Vv’) is an edge from v to v’

* Does not guarantee that (v’,v) is also an edge

Adjacency matrix

LOCD\I@(ﬂ-bC»JI\)—L.

elilollollolloliolt Nt SE_—Hiol —
OO IO 1O 1O O TO =i 'O | =t RN

ik
o

O O O |0 0O |0 0o O |— | — K%

O 0200 |— |00 |0 |— EN
OO Oo|=|= O|—= O | O oK
O == =2 O - O 0O O Ok
O OO0 |— |2 |00 | O O
O |- O|0O|—= | O |— O | O O K
- O|—= O |—= 0O | O 0O O | O e
O |- 0O0|0|0 |0 |O|o o |o

Finding a
route

* Find a

sequence of
vertices vo, V1,
..., Vk such that
* Vo is source
Vi
v

* Each (vi,Vi+1)

Vo
V3
is an edge in
=
. 5 V4
* Vi Is target
V5

Adjacency list

* For each vertex, maintain a

iy
o

1
2
K]
4
5
6
7
8
9

list of its neighbours

2,3,4
1,3
1.2

10,8

4,6,7

97,89
5,6
4,6,9
6,8,10

Finding a path

* Mark vertices that have been visited

* Keep track of vertices whose neighbours have
already been explored

* Avoid going round indefinitely in circles

* Two fundamental strategies: breadth first and
depth first

Breadth first search

* Recall thatV = {1,2,...,n}
* Array visited[i] records whether i has been visited

* When a vertex is visited for the first time, add it to
a queue

* Explore vertices in the order they reach the
queue

Breadth first search

* Explore the graph level by level
* First visit vertices one step away
* Then two steps away
* Remember which vertices have been visited

* Also keep track of vertices visited, but whose
neighbours are yet to be explored

Breadth first search

* Exploring a vertex i:

for each edge (1,73)
if visitedfj] — @
visitedlj] = 1

append j to queue

* |nitially, queue contains only source vertex

* At each stage, explore vertex at the head of the
queue

* Stop when the queue becomes empty

Breadth first search

Breadth first search

1 1 B
2 2
3 3
4 4
Visited B Visited I
6 6
7 7
8 8
) 9
10 10

Breadth first search 1 a1
2 2
1 3 S
4 4
Visited & Visited I
6 6
2 9 7 7
8 8
4 9 9
10 10

Queue

headTtail

Breadth first search B Breadth first search .
3 3
4 4
Visited I Visited B
6 6
7 7
8 8
9 9
10 10

1

1

1

Visited Visited

©| 00N O Ok~ W =
© 00 NO Olh WIN =

10 10

Breadth first search Breadth first search

Visited Visited

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

thiy
o

iy

o

i it

Breadth first search Breadth first search

Visited Visited

©| 00N O Ok~ W =
© 00 NO Olh WIN =

10 10

Breadth first search Breadth first search

Visited Visited

© 00N O Ok W =

1
2
3
4
5
6
7
8
9

oy
o

8 8 67
i T
Breadth first search ; ;
3 3

4 4

Visited & Visited I
6 6

7 7

8 8

9 9
10 0

8 6 6 7
B o

Breadth first search Breadth first search

Visited Visited

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

iy
o

Breadth first search Breadth first search

Visited Visited

©| 00N O Ok~ W =
© 00 NO Olh WIN =

10

Breadth first search

function BFS(1i) // BFS starting from vertex i

Breadth first search

//Initialization

Visited for 3 = 1. :h {visitedf i = 0@F; 0 =[]

//Start the exploration at i
visited[i] = 1; append(Q,1i)

1
2
K]
4
5
6
7
8
9

//Explore each vertex in Q
while Q 1s not empty
j = extract_head(Q)
for each (j,k) in E
if Wsitedik] ==
10 visited[k] = 1; append(Q,k)

i

oy
o

Breadth first search

1

Complexity of BFS

* Each vertex enters Q exactly once

Visited * If graph is connected, loop to process Q iterated n

times

* For each j extracted from Q, need to examine all
neighbours of |

©| 00N O Ok~ W =

10

* |n adjacency matrix, scan row j: n entries

* Hence, overall O(n?)

Complexity of BFS

* Let m be the number of edges in E. What if m << n2?

* Adjacency list: scanning neighbours of j takes time
proportional to number of neighbours (degree of)

* Across the loop, each edge (i,j) is scanned twice,
once when exploring i and again when exploring j

* Qverall, exploring neighbours takes time O(m)
* Marking n vertices visited still takes O(n)

* Overall, O(n+m)

Enhancements to BFS

* |f BFS(j) sets visited[j] = 1, we know that i and j are
connected

* How do we identify a path from i to j

* When we mark visited[k] = 1, remember the
neighbour from which we marked it

* |f exploring edge (j,k) visits k, set parent[k] = j

Complexity of BFS

* For graphs, O(m+n) is considered the best
possible

* Need to see each edge and vertex at least once

* O(m+n) is considered to be linear in the size of the
graph

Breadth first search

function BFS(i) // BFS starting from vertex i

//Initialization
for j = 1..n {visited[j] = @; parent[j] = -1}
Q=[]

//Start the exploration at i
visited[i] = 1; append(Q,i)

//Explore each vertex in Q
while Q is not empty
j = extract_head(Q)
for each (j,k) in E
if visited[k] ==
visited[k] = 1; parent[k] = j; append(Q,k);

Reconstructing the path Breadth first search

function BFS(i) // BES starting from vertex i

//Initialization

* BFS(i) sets visited[j] = 1 for J[']= 1..n {levellj] = -1; parent{j] = -1}
b

* visited[j] = 1, so parent[j] = j’ for some J’ //Start the exploration at i, level[i] set to 0
level[i] = 0; append(Q,i)

* visited[j’] = 1, so parent[j’] = j” for some j”

//Explore each vertex in Q, increment level for each new vertex
while Q is not empty

j = extract_head(Q)
: : for each (j,k) in E
Eventually, trace back path to k with parent[k] = i if level[k] == -1
level[k] = 1+level[j]; parent[k] = j;
append(Q, k) ;

*

L

Recording distances Breadth first search 1

2

1 L: Level 2

P : Parent 4

* BFS can record how long the path is to each 5

vertex)

* Instead of binary array visited[], keep integer array ;

levell]

9

* level[j] = -1 initially 10
* |level[j] = p means j is reached in p steps from i

Breadth first search

; Breadth first search .
1 L: Level 3 L: Level 2
P : Parent 4 P : Parent 4
5 5
6 6
2 5 i 7
8 8
4 9 9
10 10
Queue
9
10 headttail
L
Breadth first search Breadth first search g

L: Level
P : Parent

oy
o

© 00N O O W =

L: Level
P : Parent

i
o

© 00 NOoO O bk~ WN| =

Breadth first search

L: Level
P : Parent

- —-— r-

1
2
3
4
5
6
7é
8
9

oy
o

Breadth first search

L: Level
P : Parent

— k- | -

© 00N Ok, WN| =

iy
o

L
Breadth first search i o
L : Level 3 R
P : Parent 4 B

5

6

7

8

9

10

3 4

Breadth first search

L: Level
P : Parent

g R

© 00 NOoO O bk~ WN| =

i
o

i

1 P L
Breadth first search }o - Breadth first search] -
2 2
L : Level <N 1 1 L:Level <N 1 1
P : Parent 4 NS P : Parent .1 1
5 M 2 4
6 6
7 7
8 8
9 9
10 10
5 8
ft t
. L . L
Breadth first search }o - Breadth first search] -
2 2
L :Level <N 1 1 L:Level <N 1 1
P : Parent 4 R P : Parent .1 1
M 2 4 o 2 4
6 6
7 7
8 8
9 9
10 10
5
it T

L P L P
Breadth first search }o - Breadth first search] -
2 2
L:Level <N 1 1 L:Level <N 1 1
P : Parent 4 B P : Parent .1 1
W 2 4 N 2 4
M 3 5 M 3 5
7 I 3 5
M 2 | 4 8 WA
9 9
10 10
8
t t
. L P : . P
Breadth first search }o - Breadth first search] -
2 2
L: Level <N 1 1 L:Level <N 1 1
P : Parent ‘11 P : Parent .1 1
M 2 4 <y 2 4
@ 3 5 M 3 5
‘| 3 5 I 3 5
M 2 | 4 N 2 4
9 H 3 8
10 10
8 9
o T

L P L P
Breadth first search }o - Breadth first search] -
2 2
L:Level <N 1 1 L:Level <N 1 1
P : Parent 4 B P : Parent .1 1
N 2 4 N 2 4
M 3 5 M 3 5
‘| 3 5 I 3 5
M 2 | 4 8 WA
'l 3 8 ‘N 3 8
10
79
T #
. L P : . P
Breadth first search }o - Breadth first search] -
2 2
L: Level <N 1 1 L:Level <N 1 1
P : Parent ‘11 P : Parent .1 1
W2 4 5 R
@ 3 5 M 3 5
‘| 3 5 I 3 5
M 2 | 4 N 2 4
'l 3 8 H 3 8
10 ol 4 9
9
i

-o

Breadth first search

L: Level

P : Parent

1
2
3
4
5
6
7
8
9

B2WNWWN = - -0 ™
© 00~ 01O ==k =

oy
o

Depth first search

*

*

*

Start from i, visit a neighbour |
Suspend the exploration of i and explore j instead

Continue till you reach a vertex with no unexplored
neighbours

Backtrack to nearest suspended vertex that still has an
unexplored neighbour

Suspended vertices are stored in a stack

* Last in, first out: most recently suspended is checked
first

Recording distances

* BFS with level[] gives us the shortest path to each
node in terms of number of edges

* In general, edges are labelled by a cost (money,
time, distance ...)

* Min cost path not same as fewest edges
* Will look at shortest paths in weighted graphs later

* BFS computes shortest paths if all costs are 1

Depth first search

Visited

,
2
3
4
5
6
7
8
9

sy
o

Stack of suspended vertices

Depth first search

Start at 4

Depth first search

Start at 4

Visited Visited

1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9

thiy
o

iy

o

Stack of suspended vertices Stack of suspended vertices

4

10 10

Depth first search

Start at 4

Depth first search

Start at 4

Visited Visited

©| 00N O Ok~ W =
© 00 NO Olh WIN =

10

10

Stack of suspended vertices Stack of suspended vertices

4 1

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7é
8
9

oy
o

Stack of suspended vertices

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7
8
9

iy
o

Stack of suspended vertices

4 1|2 4
10 10
Depth first search Depth first search
. Start at 4 Startat 4

Visited

©| 00N O Ok~ W =

10

Stack of suspended vertices

4 1

Visited

© 00 NOoO Ok~ WN| =

10

Stack of suspended vertices

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7é
8
9

oy
o

Stack of suspended vertices

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7
8
9

iy
o

Stack of suspended vertices

4 4 5 6
10 10
Depth first search Depth first search
. Start at 4 Startat 4

Visited

©| 00N O Ok~ W =

10

Stack of suspended vertices

Visited

© 00 NOoO Ok~ WN| =

10

Stack of suspended vertices

4

5

4

5

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7é
8
9

oy
o

Stack of suspended vertices

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7
8
9

iy
o

Stack of suspended vertices

4 5 6 4 56 8 9
10 10
Depth first search Depth first search
. Start at 4 Startat 4

Visited

©| 00N O Ok~ W =

10

Stack of suspended vertices

4

5

6

8

Visited

© 00 NOoO Ok~ WN| =

10

Stack of suspended vertices

4 568

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7é
8
9

oy
o

Stack of suspended vertices

Depth first search

Start at 4

Visited

1
2
3
4
5
6
7
8
9

iy
o

Stack of suspended vertices

4 5 6 4
10 10
Depth first search Depth first search
. Start at 4 Startat 4

Visited

©| 00N O Ok~ W =

10

Stack of suspended vertices

45

Visited

© 00 NOoO Ok~ WN| =

10

Stack of suspended vertices

Depth first search

Depth first search

* DFS is most natural to implement recursively
* For each unvisited neighbour j of i, call DFS())
* No need to explicitly maintain a stack

* Stack is maintained implicitly by recursive calls

Depth first search

* DFS is most natural to implement recursively

* For each unvisited neighbour j of i, call DFS(j)

Depth first search

//Initialization

for j=1..n {visitedl 3] = @; parentfj] = -1}

function DFS(i) // DFS starting from vertex i

//Mark i as visited
visitedial]— |

//Explore each neighbour of i recursively
for edach €i;7) in.E
if visited{j] —
parent[j] = 1
DFS(3)

Complexity of DFS Complexity of DFS

* Each vertex marked and explored exactly once

* DFS(j) need to examine all neighbours of j

Complexity of DFS Complexity of DFS

* Each vertex marked and explored exactly once * Each vertex marked and explored exactly once
* DFS(j) need to examine all neighbours of |
* |n adjacency matrix, scan row j: n entries

* Overall O(n?)

Complexity of DFS

* Each vertex marked and explored exactly once
* DFS(j) need to examine all neighbours of j
* |n adjacency matrix, scan row j: n entries

* Overall O(n?)

* With adjacency list, scanning takes O(m) time
across all vertices

* Total time is O(m+n), like BFS

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

Properties of DFS

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering

* Maintain a counter

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering
* Maintain a counter

* Increment and record counter value when entering
and leaving a vertex.

Depth first search

//Initialization
for j
count

0

function DFS(i) // DFS starting from vertex i

//Mark i as visited

visited[i] = 1; pre[i] = count; count++

//Explore each neighbours of i recursively
for each (i,j) in E
1f visstediy] —
parent[j] = 1
DFS(3)
post[i] = count; count++

1..n {visited[j] = 0; parent[j]

DFS numbering

prei] and post[i] can be used
to find

* if the graph has a cycle —
l.e., a loop

* cut vertex — removal
disconnects the graph

DFS numbering

Summary

* BFS and DFS are two systematic ways to explore a
graph

* Both take time linear in the size of the graph with
adjacency lists

* Recover paths by keeping parent information

* BFS can compute shortest paths, in terms of
number of edges

* DFS numbering can reveal many interesting features

Graphs, formally

G=0MVE
* Set of vertices V
* Set of edges E
* E is a subset of pairs (v,v)): ECV xV
* Undirected graph: (v,v’) and (v’,v) are the same edge
* Directed graph:
* (v,Vv’) is an edge from v to v’

* Does not guarantee that (v’,v) is also an edge

Connectivity
1 2 1 2 3 4
3 5 6 7 8
4\5 9 10 1M 12

Connected graph Disconnected graph

Exploring graph structure

* Breadth first search
* |Level by level exploration

* Depth first search
* Explore each vertex as soon as it is visited
* DFS numbering

* What can we find out about a graph using BFS/
DFS?

Connectivity
1 2 1 2| |3 4
3 5) 7\8
4\5 9 10) |11 12

Connected graph Disconnected graph

Connected components

ldentifying connected
components

* \ertices {1,2,...,N}
* Start BFS or DFS from 1
* All nodes marked Visited form a connected component

* Pick first unvisited node, say j, and run BFS or DFS
from |

* Repeat till all nodes are visited

* Update BFS/DFS to label each visited node with
component number

Connected components

1(4 2| 3 4
5 6 7 8
9 10) 11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp

Connected components

1 2 3\4
) o 7 8
9 10 11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp

Connected components

1(4 2 3\4 2
5 6 |7 8
9 10) |11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp

Connected components
114

4|2

2| |3

)

9

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* |Label each visited node j with component[j] = comp

BFS tree

2 3

s
.

4 5 9 10 11 12

S

(=)

/:.o
\

* Edges explored by BFS form a tree

* Acyclic graph = connected, with n-1 edges

Cycles

1 2 1 2 3 4
\
3 5 6 7 8
/
4\5 9 10| 11 12
Acyclic graph Graph with cycles

BFS tree

2 3

| g B
Bl

4 5 9 10 11 12

i =Y

(=)

S

* Edges explored by BFS form a tree
* Acyclic graph = connected, with n-1 edges

* Any non-tree edge generates a cycle

DES liee DES lree -
1 2 3\4 1 2 3\4 01
) 6 7 8 9 6 7 8
9 10 11 12 9 10 11 12

DES free DEGS fiee =
1 2 .3 4 1 2 .3 4 ;1
5 6 7 8 5 6 7 8 :

9 10 11 12 9 10 11 12

DFS tree . DFS tree =
0 0
1 2 3\4 /1 1 2 3\4 /1\
5 6 7 8 122 5 6 7 8 L 2
post post }
9 10 11 12 9 10 11 12 K
DFS tree - DFS tree =
0 0
1 2 3 4 /1\ 1 2 3 4 /1\
5 6 7 8 5 6 7 8 5 o
post post
9 10 11 12 9 10 11 12 K

DES free . DES lree =
0 0
1 2 3 4 /1\ 1 2 3 4 /1\
\ 2 5 \ 25
5 6 7 8 . 5 6 7 s
\ post \ post
9 10 9 9 10 9
11 12 . 11 12 g
10 10,
DES liee = DES liee =
0 0.9
1 2 3 4 /1\ 1 2 3 4 /1\
2.5 2. 5
5 6 7 8 s 9 6 17 . 1o 738
post post
9 10 9 9 10 9
11 12 3 11 12 g
10 10

DES free . DES lree =
09 09 10
1 2 3 4 /1\ 1 2 3 4 /1\ T
\ 2 § \ 2 5§ 4
? 6 1 8 %2 38 2 6 7 8 %2 3'8 11
post post
9 10 9 9 10 9
11 12 95 11 12 1o
10, 10,
DES liee = DES liee =
09 10 09 10
1 2 3 4 /1\ 1 2 3 4 /1\ 3
5 & 5 5 4
? 6 17 8 %2 38 2 6 7 8 %2 3\8 11
post post
9 10 9 9 10 9 8
11 12 1o 11 12 e
10, 10,

DFS tree - DFS tree -
08 1 09 10
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3
\ 9 5 4 \ 2 5 4
3 6 ! s 1o 3 i ? o v 1238
post post
9 10 8 9 10 9 8
11 12 o 11 12 =
56 13 56 13]
14 15
DFS tree - DFS tree =
0 0 09 10
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3
2.5 4 25 4
2 6 1 8 1o 4 ? . 2 1o s
post post
9 10 8 9 10 9 8
11 12 Al o 11 12 =
7 7
56 13 56 1316
14" 1415

DFS tree . DFS tree 7
09 10 09 10
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3
\ 5 5 4 \ 5 5§ 4
? 6 1 8 %2 3'8 11 2 6 7 8 %2 3'8 11
post post
9 10 9 8 9 10 9 8
1 te 417 12 \ 1] 1e 417 1219\
10 7 12 10 7 1
56 13116 17 5% 13716 1738
1415 1445
DFS tree - DFS tree =
09 10 09 10
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3
5 & 4 5 5 4
? 6 17 8 %2 3\ 11 2 6 7 8 12 318 11,20
post post
9 10 9 8 9 10 9 8
1 ie 7 © \ 1] 1< 417 1219\
10 7 1 10 7 1
5% 13016 1738 5% 13716 1738
1415 1415

DFS tree - DFS tree =
09 10 21 09 1021 22
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3 6
\ 5 5 4 \ 5 5§ 4
? 6 1 8 1238 11,20 2 6 7 8 1%2 38 11,20
post post
9 10 9 8 9 10 9 8
1 te 417 1219\ 1] 1e 417 1219\
10 7 1 10 7 1
5% 13116 17 18 5% 13716 17'38
1415 1445
DFS tree - DFS tree =
09 10 21 09 1021 2223
1 2 3 4 /1\ 3 1 2 3 4 /1\ 3 6
5 & 4 > 4
? 6 17 8 %238 11,20 2 6 7 8 12 318 11,20
post post
9 10 9 8 9 10 9 8
1 ie 417 1219\ 1] 1< 417 1219\
10 7 1 10 7 1
5% 13016 1738 5% 13716 1738

12%5

12%5

DFES tree

1 2 3

4

) 6 7 8

9 10 M 12

pre

/\

12
post

3

9
4

8

7

10
5 6

* Any non-tree edge generates a cycle

10 21
3

13716

141115

22 23
6

1712I8

Directed cycles

Directed cycles

Directed cycles

Directed cycles

0 0

g - g -
BN - BN 12[
2
5
b;jé QH/‘_B .

6

Directed cycles . Directed cycles :

2 < 1 >3 1/ 2 < 1 >3 1/
BN | i%a\z |
e <

Directed cycles

Directed cycles

0 0
1
g - g -
BN 1T BN 12[
\ 25 \ 25
G . G T
6 6 8
4;5 4;5
Directed cycles . Directed cycles 0
2e——1—3 = 2e 1t o e
BN 12[BN 17
\ 25 \ 25
Gs 364 Ga 3(;{ \7;33

Directed cycles 0 Directed cycles 0
5 1 ‘s = 2« 1 >3 -
ilg\z 1T £>6\4 Lfo .
\" | 2,9 \ | 2,9
e b
0 0
Directed cycles 0 Directed cycles 0
2e——1—3 - 2e 1t o -
ilé\z 1f0 ilg\z 1T10 11T
\ 2,9 \ 29 12}
e Wt
4;5 4;5

Directed cycles

Directed cycles

0 0 15
1 1
SRS e] paie s 0
5<:::::6 I zig 12113 5<:::::6 ! zig 12£13
__i:::;;g 3gé/~\>;8 __Z::::;a 3gé/~\>;8
4l5 4l5
Directed cycles 0 Directed cycles 0 15
Ti\\\\ix\\\:i 1;6///\\7H314 Ti\\\\ix\\\:i 1;6//’\\7H314
5<:::::6 I 2£9 12113 5<:::::6 ! zig 12£13
__i:::;;g 3gé/~\>;8 __Z:::;;a 3gé/~\>;8
l —— Tree edge l
475 475

Directed cycles - Directed cycles 0 15
1
R T ENEE 2R
5\6 I 251)9 12‘1113 5\6 ! 2£9 12113
366 788 366 788
> Tree edge l / — Tree edge l /
475 — Forward edge 475
7 7
Directed cycles - Directed cycles 0 15
1
e E e B
5\6 I 2£9 12113 5\6 ! zig 12113
Cd e U
366 788 366/ 788
——— Tree edge l / — Tree edge l
— Forward edge 475 — Forward edge 475

— Back edge

— Tree edge
— Forward edge
— Back edge

— Tree edge
— Forward edge
— Back edge
— Cross edge

0_15
/1\
110 11,14
219 12113

5

— Tree edge
— Forward edge
— Back edge
— Cross edge

Directed cycles

* A directed graph has a cycle if and only if DFS reveals a

back edge

* Can classify edges using pre and post numbers

* Tree/Forward edge (u,v) :

Interval [pre(u),post(u)] contains [(pre(v),post(v)]

* Backward edge (u,v):

Interval [pre(v),post(v)] contains [(pre(u),post(u)]

* Cross edge (u,v):

Intervals [(pre(u),post(u)] and [(pre(v),post(v)] disjoint

Directed acyclic graphs

* Directed graphs without cycles are useful for
modelling dependencies

* Courses with prerequisites

* Edge (Algebra,Calculus) indicates that Algebra
is a prerequisite for Calculus

* Will look at Directed Acyclic Graphs (DAGs) soon

Computing SCCs

23 1 >3« DFS numbering (pre and
l\ \ post) can be used to
- 6 1 compute SCCs

\ [Dasgupta,

Papadimitriou,Vazirani]

Connectivity in directed
graphs

* Need to take directions into account

* Nodes i and j are strongly connected if there is a
path from i to j and a path from jto i

* Directed graph can be decomposed into strongly
connected components (SCCs)

* All pairs of nodes in an SCC are strongly
connected

* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]

Computing SCCs

* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]

Computing SCCs

* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]

* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]

Other properties

* A number of other structural properties can be
inferred from DFS numbering

* Articulation points (vertices)
* Removing such a vertex disconnects the graph
* Bridges (edges)

* Removing such an edge disconnects the graph

