
Graphs, formally
G = (V,E)


Set of vertices V


Set of edges E


E is a subset of pairs (v,v’):  E ⊆ V × V


Undirected graph: (v,v’) and (v’,v) are the same edge


Directed graph:


(v,v’) is an edge from v to v’


Does not guarantee that (v’,v) is also an edge

Finding a 
route

Find a 
sequence of 
vertices v0, v1, 
…, vk such that


v0 is source


Each (vi,vi+1) 
is an edge in 
E


vk is target 
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1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0
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For each vertex, maintain a 
list of its neighbours

1 2,3,4
2 1,3
3 1,2
4 1,5,8
5 4,6,7
6 5,7,8,9
7 5,6
8 4,6,9
9 6,8,10

10 9



Finding a path

Mark vertices that have been visited


Keep track of vertices whose neighbours have 
already been explored


Avoid going round indefinitely in circles


Two fundamental strategies: breadth first and 
depth first

Breadth first search
Explore the graph level by level


First visit vertices one step away 


Then two steps away


…


Remember which vertices have been visited 

Also keep track of vertices visited, but whose 
neighbours are yet to be explored

Breadth first search

Recall that V = {1,2,…,n}


Array visited[i] records whether i has been visited


When a vertex is visited for the first time, add it to 
a queue 

Explore vertices in the order they reach the 
queue

Breadth first search
Exploring a vertex i:


	 	 for each edge (i,j)  
if visited[j] == 0  

visited[j] = 1  
append j to queue

Initially, queue contains only source vertex


At each stage, explore vertex at the head of the 
queue


Stop when the queue becomes empty
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Breadth first search
function BFS(i) // BFS starting from vertex i

   //Initialization  
for j = 1..n {visited[j] = 0}; Q = []

   //Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; append(Q,k)

Complexity of BFS
Each vertex enters Q exactly once


If graph is connected, loop to process Q iterated n 
times


For each j extracted from Q, need to examine all 
neighbours of j


In adjacency matrix, scan row j: n entries


Hence, overall O(n2)



Complexity of BFS
Let m be the number of edges in E. What if m << n2?


Adjacency list: scanning neighbours of j takes time 
proportional to number of neighbours (degree of j)


Across the loop, each edge (i,j) is scanned twice, 
once when exploring i and again when exploring j


Overall, exploring neighbours takes time O(m)


Marking n vertices visited still takes O(n)


Overall, O(n+m)

Complexity of BFS

For graphs, O(m+n) is considered the best 
possible


Need to see each edge and vertex at least once


O(m+n) is considered to be linear in the size of the 
graph

Enhancements to BFS

If BFS(i) sets visited[j] = 1, we know that i and j are 
connected


How do we identify a path from i to j


When we mark visited[k] = 1, remember the 
neighbour from which we marked it


If exploring edge (j,k) visits k, set parent[k] = j

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {visited[j] = 0; parent[j] = -1}  
Q = []

//Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; parent[k] = j; append(Q,k); 



Reconstructing the path

BFS(i) sets visited[j] = 1


visited[j] = 1, so parent[j] = j’ for some j’


visited[j’] = 1, so parent[j’] = j” for some j’’


…


Eventually, trace back path to k with parent[k] = i

Recording distances

BFS can record how long the path is to each 
vertex


Instead of binary array visited[ ], keep integer array 
level[ ]


level[j] = -1 initially


level[j] = p means j is reached in p steps from i 

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {level[j] = -1; parent[j] = -1}  
Q = []

//Start the exploration at i, level[i] set to 0 
level[i] = 0; append(Q,i)  

 
//Explore each vertex in Q, increment level for each new vertex  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if level[k] == -1  
level[k] = 1+level[j]; parent[k] = j;  
append(Q,k); 
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Recording distances
BFS with level[ ] gives us the shortest path to each 
node in terms of number of edges


In general, edges are labelled by a cost (money, 
time, distance …)


Min cost path not same as fewest edges


Will look at shortest paths in weighted graphs later


BFS computes shortest paths if all costs are 1

Depth first search
Start from i, visit a neighbour j


Suspend the exploration of i and explore j instead


Continue till you reach a vertex with no unexplored 
neighbours


Backtrack to nearest suspended vertex that still has an 
unexplored neighbour


Suspended vertices are stored in a stack 

Last in, first out: most recently suspended is checked 
first
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Depth first search

DFS is most natural to implement recursively


For each unvisited neighbour j of i, call DFS(j)

Depth first search

DFS is most natural to implement recursively


For each unvisited neighbour j of i, call DFS(j)

No need to explicitly maintain a stack


Stack is maintained implicitly by recursive calls

Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1  

 
//Explore each neighbour of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)
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Complexity of DFS
Each vertex marked and explored exactly once

DFS(j) need to examine all neighbours of j

In adjacency matrix, scan row j: n entries


Overall O(n2)

With adjacency list, scanning takes O(m) time 
across all vertices


Total time is O(m+n), like BFS

Properties of DFS
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Paths discovered by DFS are not shortest paths, 
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Properties of DFS
Paths discovered by DFS are not shortest paths, 
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording 
the order in which DFS visited vertices

DFS numbering

Maintain a counter

Increment and record counter value when entering 
and leaving a vertex.



Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
count = 0  

 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1; pre[i] = count; count++  

 
//Explore each neighbours of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)  
post[i] = count; count++

DFS numbering
1

5

4

2

3

6 7

8 9

10

DFS numbering
pre[i] and post[i] can be used 
to find


if the graph has a cycle — 
i.e., a loop


cut vertex — removal 
disconnects the graph


…
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Summary
BFS and DFS are two systematic ways to explore a 
graph


Both take time linear in the size of the graph with 
adjacency lists


Recover paths by keeping parent information


BFS can compute shortest paths, in terms of 
number of edges


DFS numbering can reveal many interesting features



Graphs, formally
G = (V,E)


Set of vertices V


Set of edges E


E is a subset of pairs (v,v’):  E ⊆ V × V


Undirected graph: (v,v’) and (v’,v) are the same edge


Directed graph:


(v,v’) is an edge from v to v’


Does not guarantee that (v’,v) is also an edge

Exploring graph structure
Breadth first search


Level by level exploration


Depth first search


Explore each vertex as soon as it is visited


DFS numbering


What can we find out about a graph using BFS/
DFS?
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Connected components
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Identifying connected 
components

Vertices {1,2,…,N}


Start BFS or DFS from 1


All nodes marked Visited form a connected component


Pick first unvisited node, say j, and run BFS or DFS 
from j


Repeat till all nodes are visited


Update BFS/DFS to label each visited node with 
component number

Connected components
1 2

5

9 10

3 4

7

11 12

6 8

Add a counter comp to number components


Increment counter each time a fresh BFS/DFS starts


Label each visited node j with component[j] = comp
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Add a counter comp to number components


Increment counter each time a fresh BFS/DFS starts


Label each visited node j with component[j] = comp
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Add a counter comp to number components


Increment counter each time a fresh BFS/DFS starts


Label each visited node j with component[j] = comp

1 2



Connected components
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Add a counter comp to number components


Increment counter each time a fresh BFS/DFS starts


Label each visited node j with component[j] = comp
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3

Cycles

Acyclic graph
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Graph with cycles
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BFS tree

Edges explored by BFS form a tree


Acyclic graph = connected, with n-1 edges
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BFS tree

Edges explored by BFS form a tree


Acyclic graph = connected, with n-1 edges
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Any non-tree edge generates a cycle
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Any non-tree edge generates a cycle
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Directed cycles
A directed graph has a cycle if and only if DFS reveals a 
back edge


Can classify edges using pre and post numbers


Tree/Forward edge (u,v) : 
Interval [pre(u),post(u)] contains [(pre(v),post(v)]


Backward edge (u,v):  
Interval [pre(v),post(v)] contains [(pre(u),post(u)]


Cross edge (u,v):  
Intervals [(pre(u),post(u)] and [(pre(v),post(v)] disjoint



Directed acyclic graphs

Directed graphs without cycles are useful for 
modelling dependencies


Courses with prerequisites


Edge (Algebra,Calculus)  indicates that Algebra 
is a prerequisite for Calculus


Will look at Directed Acyclic Graphs (DAGs) soon

Connectivity in directed 
graphs

Need to take directions into account


Nodes i and j are strongly connected if there is a 
path from i to j and a path from j to i


Directed graph can be decomposed into strongly 
connected components (SCCs)


All pairs of nodes in an SCC are strongly 
connected

Computing SCCs

DFS numbering (pre and 
post) can be used to 
compute SCCs 
 
[Dasgupta, 
Papadimitriou,Vazirani]
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Other properties

A number of other structural properties can be 
inferred from DFS numbering


Articulation points (vertices)


Removing such a vertex disconnects the graph


Bridges (edges)


Removing such an edge disconnects the graph


