Graphs, formally

G=0MVE
* Set of vertices V
* Set of edges E
* E is a subset of pairs (v,v)): ECV xV
* Undirected graph: (v,v’) and (v’,v) are the same edge
* Directed graph:
* (v,Vv’) is an edge from v to v’

* Does not guarantee that (v’,v) is also an edge

Adjacency matrix
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Finding a
route

* Find a

sequence of
vertices vo, V1,
..., Vk such that
* Vo is source
Vi
v

* Each (vi,Vi+1)

Vo
V3
is an edge in
=
. 5 V4
* Vi Is target
V5

Adjacency list

* For each vertex, maintain a
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list of its neighbours
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Finding a path

* Mark vertices that have been visited

* Keep track of vertices whose neighbours have
already been explored

* Avoid going round indefinitely in circles

* Two fundamental strategies: breadth first and
depth first

Breadth first search

* Recall thatV = {1,2,...,n}
* Array visited[i] records whether i has been visited

* When a vertex is visited for the first time, add it to
a queue

* Explore vertices in the order they reach the
queue

Breadth first search

* Explore the graph level by level
* First visit vertices one step away
* Then two steps away
* Remember which vertices have been visited

* Also keep track of vertices visited, but whose
neighbours are yet to be explored

Breadth first search

* Exploring a vertex i:

for each edge (1,73)
if visitedfj] — @
visitedlj] = 1

append j to queue

* |nitially, queue contains only source vertex

* At each stage, explore vertex at the head of the
queue

* Stop when the queue becomes empty




Breadth first search

Breadth first search
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Breadth first search B Breadth first search .
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Breadth first search Breadth first search
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Breadth first search Breadth first search

Visited Visited
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Breadth first search Breadth first search
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Breadth first search

function BFS(1i) // BFS starting from vertex i

Breadth first search

//Initialization

Visited for 3 = 1. :h {visitedf i = 0@F; 0 =[]

//Start the exploration at i
visited[i] = 1; append(Q,1i)

1
2
K]
4
5
6
7
8
9

//Explore each vertex in Q
while Q 1s not empty
j = extract_head(Q)
for each (j,k) in E
if Wsitedik] ==
10 visited[k] = 1; append(Q,k)

i
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Breadth first search

1

Complexity of BFS

* Each vertex enters Q exactly once

Visited * If graph is connected, loop to process Q iterated n

times

* For each j extracted from Q, need to examine all
neighbours of |
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* |n adjacency matrix, scan row j: n entries

* Hence, overall O(n?)




Complexity of BFS

* Let m be the number of edges in E. What if m << n2?

* Adjacency list: scanning neighbours of j takes time
proportional to number of neighbours (degree of )

* Across the loop, each edge (i,j) is scanned twice,
once when exploring i and again when exploring j

* Qverall, exploring neighbours takes time O(m)
* Marking n vertices visited still takes O(n)

* Overall, O(n+m)

Enhancements to BFS

* |f BFS(j) sets visited[j] = 1, we know that i and j are
connected

* How do we identify a path from i to j

* When we mark visited[k] = 1, remember the
neighbour from which we marked it

* |f exploring edge (j,k) visits k, set parent[k] = j

Complexity of BFS

* For graphs, O(m+n) is considered the best
possible

* Need to see each edge and vertex at least once

* O(m+n) is considered to be linear in the size of the
graph

Breadth first search

function BFS(i) // BFS starting from vertex i

//Initialization
for j = 1..n {visited[j] = @; parent[j] = -1}
Q=[]

//Start the exploration at i
visited[i] = 1; append(Q,i)

//Explore each vertex in Q
while Q is not empty
j = extract_head(Q)
for each (j,k) in E
if visited[k] ==
visited[k] = 1; parent[k] = j; append(Q,k);




Reconstructing the path Breadth first search

function BFS(i) // BES starting from vertex i

//Initialization

* BFS(i) sets visited[j] = 1 for J[']= 1..n {levellj] = -1; parent{j] = -1}
b

* visited[j] = 1, so parent[j] = j’ for some J’ //Start the exploration at i, level[i] set to 0
level[i] = 0; append(Q,i)

* visited[j’] = 1, so parent[j’] = j” for some j”

//Explore each vertex in Q, increment level for each new vertex
while Q is not empty

j = extract_head(Q)
: : for each (j,k) in E
Eventually, trace back path to k with parent[k] = i if level[k] == -1
level[k] = 1+level[j]; parent[k] = j;
append(Q, k) ;

*

L

Recording distances Breadth first search 1

2

1 L: Level 2

P : Parent 4

* BFS can record how long the path is to each 5

vertex )

* Instead of binary array visited[ ], keep integer array ;

levell ]

9

* level[j] = -1 initially 10
* |level[j] = p means j is reached in p steps from i




Breadth first search

; Breadth first search .
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Breadth first search

L: Level
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Breadth first search
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Depth first search

*

*

*

Start from i, visit a neighbour |
Suspend the exploration of i and explore j instead

Continue till you reach a vertex with no unexplored
neighbours

Backtrack to nearest suspended vertex that still has an
unexplored neighbour

Suspended vertices are stored in a stack

* Last in, first out: most recently suspended is checked
first

Recording distances

* BFS with level[ ] gives us the shortest path to each
node in terms of number of edges

* In general, edges are labelled by a cost (money,
time, distance ...)

* Min cost path not same as fewest edges
* Will look at shortest paths in weighted graphs later

* BFS computes shortest paths if all costs are 1

Depth first search

Visited
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Stack of suspended vertices




Depth first search

Start at 4

Depth first search

Start at 4

Visited Visited
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Stack of suspended vertices Stack of suspended vertices
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Depth first search

Start at 4

Depth first search

Start at 4
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Depth first search

Start at 4
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Depth first search
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Depth first search

Start at 4
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Depth first search
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Depth first search
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Depth first search

Depth first search

* DFS is most natural to implement recursively
* For each unvisited neighbour j of i, call DFS())
* No need to explicitly maintain a stack

* Stack is maintained implicitly by recursive calls

Depth first search

* DFS is most natural to implement recursively

* For each unvisited neighbour j of i, call DFS(j)

Depth first search

//Initialization

for j=1..n {visitedl 3] = @; parentfj] = -1}

function DFS(i) // DFS starting from vertex i

//Mark i as visited
visitedial]— |

//Explore each neighbour of i recursively
for edach €i;7) in.E
if visited{j] —
parent[j] = 1
DFS(3)




Complexity of DFS Complexity of DFS

* Each vertex marked and explored exactly once

* DFS(j) need to examine all neighbours of j

Complexity of DFS Complexity of DFS

* Each vertex marked and explored exactly once * Each vertex marked and explored exactly once
* DFS(j) need to examine all neighbours of |
* |n adjacency matrix, scan row j: n entries

* Overall O(n?)




Complexity of DFS

* Each vertex marked and explored exactly once
* DFS(j) need to examine all neighbours of j
* |n adjacency matrix, scan row j: n entries

* Overall O(n?)

* With adjacency list, scanning takes O(m) time
across all vertices

* Total time is O(m+n), like BFS

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

Properties of DFS

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?




Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering

* Maintain a counter

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering

Properties of DFS

* Paths discovered by DFS are not shortest paths,
unlike BFS

* Why use DFS at all?

* Many useful features can be extracted from recording
the order in which DFS visited vertices

* DFS numbering
* Maintain a counter

* Increment and record counter value when entering
and leaving a vertex.




Depth first search

//Initialization
for j
count

0

function DFS(i) // DFS starting from vertex i

//Mark i as visited

visited[i] = 1; pre[i] = count; count++

//Explore each neighbours of i recursively
for each (i,j) in E
1f visstediy] —
parent[j] = 1
DFS(3)
post[i] = count; count++

1..n {visited[j] = 0; parent[j]

DFS numbering

prei] and post[i] can be used
to find

* if the graph has a cycle —
l.e., a loop

* cut vertex — removal
disconnects the graph

DFS numbering

Summary

* BFS and DFS are two systematic ways to explore a
graph

* Both take time linear in the size of the graph with
adjacency lists

* Recover paths by keeping parent information

* BFS can compute shortest paths, in terms of
number of edges

* DFS numbering can reveal many interesting features




Graphs, formally

G=0MVE
* Set of vertices V
* Set of edges E
* E is a subset of pairs (v,v)): ECV xV
* Undirected graph: (v,v’) and (v’,v) are the same edge
* Directed graph:
* (v,Vv’) is an edge from v to v’

* Does not guarantee that (v’,v) is also an edge

Connectivity
1 2 1 2 3 4
3 5 6 7 8
4\5 9 10 1M 12

Connected graph Disconnected graph

Exploring graph structure

* Breadth first search
* |Level by level exploration

* Depth first search
* Explore each vertex as soon as it is visited
* DFS numbering

* What can we find out about a graph using BFS/
DFS?

Connectivity
1 2 1 2| |3 4
3 5 ) 7\8
4\5 9 10) |11 12

Connected graph Disconnected graph

Connected components




ldentifying connected
components

* \ertices {1,2,...,N}
* Start BFS or DFS from 1
* All nodes marked Visited form a connected component

* Pick first unvisited node, say j, and run BFS or DFS
from |

* Repeat till all nodes are visited

* Update BFS/DFS to label each visited node with
component number

Connected components

1(4 2| 3 4
5 6 7 8
9 10) 11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp

Connected components

1 2 3\4
) o 7 8
9 10 11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp

Connected components

1(4 2 3\4 2
5 6 |7 8
9 10) |11 12

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* Label each visited node j with component[j] = comp




Connected components
114

4|2

2| |3

)

9

* Add a counter comp to number components
* Increment counter each time a fresh BFS/DFS starts

* |Label each visited node j with component[j] = comp

BFS tree

2 3

s
.

4 5 9 10 11 12

S

(=)

/:.o
\

* Edges explored by BFS form a tree

* Acyclic graph = connected, with n-1 edges

Cycles

1 2 1 2 3 4
\
3 5 6 7 8
/
4\5 9 10| 11 12
Acyclic graph Graph with cycles

BFS tree

2 3

| g B
Bl

4 5 9 10 11 12

i =Y

(=)

S

* Edges explored by BFS form a tree
* Acyclic graph = connected, with n-1 edges

* Any non-tree edge generates a cycle
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DFS tree . DFS tree =
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DFES tree
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* Any non-tree edge generates a cycle

10 21
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Directed cycles

Directed cycles




Directed cycles

Directed cycles

0 0

g - g -
BN - BN 12[
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Directed cycles

Directed cycles

0 0
1
g - g -
BN 1T BN 12[
\ 25 \ 25
G . G T
6 6 8
4;5 4;5
Directed cycles . Directed cycles 0
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BN 12[ BN 17
\ 25 \ 25
Gs 364 Ga 3(;{ \7;33




Directed cycles 0 Directed cycles 0
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Directed cycles

Directed cycles

0 0 15
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Directed cycles - Directed cycles 0 15
1
R T ENEE 2R
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— Tree edge
— Forward edge
— Back edge

— Tree edge
— Forward edge
— Back edge
— Cross edge

0_15
/1\
110 11,14
219 12113

5

— Tree edge
— Forward edge
— Back edge
— Cross edge

Directed cycles

* A directed graph has a cycle if and only if DFS reveals a

back edge

* Can classify edges using pre and post numbers

* Tree/Forward edge (u,v) :

Interval [pre(u),post(u)] contains [(pre(v),post(v)]

* Backward edge (u,v):

Interval [pre(v),post(v)] contains [(pre(u),post(u)]

* Cross edge (u,v):

Intervals [(pre(u),post(u)] and [(pre(v),post(v)] disjoint




Directed acyclic graphs

* Directed graphs without cycles are useful for
modelling dependencies

* Courses with prerequisites

* Edge (Algebra,Calculus) indicates that Algebra
is a prerequisite for Calculus

* Will look at Directed Acyclic Graphs (DAGs) soon

Computing SCCs

23 1 >3« DFS numbering (pre and
l\ \ post) can be used to
- 6 1 compute SCCs

\ [Dasgupta,

Papadimitriou,Vazirani]

Connectivity in directed
graphs

* Need to take directions into account

* Nodes i and j are strongly connected if there is a
path from i to j and a path from jto i

* Directed graph can be decomposed into strongly
connected components (SCCs)

* All pairs of nodes in an SCC are strongly
connected

* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]
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* DFS numbering (pre and
post) can be used to
compute SCCs

[Dasgupta,
Papadimitriou,Vazirani]

Other properties

* A number of other structural properties can be
inferred from DFS numbering

* Articulation points (vertices)
* Removing such a vertex disconnects the graph
* Bridges (edges)

* Removing such an edge disconnects the graph




