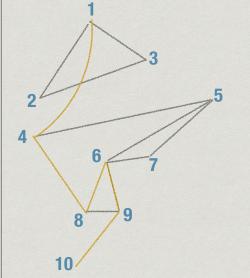
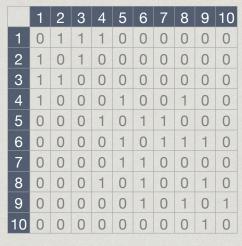
#### Graphs, formally

 $G=(V\!,\!E)$ 

- \* Set of vertices V
- \* Set of edges E
  - \* E is a subset of pairs (v,v'):  $E \subseteq V \times V$
  - \* Undirected graph: (v,v') and (v',v) are the same edge
  - \* Directed graph:
    - \* (v,v') is an edge from v to v'
    - \* Does not guarantee that (v',v) is also an edge

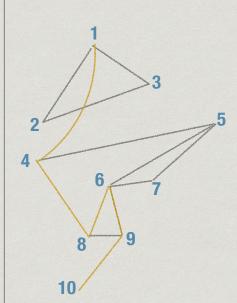
#### Adjacency matrix





#### Finding a route \* Find a Vo sequence of vertices v<sub>0</sub>, v<sub>1</sub>, ..., v<sub>k</sub> such that \* vo is source V1 \* Each (v<sub>i</sub>, v<sub>i+1</sub>) V<sub>3</sub> is an edge in F V4 V<sub>2</sub> \* vk is target V5

#### Adjacency list



 For each vertex, maintain a list of its neighbours

| 1  | 2,3,4   |
|----|---------|
| 2  | 1,3     |
| 3  | 1,2     |
| 4  | 1,5,8   |
| 5  | 4,6,7   |
| 6  | 5,7,8,9 |
| 7  | 5,6     |
| 8  | 4,6,9   |
| 9  | 6,8,10  |
| 10 | 9       |

#### Finding a path

- Mark vertices that have been visited
- Keep track of vertices whose neighbours have already been explored
  - Avoid going round indefinitely in circles
- Two fundamental strategies: breadth first and depth first

#### Breadth first search

- \* Recall that V = {1,2,...,n}
- Array visited[i] records whether i has been visited
- When a vertex is visited for the first time, add it to a queue
  - Explore vertices in the order they reach the queue

#### Breadth first search

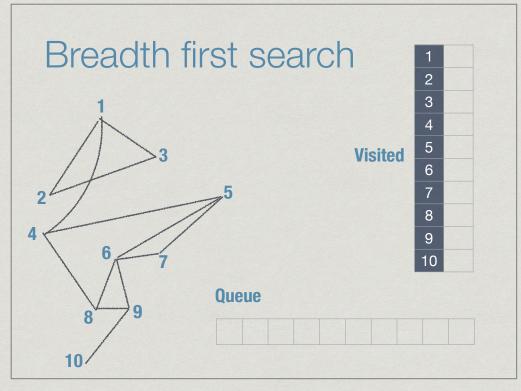
- \* Explore the graph level by level
  - \* First visit vertices one step away
  - \* Then two steps away
  - \* ...
- \* Remember which vertices have been visited
- Also keep track of vertices visited, but whose neighbours are yet to be explored

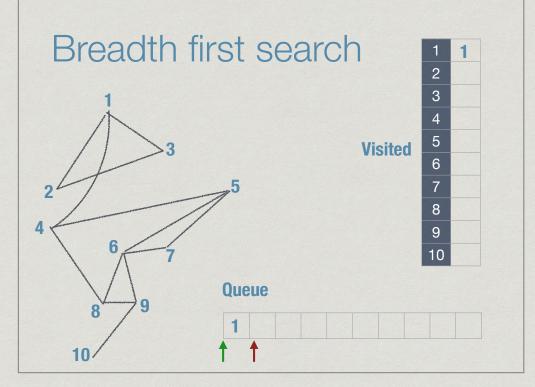
#### Breadth first search

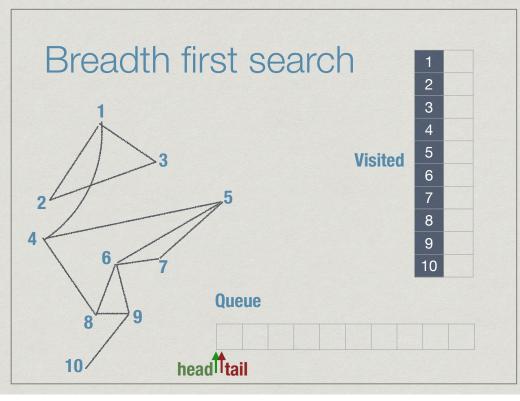
\* Exploring a vertex i:

for each edge (i,j)
 if visited[j] == 0
 visited[j] = 1
 append j to queue

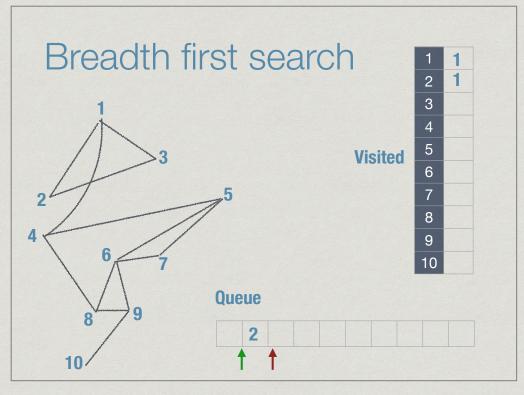
- Initially, queue contains only source vertex
- At each stage, explore vertex at the head of the queue
- \* Stop when the queue becomes empty

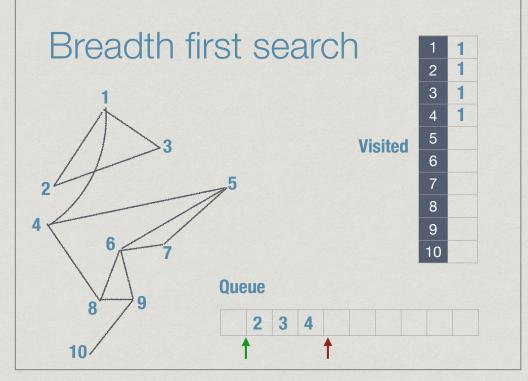


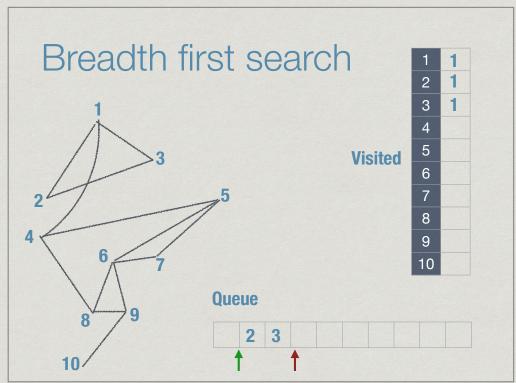


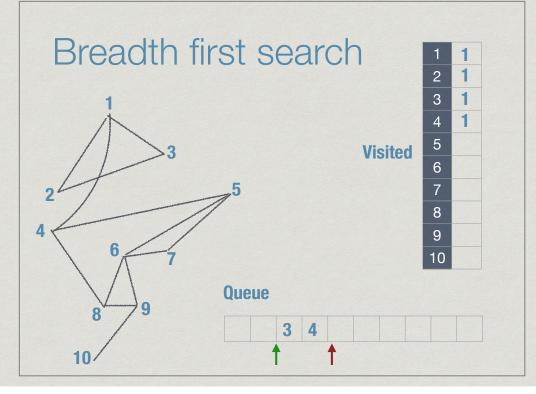


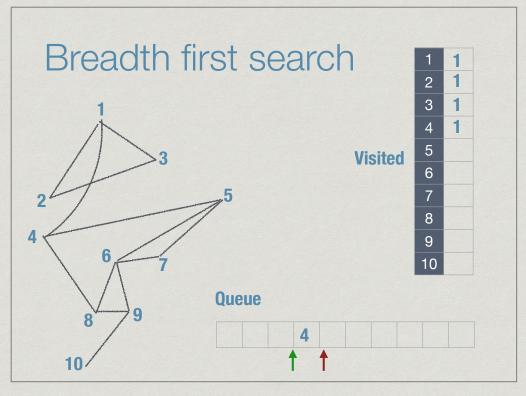


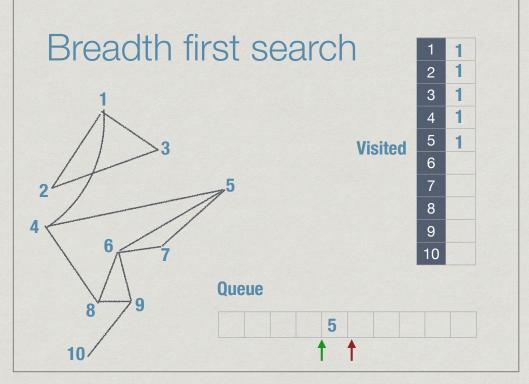


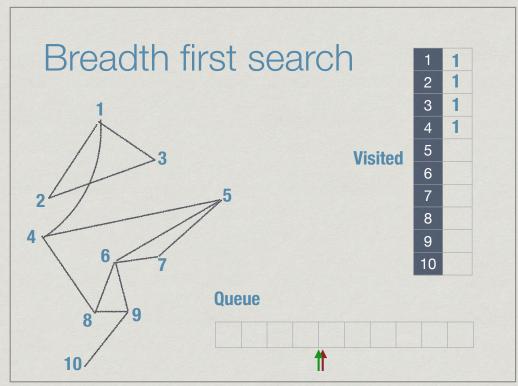


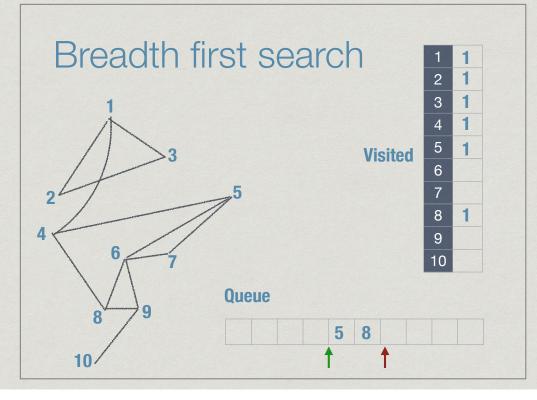


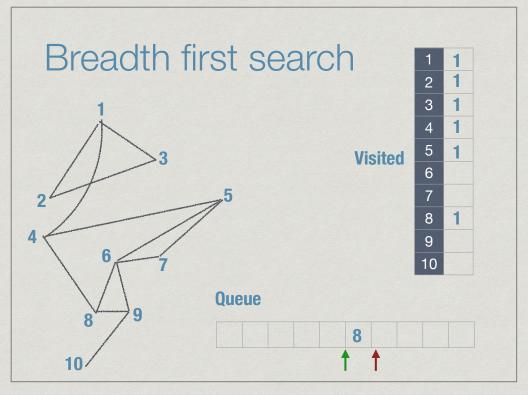


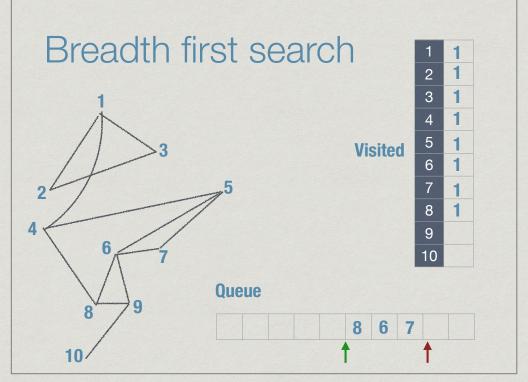


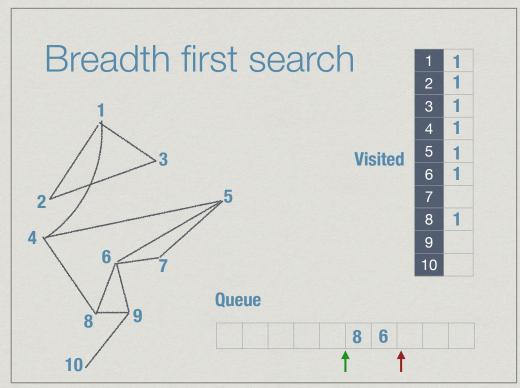


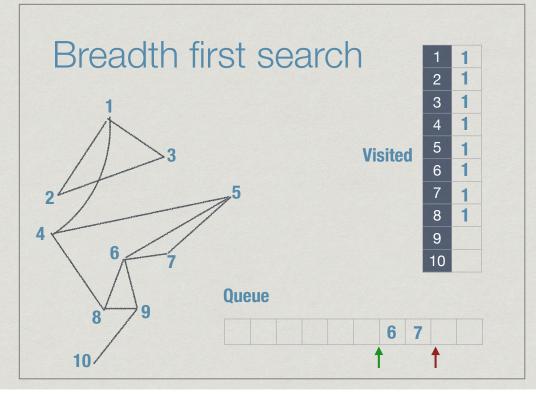


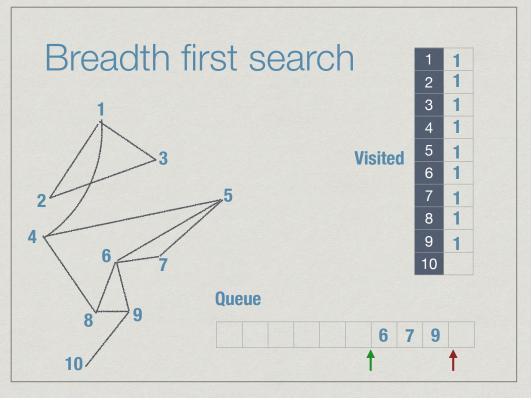


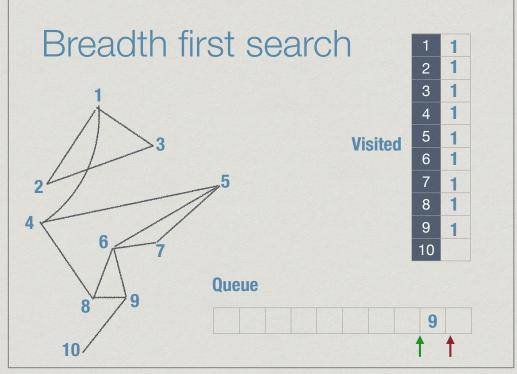


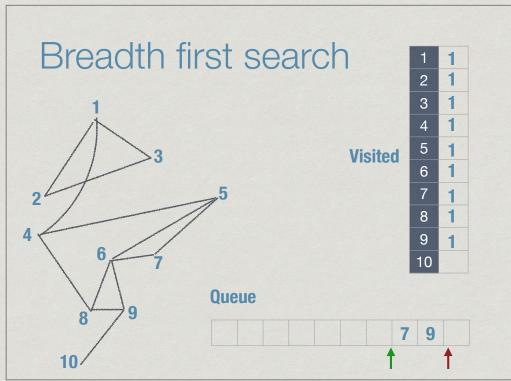


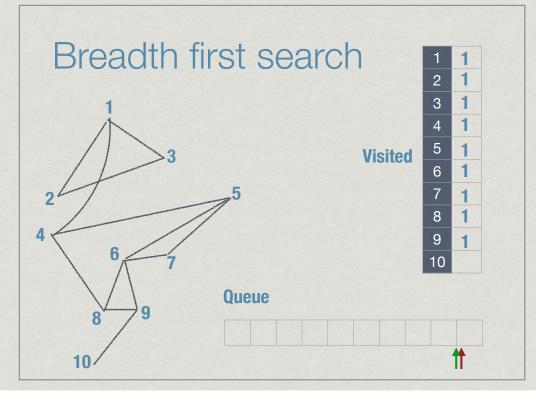


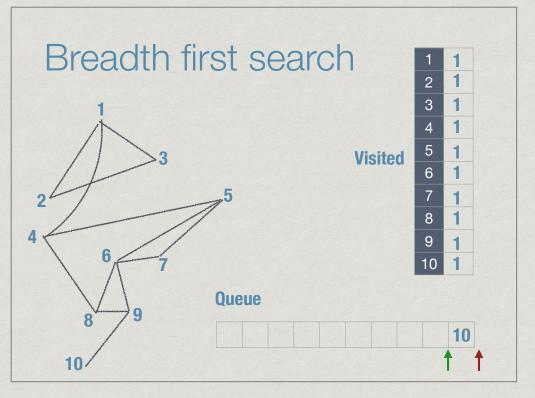












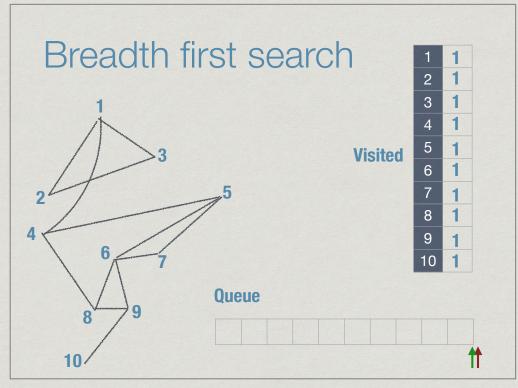
#### Breadth first search

function BFS(i) // BFS starting from vertex i

//Initialization
for j = 1..n {visited[j] = 0}; Q = []

//Start the exploration at i
visited[i] = 1; append(Q,i)

//Explore each vertex in Q
while Q is not empty
j = extract\_head(Q)
for each (j,k) in E
 if visited[k] == 0
 visited[k] = 1; append(Q,k)



#### Complexity of BFS

- \* Each vertex enters Q exactly once
- If graph is connected, loop to process Q iterated n times
  - For each j extracted from Q, need to examine all neighbours of j
  - \* In adjacency matrix, scan row j: n entries
- Hence, overall O(n<sup>2</sup>)

#### Complexity of BFS

- \* Let m be the number of edges in E. What if m << n<sup>2</sup>?
- Adjacency list: scanning neighbours of j takes time proportional to number of neighbours (degree of j)
- Across the loop, each edge (i,j) is scanned twice, once when exploring i and again when exploring j
  - \* Overall, exploring neighbours takes time O(m)
- \* Marking n vertices visited still takes O(n)
- \* Overall, O(n+m)

#### Enhancements to BFS

- If BFS(i) sets visited[j] = 1, we know that i and j are connected
- \* How do we identify a path from i to j
- When we mark visited[k] = 1, remember the neighbour from which we marked it
  - If exploring edge (j,k) visits k, set parent[k] = j

#### Complexity of BFS

- For graphs, O(m+n) is considered the best possible
  - \* Need to see each edge and vertex at least once
- O(m+n) is considered to be linear in the size of the graph

#### Breadth first search

function BFS(i) // BFS starting from vertex i

```
//Initialization
for j = 1..n {visited[j] = 0; parent[j] = -1}
Q = []
```

//Start the exploration at i
visited[i] = 1; append(Q,i)

```
//Explore each vertex in Q
while Q is not empty
    j = extract_head(Q)
    for each (j,k) in E
        if visited[k] == 0
            visited[k] = 1; parent[k] = j; append(Q,k);
```

#### Reconstructing the path

- \* BFS(i) sets visited[j] = 1
- \* visited[j] = 1, so parent[j] = j' for some j'
- \* visited[j'] = 1, so parent[j'] = j" for some j"
- \* ...
- \* Eventually, trace back path to k with parent[k] = i

#### Breadth first search

function BFS(i) // BFS starting from vertex i

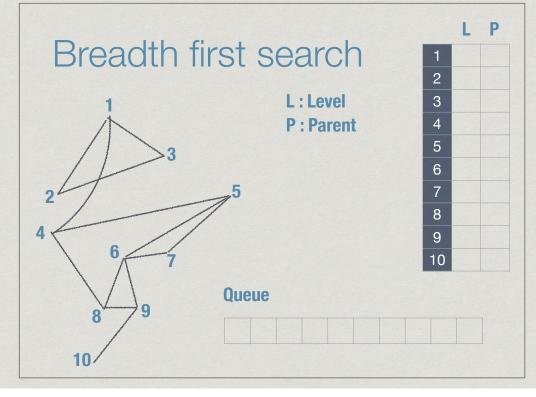
```
//Initialization
for j = 1..n {level[j] = -1; parent[j] = -1}
Q = []
```

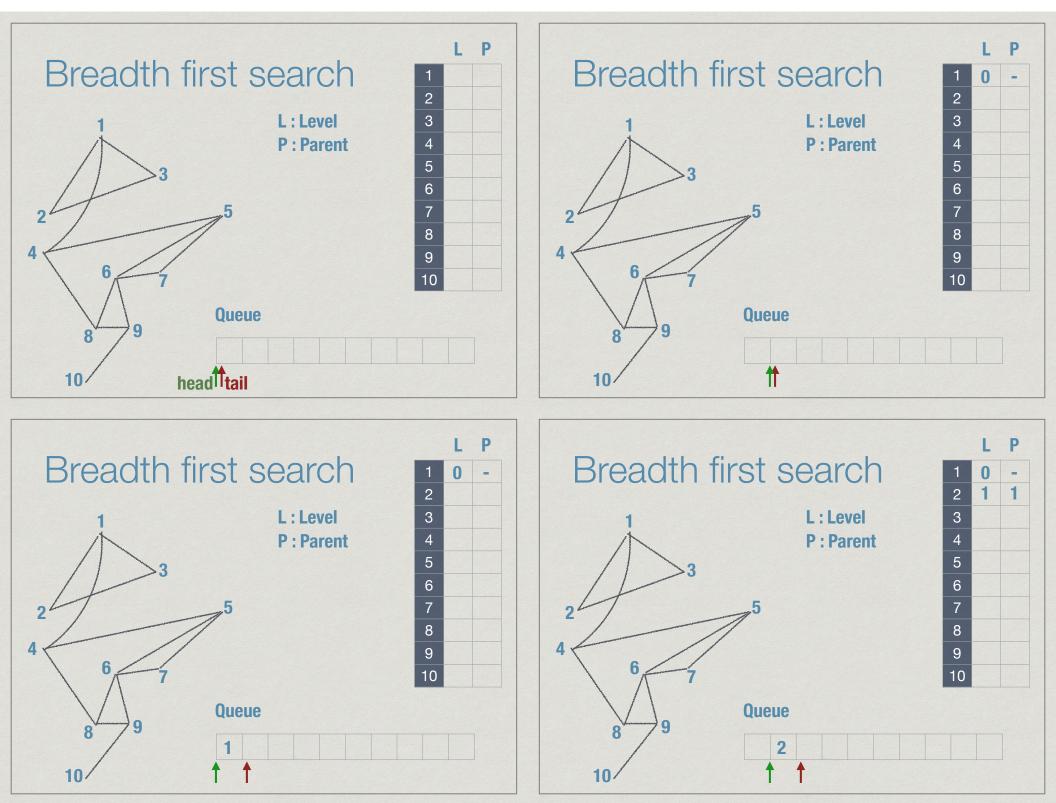
```
//Start the exploration at i, level[i] set to 0
level[i] = 0; append(Q,i)
```

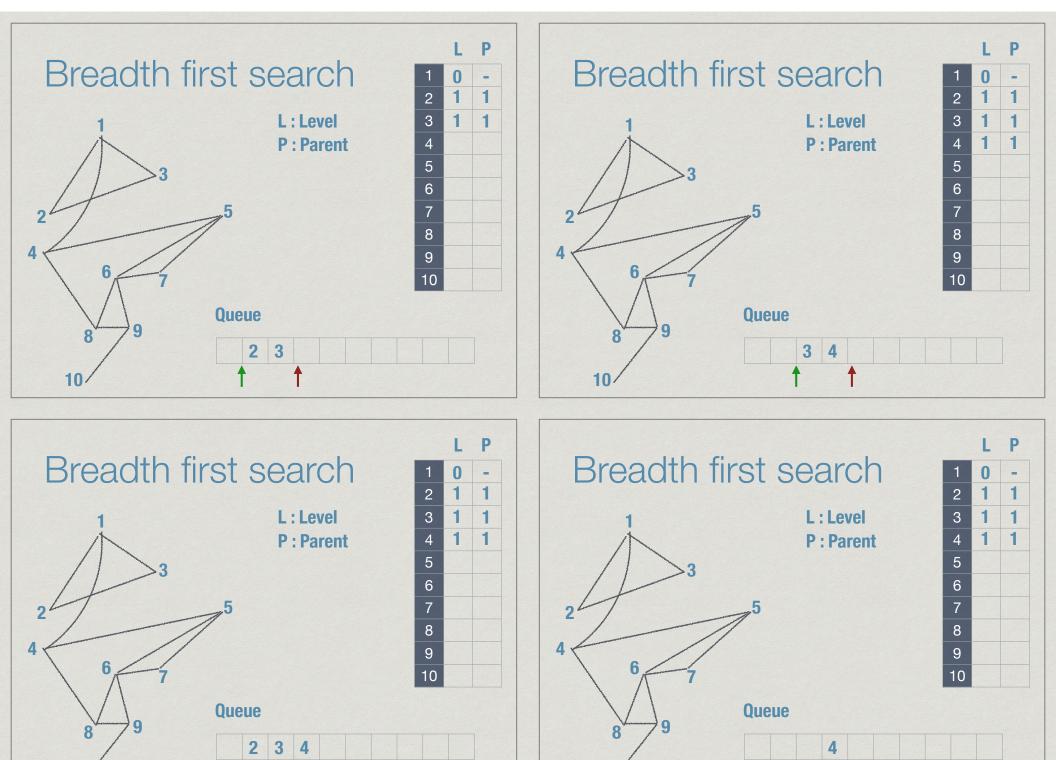
//Explore each vertex in Q, increment level for each new vertex
while Q is not empty
 j = extract\_head(Q)
 for each (j,k) in E
 if level[k] == -1
 level[k] = 1+level[j]; parent[k] = j;
 append(Q,k);

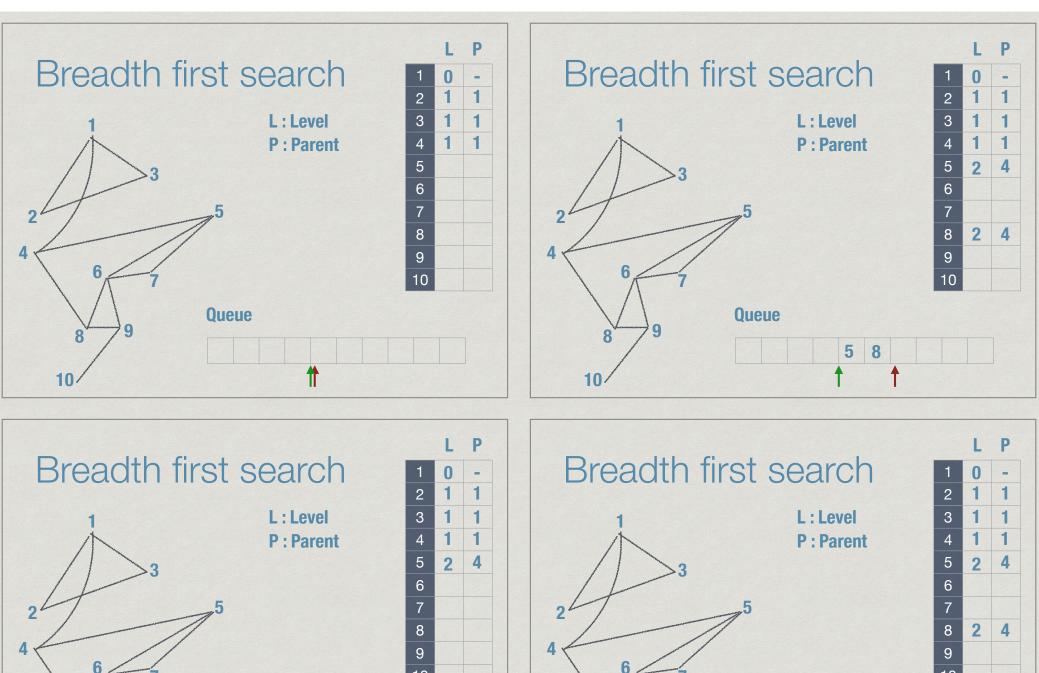
#### **Recording distances**

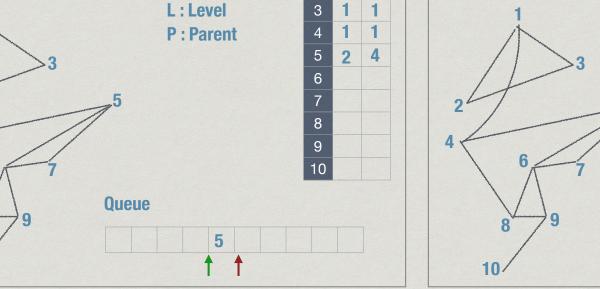
- BFS can record how long the path is to each vertex
- Instead of binary array visited[], keep integer array level[]
- \* level[j] = -1 initially
- \* level[j] = p means j is reached in p steps from i

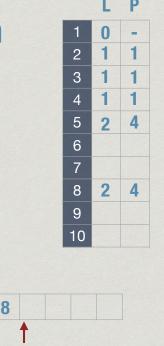




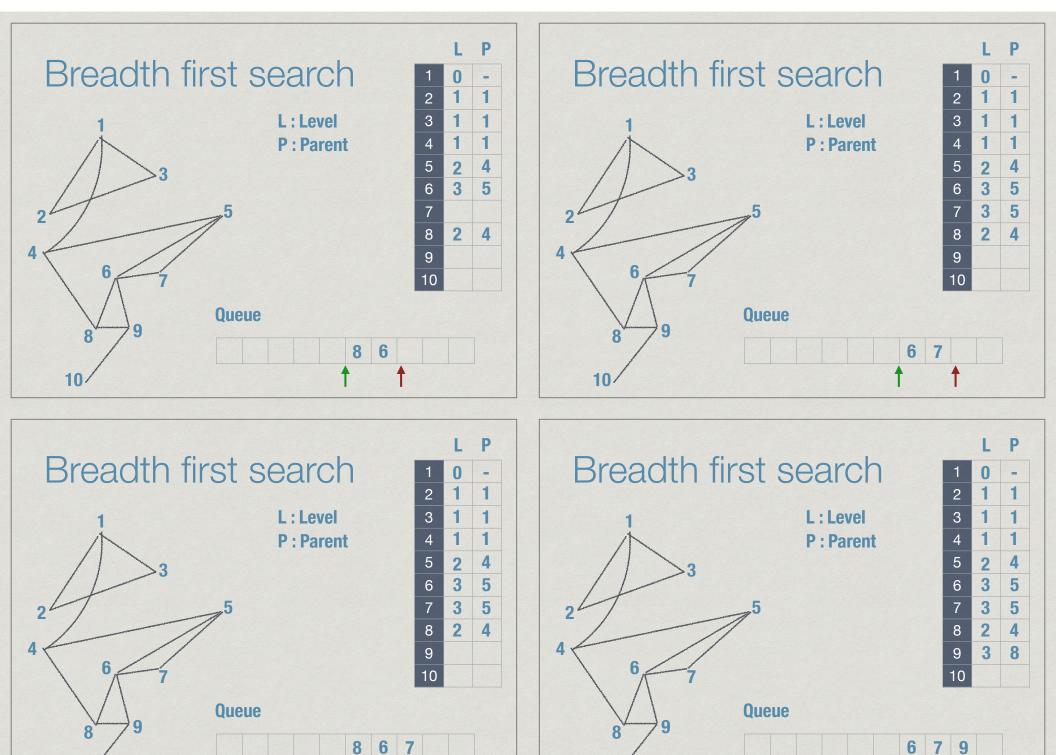


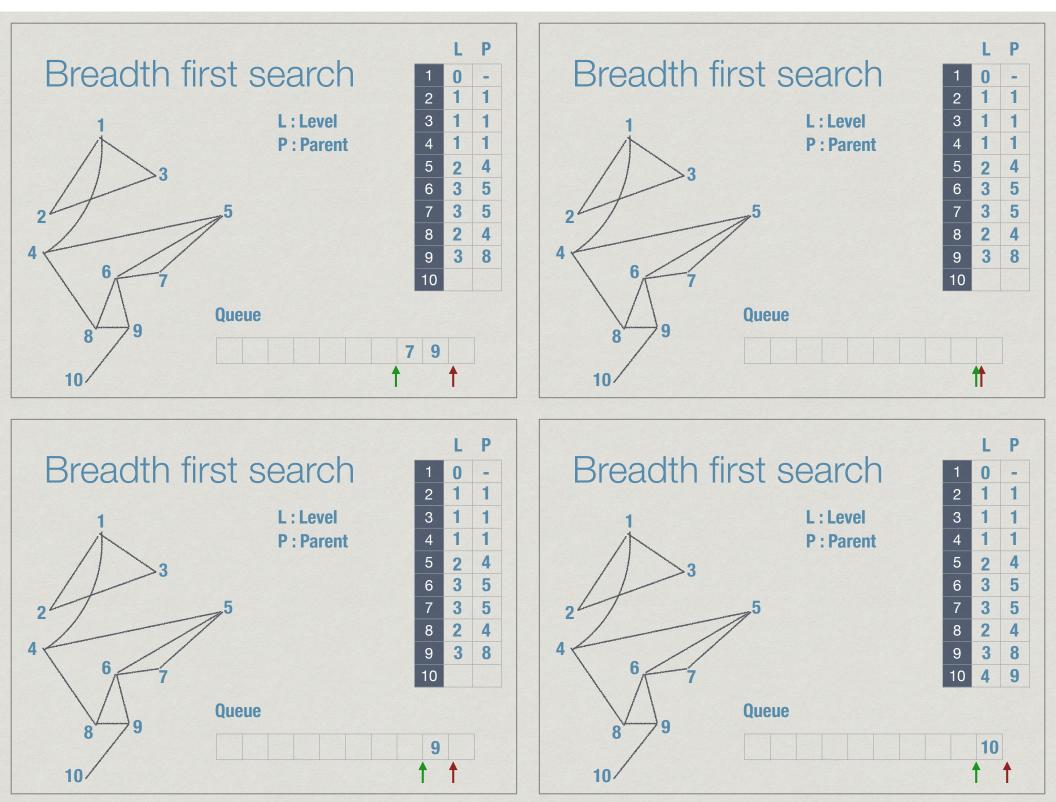


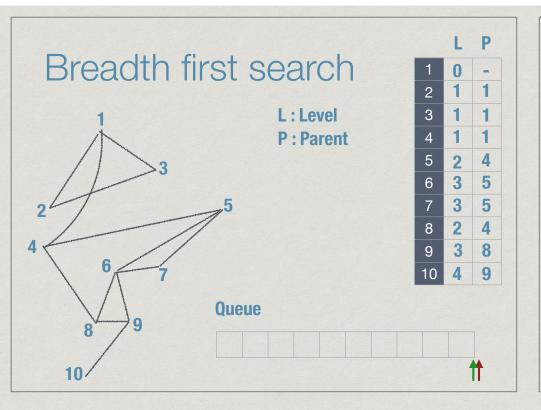




Queue





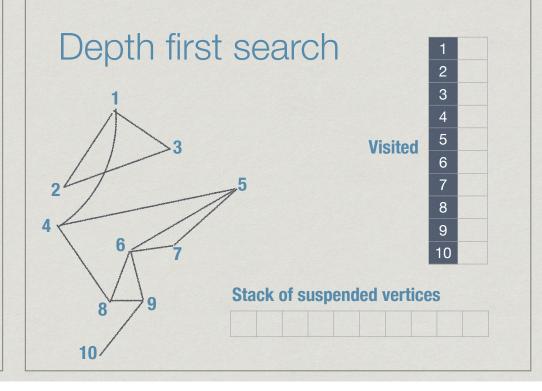


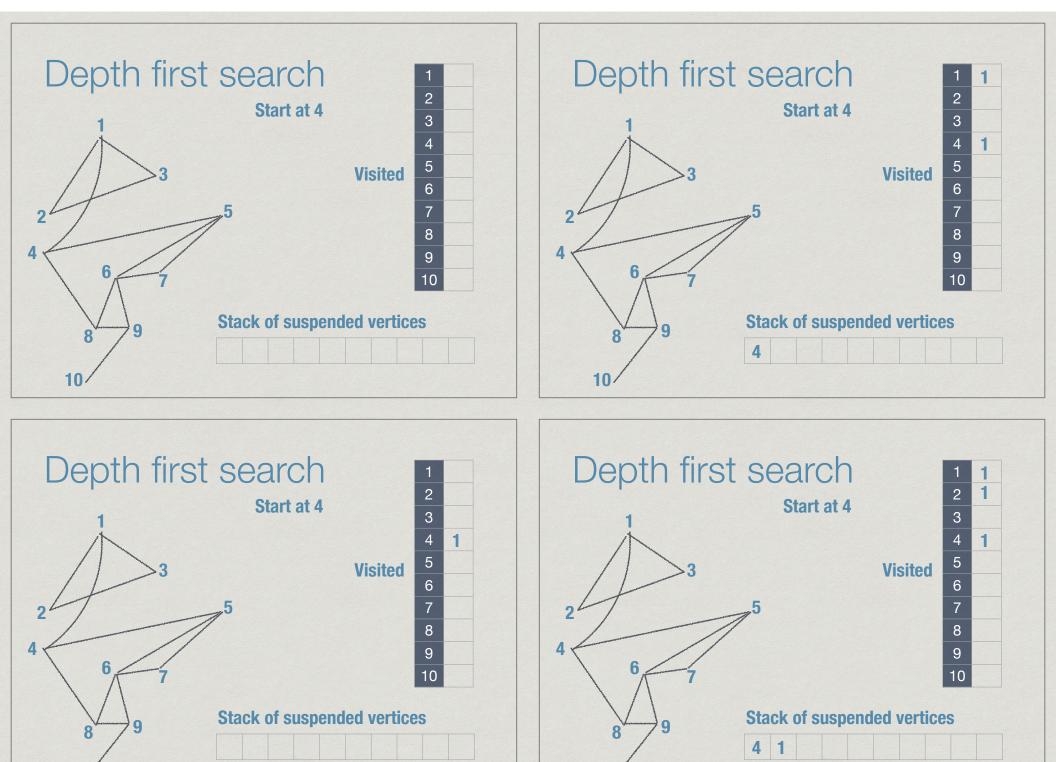
#### Depth first search

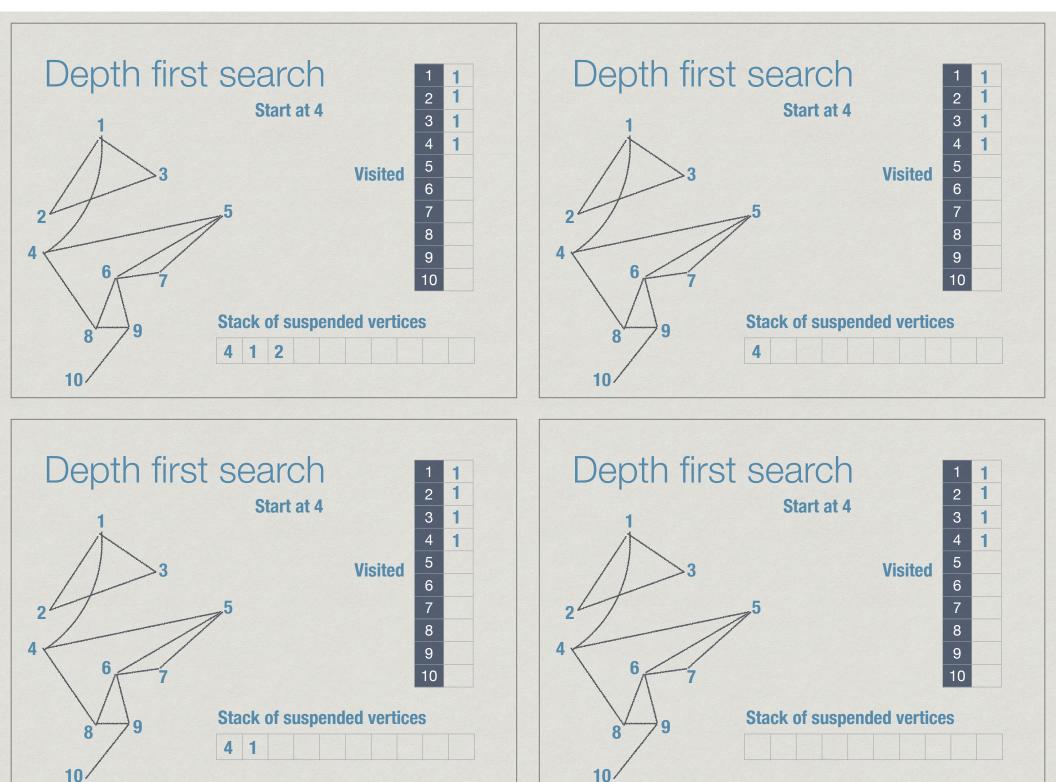
- \* Start from i, visit a neighbour j
- \* Suspend the exploration of i and explore j instead
- Continue till you reach a vertex with no unexplored neighbours
- Backtrack to nearest suspended vertex that still has an unexplored neighbour
- \* Suspended vertices are stored in a stack
  - Last in, first out: most recently suspended is checked first

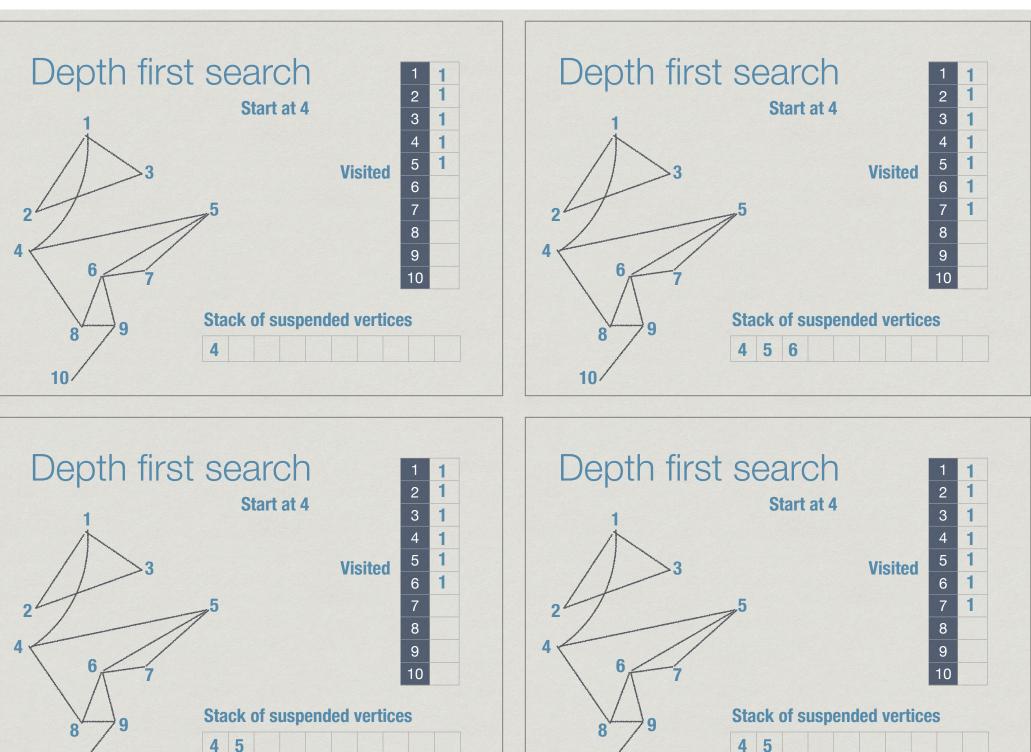
#### **Recording distances**

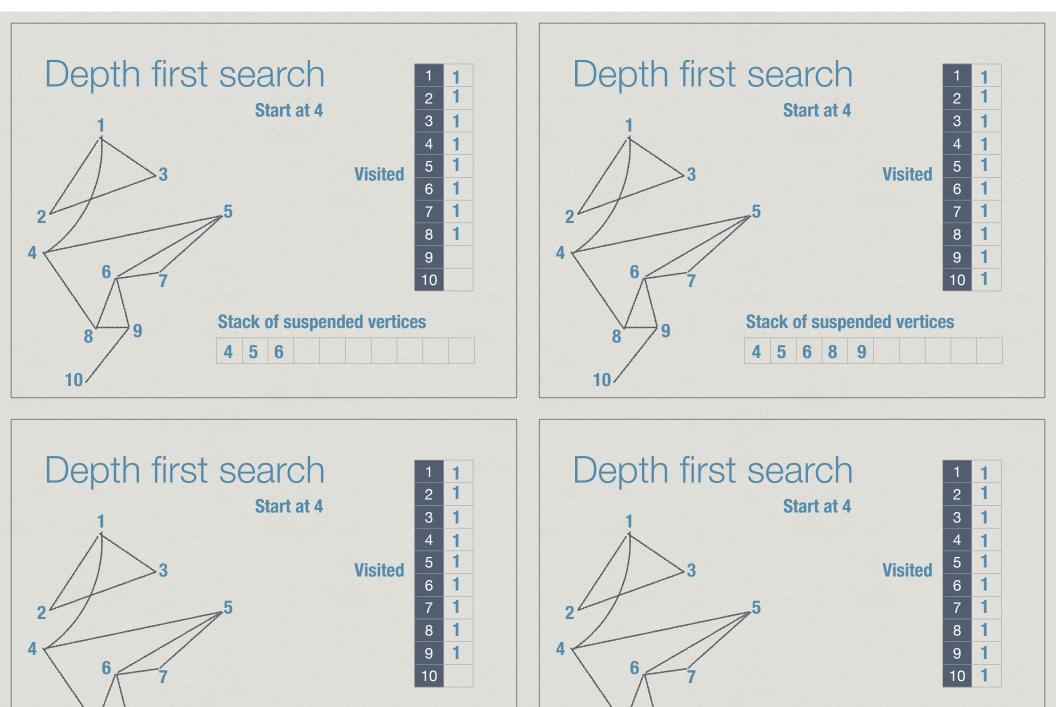
- BFS with level[] gives us the shortest path to each node in terms of number of edges
- In general, edges are labelled by a cost (money, time, distance ...)
  - Min cost path not same as fewest edges
- \* Will look at shortest paths in weighted graphs later
  - \* BFS computes shortest paths if all costs are 1











Stack of suspended vertices

8

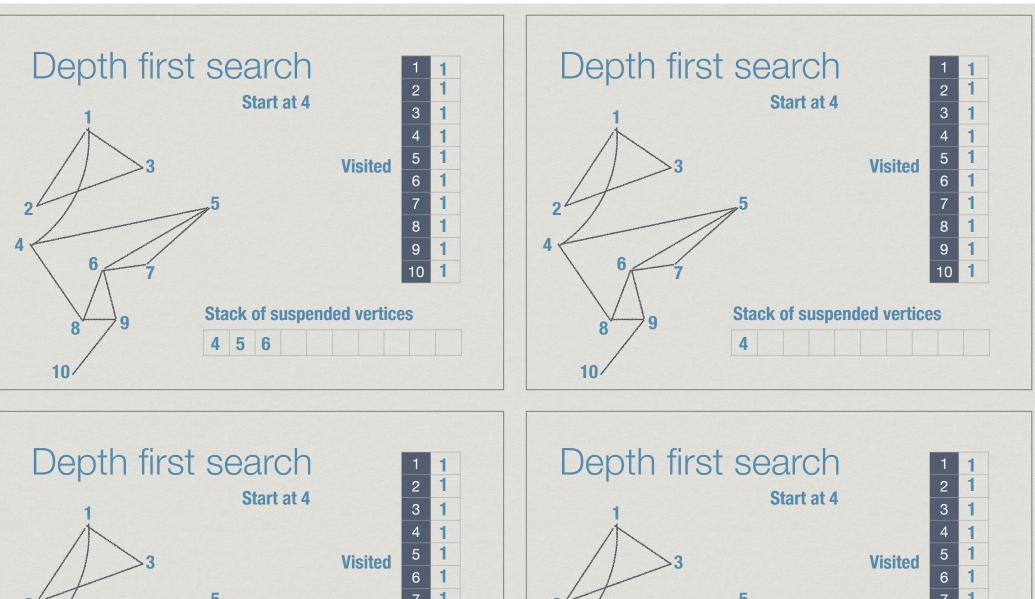
4 5 6

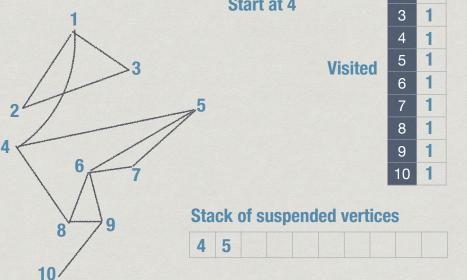
10

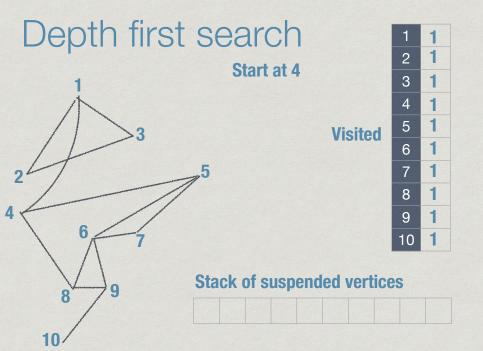
Stack of suspended vertices

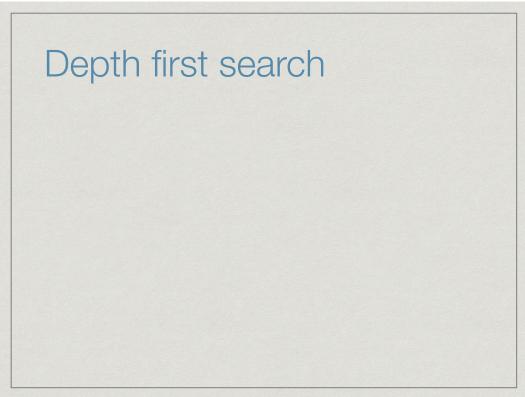
4 5

6









#### Depth first search

- \* DFS is most natural to implement recursively
  - For each unvisited neighbour j of i, call DFS(j)
- \* No need to explicitly maintain a stack
  - \* Stack is maintained implicitly by recursive calls

#### Depth first search

- \* DFS is most natural to implement recursively
  - \* For each unvisited neighbour j of i, call DFS(j)

#### Depth first search

```
//Initialization
```

```
for j = 1..n {visited[j] = 0; parent[j] = -1}
```

function DFS(i) // DFS starting from vertex i

```
//Mark i as visited
visited[i] = 1
```

```
//Explore each neighbour of i recursively
for each (i,j) in E
    if visited[j] == 0
        parent[j] = i
        DFS(j)
```



#### Complexity of DFS

- \* Each vertex marked and explored exactly once
- \* DFS(j) need to examine all neighbours of j

#### Complexity of DFS

\* Each vertex marked and explored exactly once

#### Complexity of DFS

- \* Each vertex marked and explored exactly once
- \* DFS(j) need to examine all neighbours of j
- \* In adjacency matrix, scan row j: n entries
  - \* Overall O(n<sup>2</sup>)

#### Complexity of DFS

- \* Each vertex marked and explored exactly once
- \* DFS(j) need to examine all neighbours of j
- \* In adjacency matrix, scan row j: n entries
  - \* Overall O(n<sup>2</sup>)
- With adjacency list, scanning takes O(m) time across all vertices
  - \* Total time is O(m+n), like BFS

#### Properties of DFS

 Paths discovered by DFS are not shortest paths, unlike BFS

#### Properties of DFS

#### **Properties of DFS**

- Paths discovered by DFS are not shortest paths, unlike BFS
- \* Why use DFS at all?

#### Properties of DFS

- Paths discovered by DFS are not shortest paths, unlike BFS
- \* Why use DFS at all?
- Many useful features can be extracted from recording the order in which DFS visited vertices

#### Properties of DFS

- Paths discovered by DFS are not shortest paths, unlike BFS
- \* Why use DFS at all?
- Many useful features can be extracted from recording the order in which DFS visited vertices
  - \* DFS numbering
  - \* Maintain a counter

#### Properties of DFS

- Paths discovered by DFS are not shortest paths, unlike BFS
- \* Why use DFS at all?
- Many useful features can be extracted from recording the order in which DFS visited vertices
  - \* DFS numbering

#### Properties of DFS

- Paths discovered by DFS are not shortest paths, unlike BFS
- \* Why use DFS at all?
- Many useful features can be extracted from recording the order in which DFS visited vertices
  - \* DFS numbering
  - \* Maintain a counter
  - \* Increment and record counter value when entering and leaving a vertex.

#### Depth first search

```
//Initialization
for j = 1..n {visited[j] = 0; parent[j] = -1}
count = 0
```

```
function DFS(i) // DFS starting from vertex i
```

```
//Mark i as visited
visited[i] = 1; pre[i] = count; count++
```

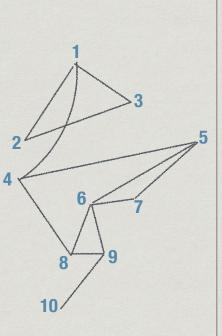
```
//Explore each neighbours of i recursively
for each (i,j) in E
    if visited[j] == 0
        parent[j] = i
        DFS(j)
        post[i] = count; count++
```

#### DFS numbering

pre[i] and post[i] can be used to find

- if the graph has a cycle —
   i.e., a loop
- \* cut vertex removal disconnects the graph

\* ....



# DFS numbering

#### Summary

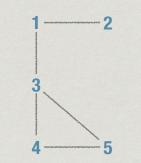
- BFS and DFS are two systematic ways to explore a graph
  - Both take time linear in the size of the graph with adjacency lists
- \* Recover paths by keeping parent information
- BFS can compute shortest paths, in terms of number of edges
- \* DFS numbering can reveal many interesting features

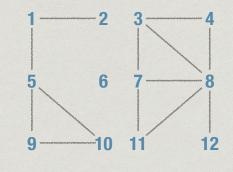
#### Graphs, formally

 $G=(V\!,\!E)$ 

- \* Set of vertices V
- \* Set of edges E
  - \* E is a subset of pairs (v,v'):  $E \subseteq V \times V$
  - \* Undirected graph: (v,v') and (v',v) are the same edge
  - \* Directed graph:
    - \* (v,v') is an edge from v to v'
    - \* Does not guarantee that (v',v) is also an edge

#### Connectivity





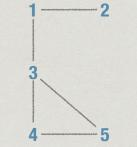
Connected graph

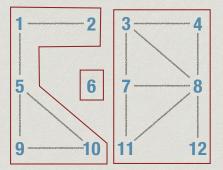
Disconnected graph

### Exploring graph structure

- \* Breadth first search
  - Level by level exploration
- \* Depth first search
  - \* Explore each vertex as soon as it is visited
  - \* DFS numbering
- What can we find out about a graph using BFS/ DFS?

#### Connectivity





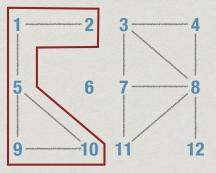
Connected graph

Disconnected graph Connected components

## Identifying connected components

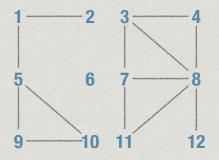
- \* Vertices {1,2,...,N}
- \* Start BFS or DFS from 1
  - \* All nodes marked Visited form a connected component
  - Pick first unvisited node, say j, and run BFS or DFS from j
  - \* Repeat till all nodes are visited
- Update BFS/DFS to label each visited node with component number

#### Connected components



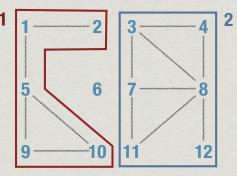
- \* Add a counter comp to number components
- Increment counter each time a fresh BFS/DFS starts
- \* Label each visited node j with component[j] = comp

#### Connected components



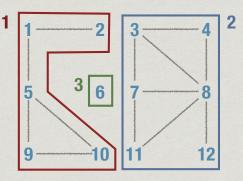
- \* Add a counter comp to number components
- Increment counter each time a fresh BFS/DFS starts
- \* Label each visited node j with component[j] = comp

#### Connected components



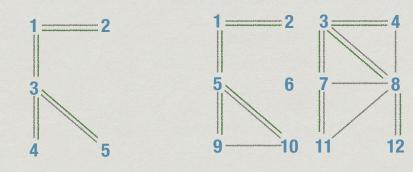
- \* Add a counter comp to number components
- Increment counter each time a fresh BFS/DFS starts
- \* Label each visited node j with component[j] = comp

#### Connected components



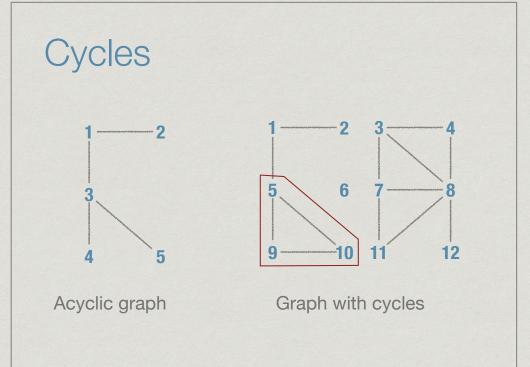
- \* Add a counter comp to number components
- \* Increment counter each time a fresh BFS/DFS starts
- \* Label each visited node j with component[j] = comp

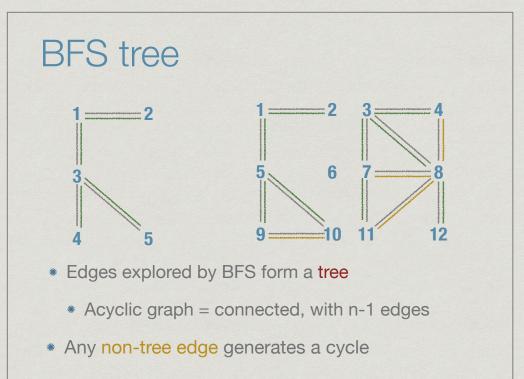
#### BFS tree

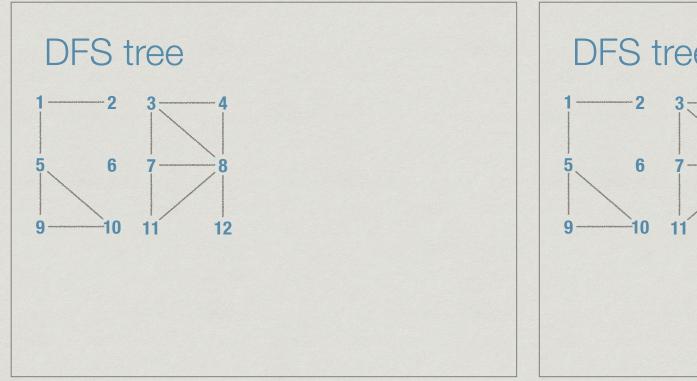


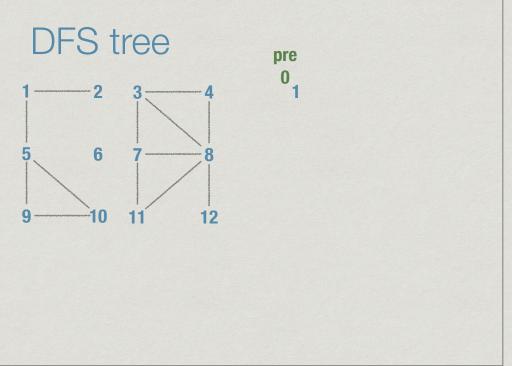
\* Edges explored by BFS form a tree

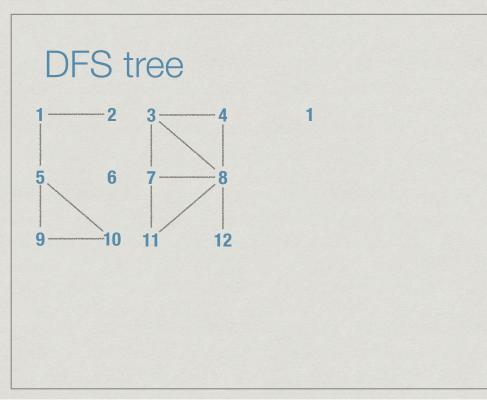
\* Acyclic graph = connected, with n-1 edges

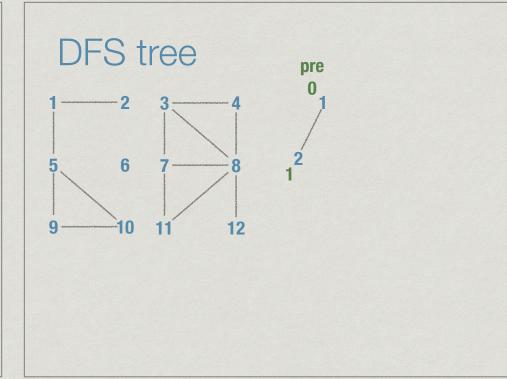


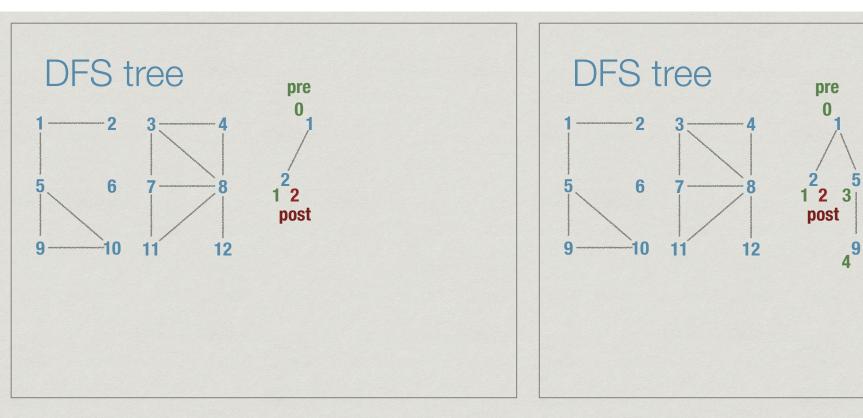


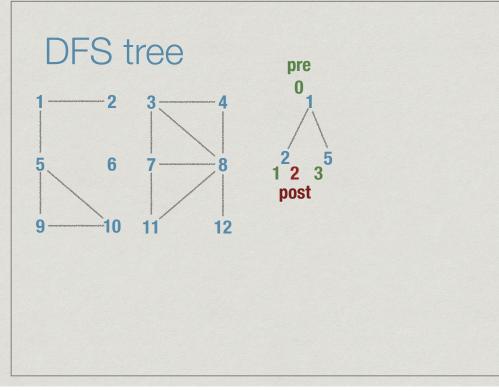


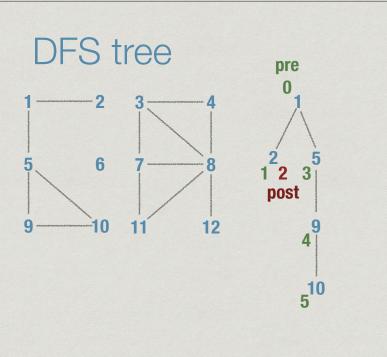


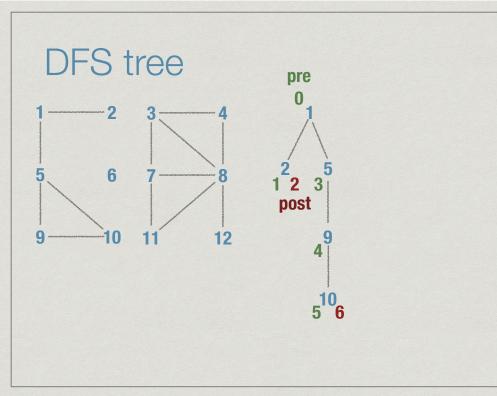


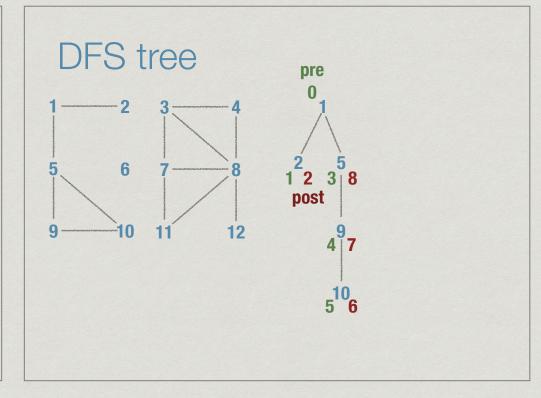


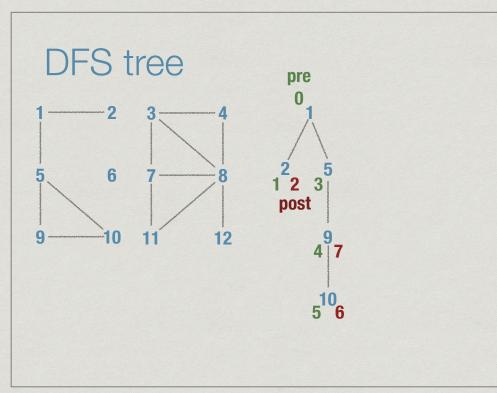


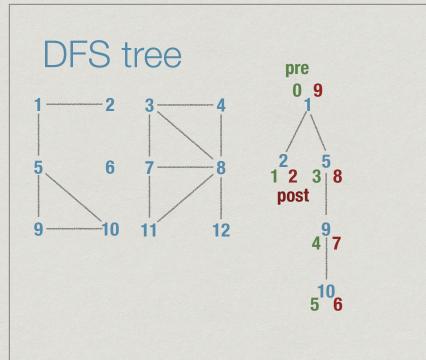


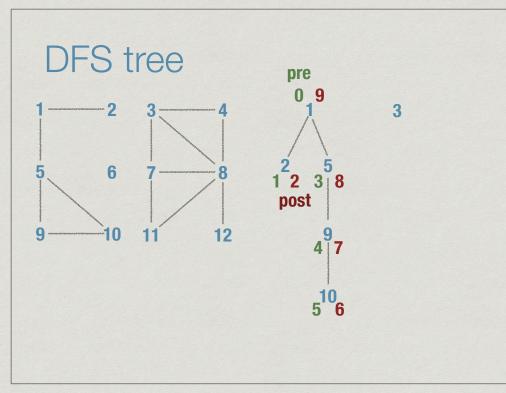


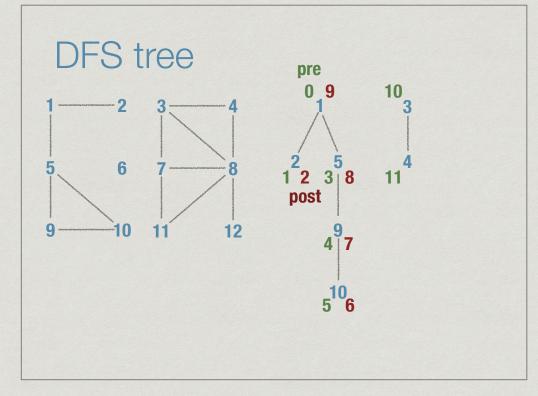


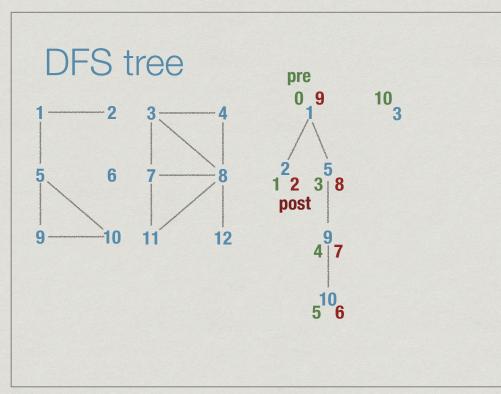


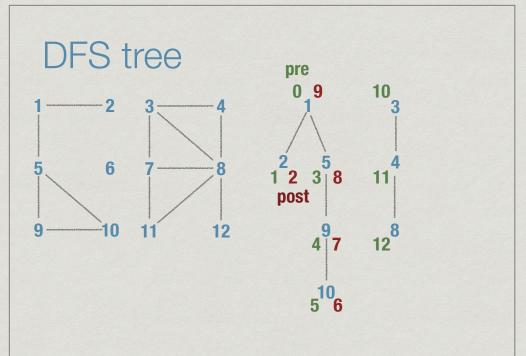


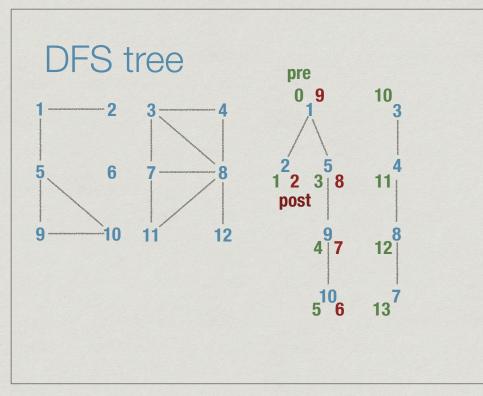


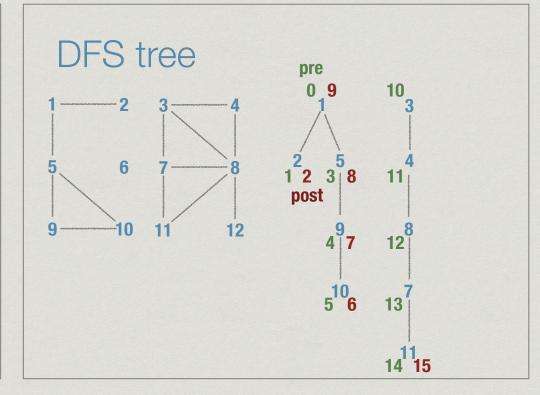


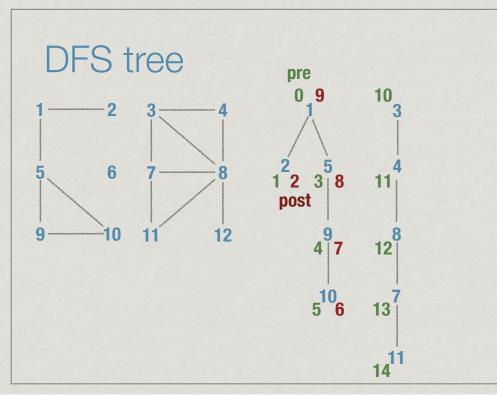


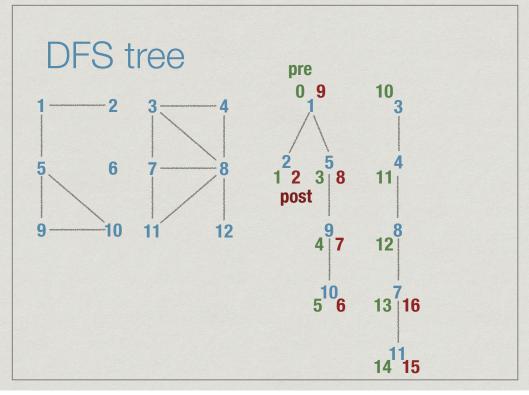


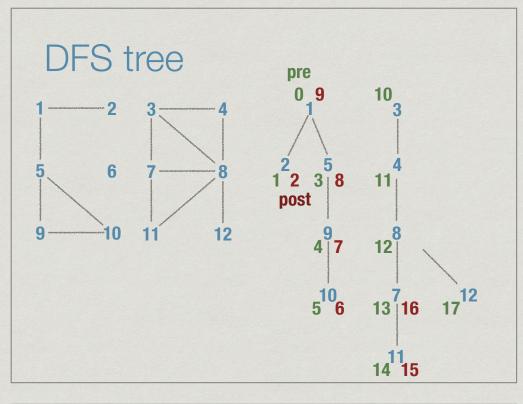


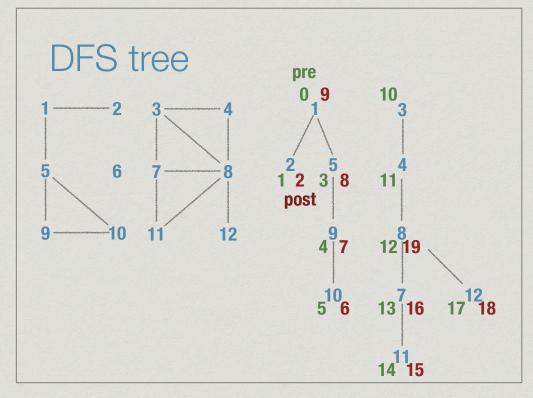


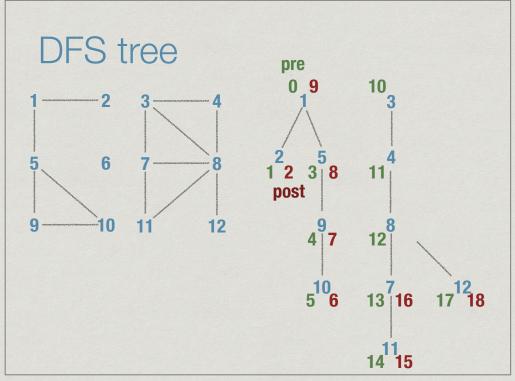


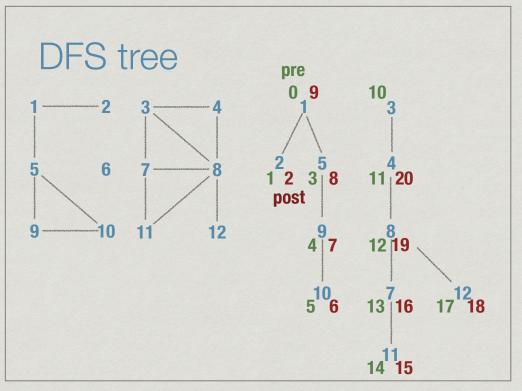


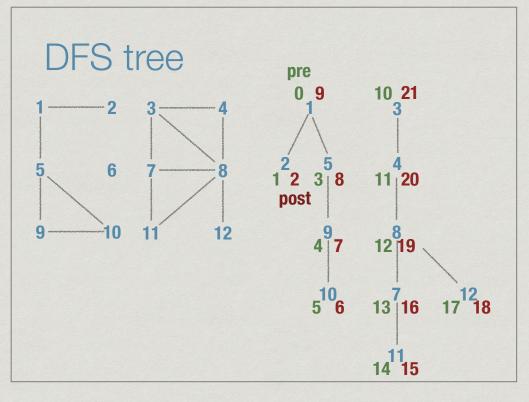


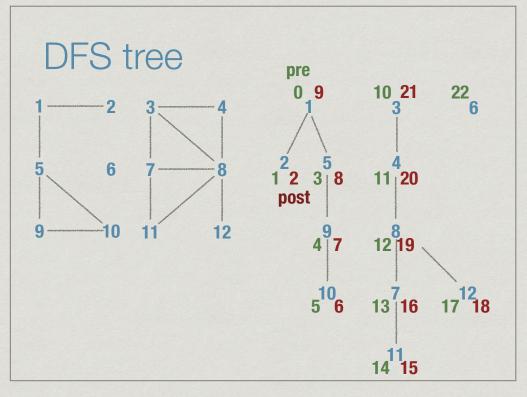


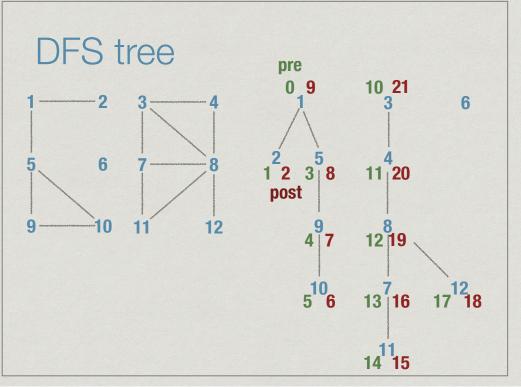


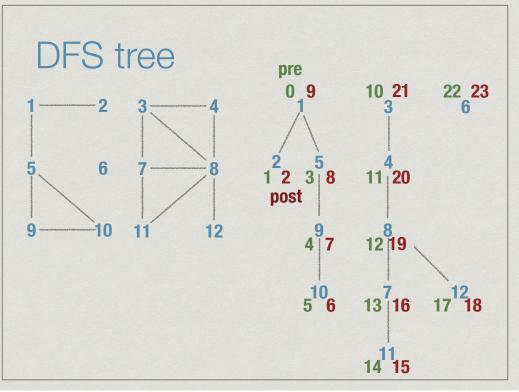


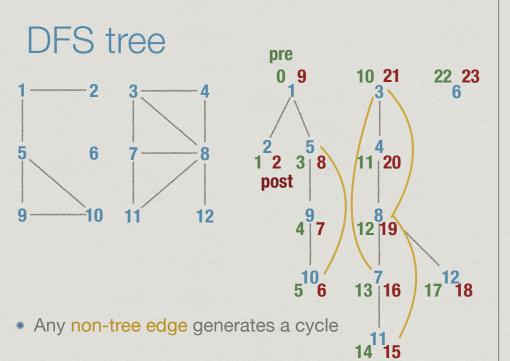


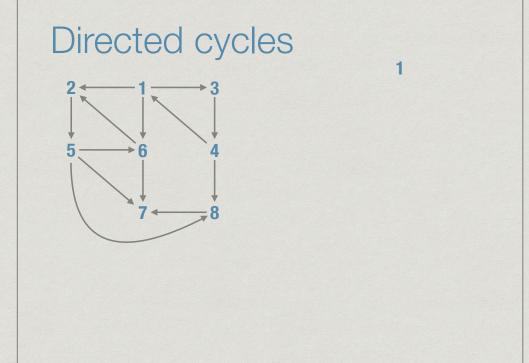


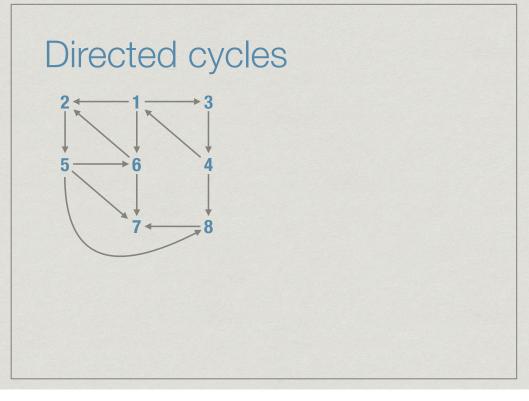


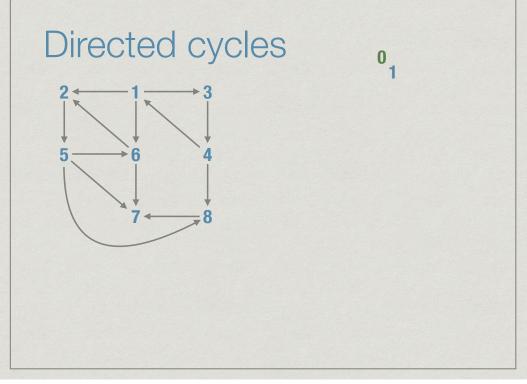


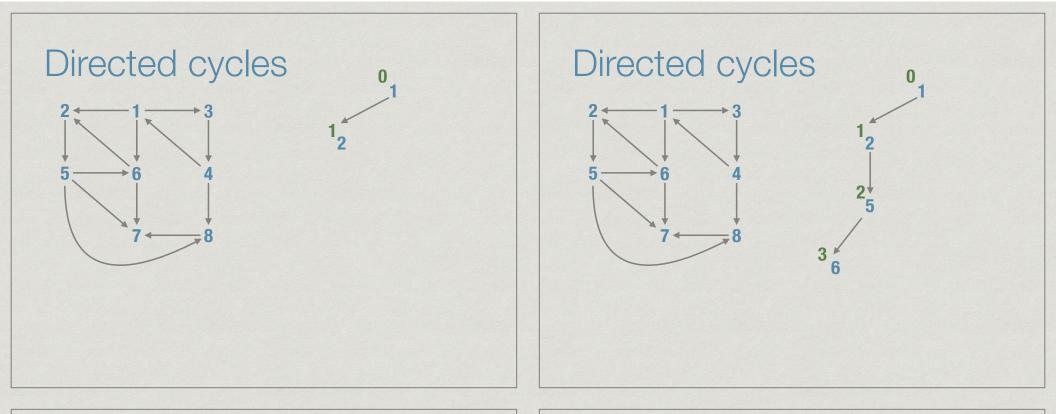


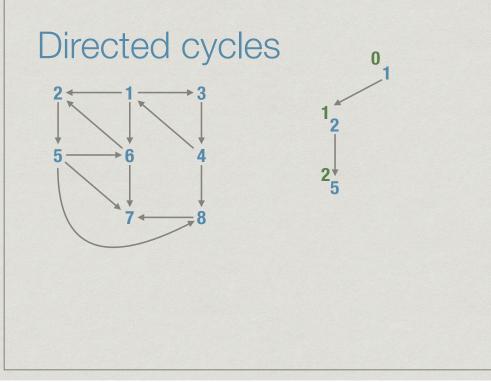


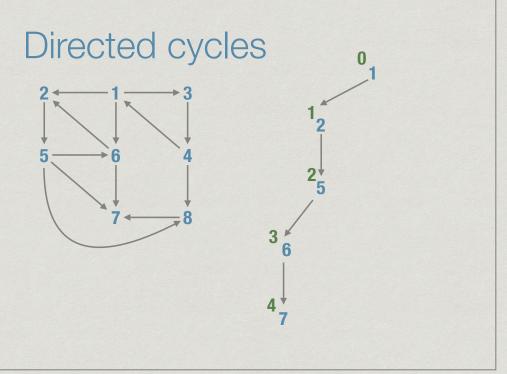


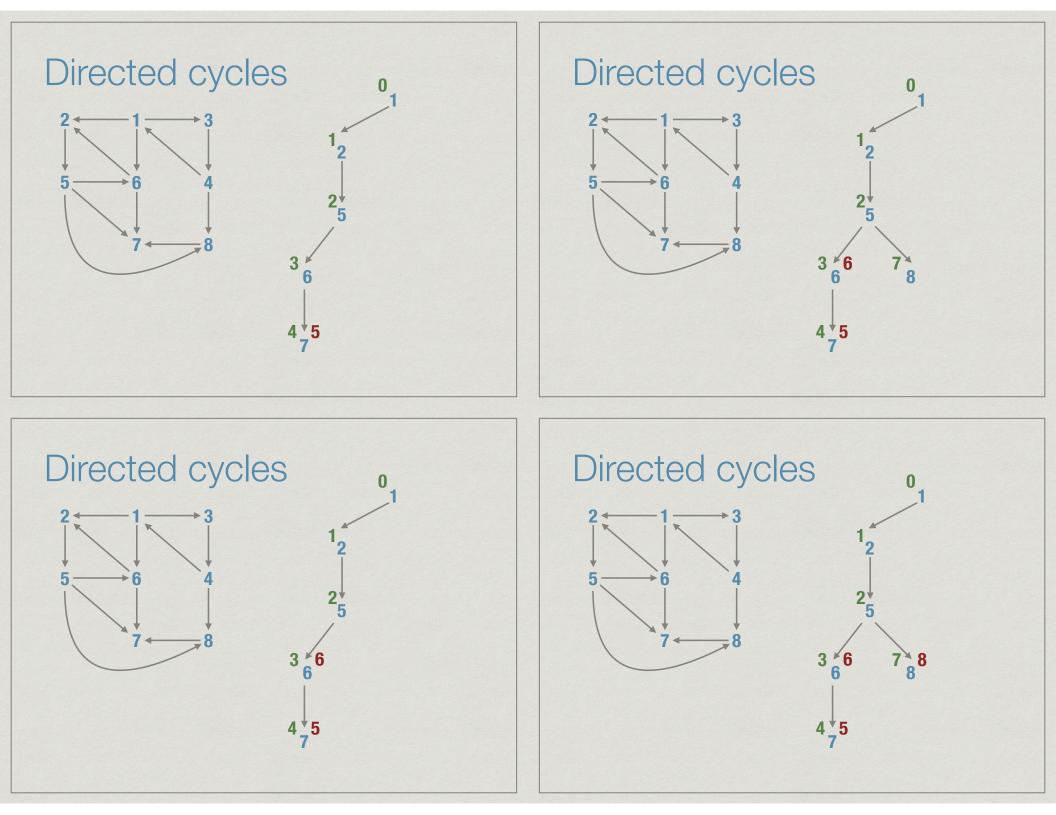


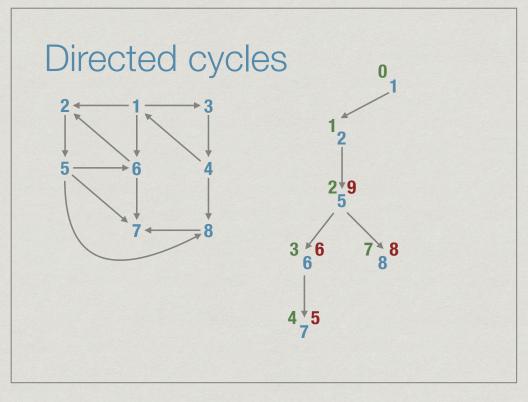


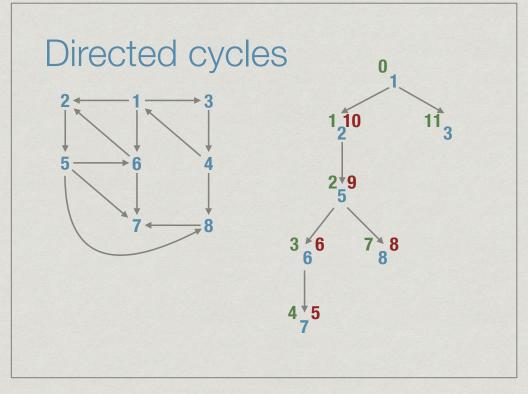


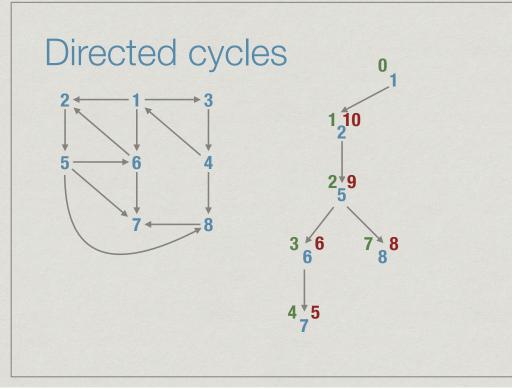


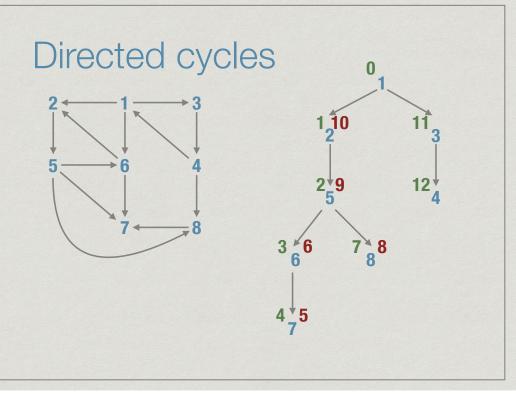


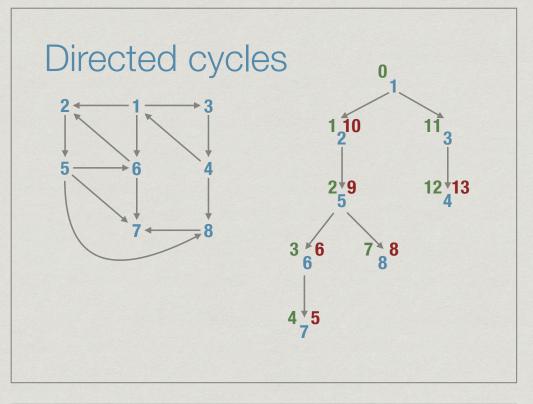


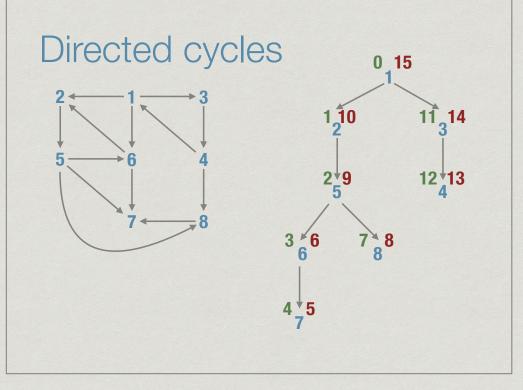


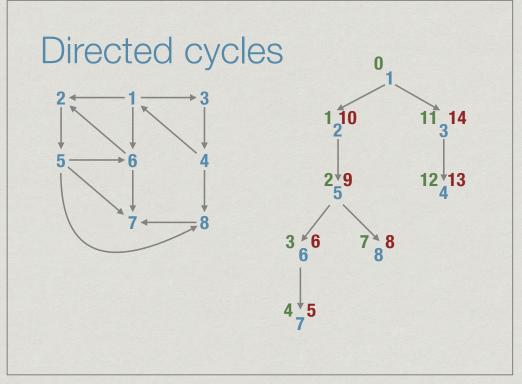


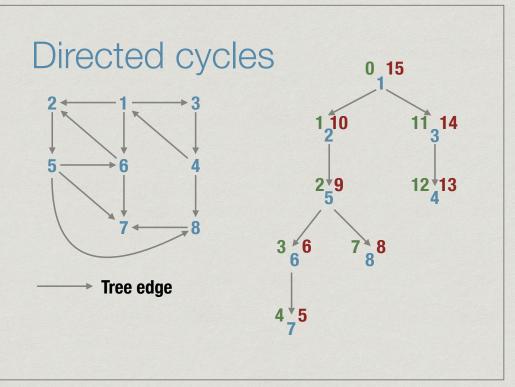


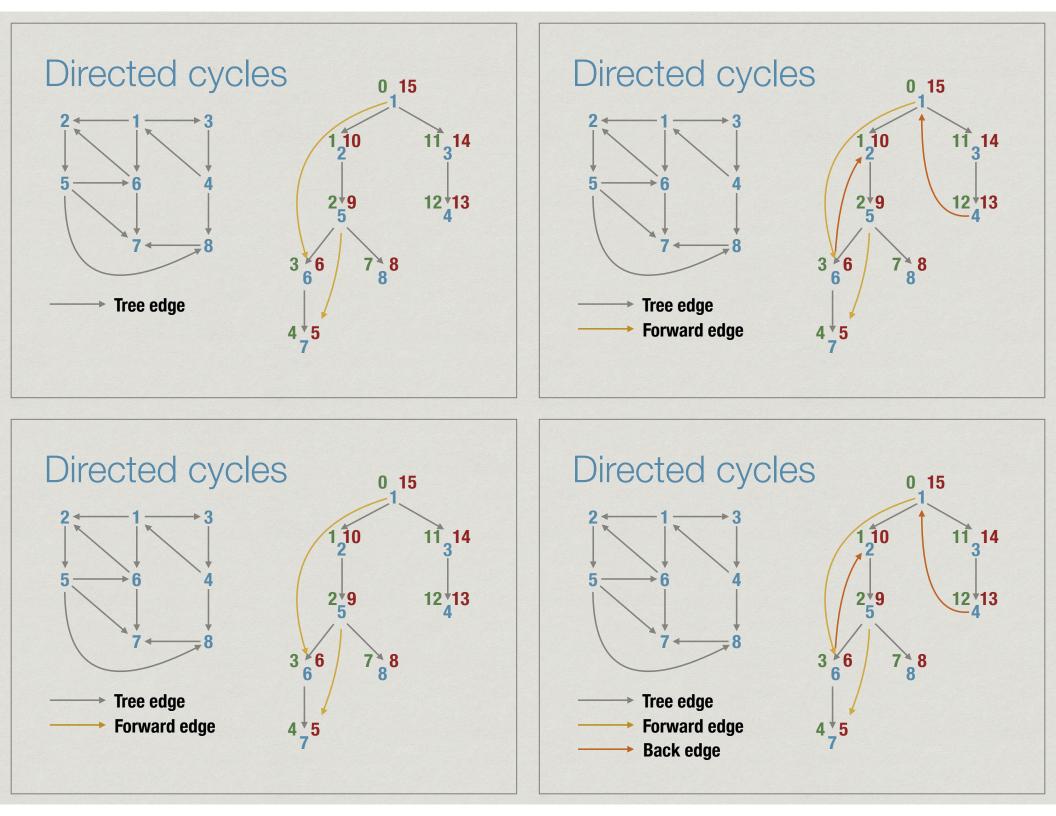


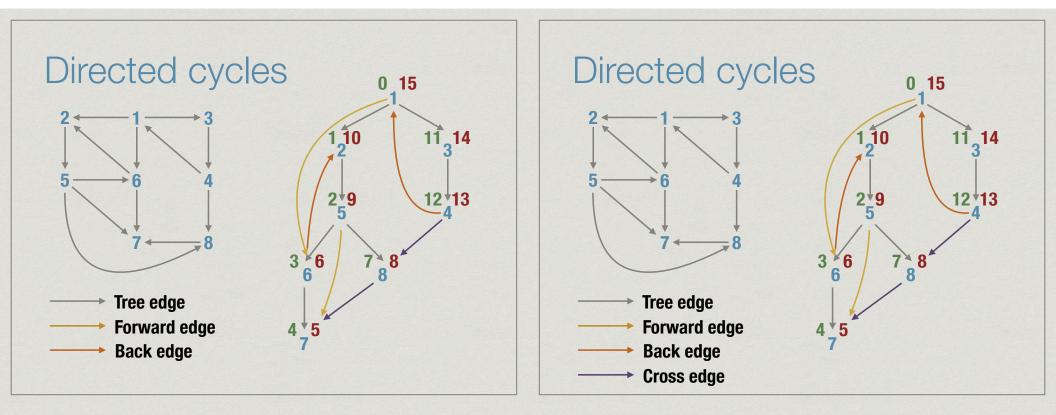


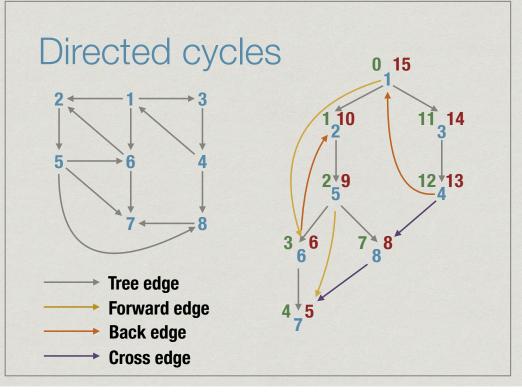












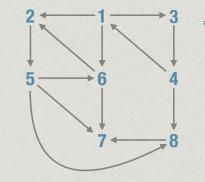
#### **Directed cycles**

- A directed graph has a cycle if and only if DFS reveals a back edge
- \* Can classify edges using pre and post numbers
  - Tree/Forward edge (u,v) : Interval [pre(u),post(u)] contains [(pre(v),post(v)]
  - Backward edge (u,v): Interval [pre(v),post(v)] contains [(pre(u),post(u)]
  - Cross edge (u,v): Intervals [(pre(u),post(u)] and [(pre(v),post(v)] disjoint

#### Directed acyclic graphs

- Directed graphs without cycles are useful for modelling dependencies
  - Courses with prerequisites
  - Edge (Algebra, Calculus) indicates that Algebra is a prerequisite for Calculus
- \* Will look at Directed Acyclic Graphs (DAGs) soon

#### Computing SCCs

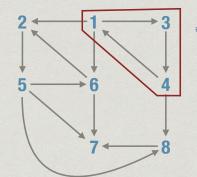


- DFS numbering (pre and post) can be used to compute SCCs
  - [Dasgupta, Papadimitriou,Vazirani]

## Connectivity in directed graphs

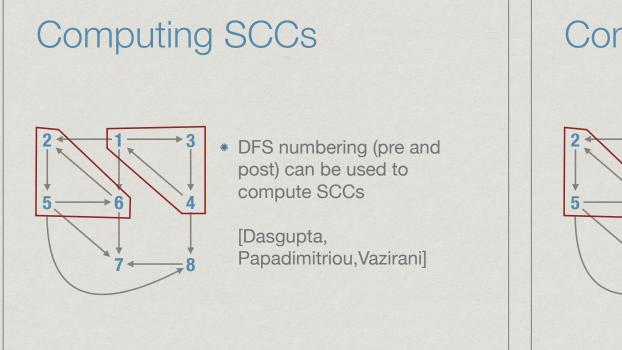
- \* Need to take directions into account
- Nodes i and j are strongly connected if there is a path from i to j and a path from j to i
- Directed graph can be decomposed into strongly connected components (SCCs)
  - All pairs of nodes in an SCC are strongly connected

#### Computing SCCs

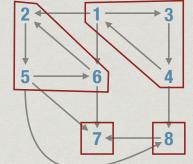


 DFS numbering (pre and post) can be used to compute SCCs

[Dasgupta, Papadimitriou,Vazirani]

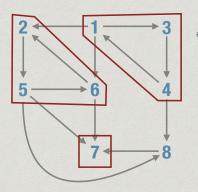


#### **Computing SCCs**



- DFS numbering (pre and post) can be used to compute SCCs
  - [Dasgupta, Papadimitriou,Vazirani]

#### **Computing SCCs**



 DFS numbering (pre and post) can be used to compute SCCs

[Dasgupta, Papadimitriou,Vazirani]

#### Other properties

- \* A number of other structural properties can be inferred from DFS numbering
- \* Articulation points (vertices)
  - Removing such a vertex disconnects the graph
- \* Bridges (edges)
  - Removing such an edge disconnects the graph