
Graphs, formally
G = (V,E)

Set of vertices V

Set of edges E

E is a subset of pairs (v,v’): E ⊆ V × V

Undirected graph: (v,v’) and (v’,v) are the same edge

Directed graph:

(v,v’) is an edge from v to v’

Does not guarantee that (v’,v) is also an edge

Finding a
route

Find a
sequence of
vertices v0, v1,
…, vk such that

v0 is source

Each (vi,vi+1)
is an edge in
E

vk is target

v0

v1

v2

v3

v4

v5

Adjacency matrix
1

2

3

4

5

6 7

8 9

10

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Adjacency list
1

2

3

4

5

6 7

8 9

10

For each vertex, maintain a
list of its neighbours

1 2,3,4
2 1,3
3 1,2
4 1,5,8
5 4,6,7
6 5,7,8,9
7 5,6
8 4,6,9
9 6,8,10

10 9

Finding a path

Mark vertices that have been visited

Keep track of vertices whose neighbours have
already been explored

Avoid going round indefinitely in circles

Two fundamental strategies: breadth first and
depth first

Breadth first search
Explore the graph level by level

First visit vertices one step away

Then two steps away

…

Remember which vertices have been visited

Also keep track of vertices visited, but whose
neighbours are yet to be explored

Breadth first search

Recall that V = {1,2,…,n}

Array visited[i] records whether i has been visited

When a vertex is visited for the first time, add it to
a queue

Explore vertices in the order they reach the
queue

Breadth first search
Exploring a vertex i:

	 	 for each edge (i,j)  
if visited[j] == 0  

visited[j] = 1  
append j to queue

Initially, queue contains only source vertex

At each stage, explore vertex at the head of the
queue

Stop when the queue becomes empty

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

head tail

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

3

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1

2

1

3

1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1

3

1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

5

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1

8

1

7

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1
1

7

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

6

1
1

7

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

7

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1

9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1
1

10

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9

10

Visited

Queue

1
1
1
1
1
1

1
1

1
1

Breadth first search
function BFS(i) // BFS starting from vertex i

 //Initialization  
for j = 1..n {visited[j] = 0}; Q = []

 //Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; append(Q,k)

Complexity of BFS
Each vertex enters Q exactly once

If graph is connected, loop to process Q iterated n
times

For each j extracted from Q, need to examine all
neighbours of j

In adjacency matrix, scan row j: n entries

Hence, overall O(n2)

Complexity of BFS
Let m be the number of edges in E. What if m << n2?

Adjacency list: scanning neighbours of j takes time
proportional to number of neighbours (degree of j)

Across the loop, each edge (i,j) is scanned twice,
once when exploring i and again when exploring j

Overall, exploring neighbours takes time O(m)

Marking n vertices visited still takes O(n)

Overall, O(n+m)

Complexity of BFS

For graphs, O(m+n) is considered the best
possible

Need to see each edge and vertex at least once

O(m+n) is considered to be linear in the size of the
graph

Enhancements to BFS

If BFS(i) sets visited[j] = 1, we know that i and j are
connected

How do we identify a path from i to j

When we mark visited[k] = 1, remember the
neighbour from which we marked it

If exploring edge (j,k) visits k, set parent[k] = j

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {visited[j] = 0; parent[j] = -1}  
Q = []

//Start the exploration at i  
visited[i] = 1; append(Q,i)  

 
//Explore each vertex in Q  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if visited[k] == 0  
visited[k] = 1; parent[k] = j; append(Q,k);

Reconstructing the path

BFS(i) sets visited[j] = 1

visited[j] = 1, so parent[j] = j’ for some j’

visited[j’] = 1, so parent[j’] = j” for some j’’

…

Eventually, trace back path to k with parent[k] = i

Recording distances

BFS can record how long the path is to each
vertex

Instead of binary array visited[], keep integer array
level[]

level[j] = -1 initially

level[j] = p means j is reached in p steps from i

Breadth first search
function BFS(i) // BFS starting from vertex i

//Initialization  
for j = 1..n {level[j] = -1; parent[j] = -1}  
Q = []

//Start the exploration at i, level[i] set to 0 
level[i] = 0; append(Q,i)  

 
//Explore each vertex in Q, increment level for each new vertex  
while Q is not empty  

j = extract_head(Q)  
for each (j,k) in E  

if level[k] == -1  
level[k] = 1+level[j]; parent[k] = j;  
append(Q,k);

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

L : Level
P : Parent

L P

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

head tail

L : Level
P : Parent

L P

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0

1

L : Level
P : Parent

L P
-

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0

L : Level
P : Parent

L P
-

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1

2

L : Level
P : Parent

L P
-
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1

2

1

3

L : Level
P : Parent

L P
-
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1

2

1

3

1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1

3

1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1

4

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1

L : Level
P : Parent

L P
-
1
1
1

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2

5

L : Level
P : Parent

L P
-
1
1
1
4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2

5

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

6

2

8

L : Level
P : Parent

L P
-
1
1
1
4

4

5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

6

2

8

3

7

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

6

2
3

7

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

6

2
3

7

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

2
3

7

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

2
3

3

9

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

2
3

3

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

2
3

3
4

10

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8
9

1

5

4

2

3

6 7

8 9

10

Breadth first search 1
2
3
4
5
6
7
8
9
10

Queue

0
1
1
1
2
3

2
3

3
4

L : Level
P : Parent

L P
-
1
1
1
4

4

5
5

8
9

Recording distances
BFS with level[] gives us the shortest path to each
node in terms of number of edges

In general, edges are labelled by a cost (money,
time, distance …)

Min cost path not same as fewest edges

Will look at shortest paths in weighted graphs later

BFS computes shortest paths if all costs are 1

Depth first search
Start from i, visit a neighbour j

Suspend the exploration of i and explore j instead

Continue till you reach a vertex with no unexplored
neighbours

Backtrack to nearest suspended vertex that still has an
unexplored neighbour

Suspended vertices are stored in a stack

Last in, first out: most recently suspended is checked
first

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

4

1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

4

1

1

1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

4

1

1

1

2

1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

4

1

1

1
1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

4

1
1
1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1

6

1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1

64

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1

6

1

84

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1

6

1

8

1

94

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1

6

1

8

1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1

6

1
1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1

5

1
1
1
1
1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1
1
1
1
1
1

4

1

2

3

4

5

6 7

8 9

10

Depth first search 1
2
3
4
5
6
7
8
9

10

Visited

Stack of suspended vertices

Start at 4

1

1
1
1

1
1
1
1
1
1

Depth first search

Depth first search

DFS is most natural to implement recursively

For each unvisited neighbour j of i, call DFS(j)

Depth first search

DFS is most natural to implement recursively

For each unvisited neighbour j of i, call DFS(j)

No need to explicitly maintain a stack

Stack is maintained implicitly by recursive calls

Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1  

 
//Explore each neighbour of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)

Complexity of DFS

Complexity of DFS
Each vertex marked and explored exactly once

Complexity of DFS
Each vertex marked and explored exactly once

DFS(j) need to examine all neighbours of j

Complexity of DFS
Each vertex marked and explored exactly once

DFS(j) need to examine all neighbours of j

In adjacency matrix, scan row j: n entries

Overall O(n2)

Complexity of DFS
Each vertex marked and explored exactly once

DFS(j) need to examine all neighbours of j

In adjacency matrix, scan row j: n entries

Overall O(n2)

With adjacency list, scanning takes O(m) time
across all vertices

Total time is O(m+n), like BFS

Properties of DFS

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Why use DFS at all?

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording
the order in which DFS visited vertices

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording
the order in which DFS visited vertices

DFS numbering

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording
the order in which DFS visited vertices

DFS numbering

Maintain a counter

Properties of DFS
Paths discovered by DFS are not shortest paths,
unlike BFS

Why use DFS at all?

Many useful features can be extracted from recording
the order in which DFS visited vertices

DFS numbering

Maintain a counter

Increment and record counter value when entering
and leaving a vertex.

Depth first search
//Initialization  

for j = 1..n {visited[j] = 0; parent[j] = -1}  
count = 0  

 
function DFS(i) // DFS starting from vertex i

//Mark i as visited  
visited[i] = 1; pre[i] = count; count++  

 
//Explore each neighbours of i recursively  
for each (i,j) in E  

if visited[j] == 0  
parent[j] = i  
DFS(j)  
post[i] = count; count++

DFS numbering
1

5

4

2

3

6 7

8 9

10

DFS numbering
pre[i] and post[i] can be used
to find

if the graph has a cycle —
i.e., a loop

cut vertex — removal
disconnects the graph

…

1

5

4

2

3

6 7

8 9

10

Summary
BFS and DFS are two systematic ways to explore a
graph

Both take time linear in the size of the graph with
adjacency lists

Recover paths by keeping parent information

BFS can compute shortest paths, in terms of
number of edges

DFS numbering can reveal many interesting features

Graphs, formally
G = (V,E)

Set of vertices V

Set of edges E

E is a subset of pairs (v,v’): E ⊆ V × V

Undirected graph: (v,v’) and (v’,v) are the same edge

Directed graph:

(v,v’) is an edge from v to v’

Does not guarantee that (v’,v) is also an edge

Exploring graph structure
Breadth first search

Level by level exploration

Depth first search

Explore each vertex as soon as it is visited

DFS numbering

What can we find out about a graph using BFS/
DFS?

Connectivity

Connected graph

1 2

3

4 5

Disconnected graph

1 2

5

9 10

3 4

7

11 12

6 8

Connectivity

Connected graph

1 2

3

4 5

Disconnected graph
Connected components

1 2

5

9 10

3 4

7

11 12

6 8

Identifying connected
components

Vertices {1,2,…,N}

Start BFS or DFS from 1

All nodes marked Visited form a connected component

Pick first unvisited node, say j, and run BFS or DFS
from j

Repeat till all nodes are visited

Update BFS/DFS to label each visited node with
component number

Connected components
1 2

5

9 10

3 4

7

11 12

6 8

Add a counter comp to number components

Increment counter each time a fresh BFS/DFS starts

Label each visited node j with component[j] = comp

Connected components
1 2

5

9 10

3 4

7

11 12

6 8

Add a counter comp to number components

Increment counter each time a fresh BFS/DFS starts

Label each visited node j with component[j] = comp

1

Connected components
1 2

5

9 10

3 4

7

11 12

6 8

Add a counter comp to number components

Increment counter each time a fresh BFS/DFS starts

Label each visited node j with component[j] = comp

1 2

Connected components
1 2

5

9 10

3 4

7

11 12

6 8

Add a counter comp to number components

Increment counter each time a fresh BFS/DFS starts

Label each visited node j with component[j] = comp

1 2

3

Cycles

Acyclic graph

1 2

3

4 5

Graph with cycles

1 2

5

9 10

3 4

7

11 12

6 8

BFS tree

Edges explored by BFS form a tree

Acyclic graph = connected, with n-1 edges

1 2

3

4 5

1 2

5

9 10

3 4

7

11 12

6 8

BFS tree

Edges explored by BFS form a tree

Acyclic graph = connected, with n-1 edges

1 2

3

4 5

1 2

5

9 10

3 4

7

11 12

6 8

Any non-tree edge generates a cycle

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1
0

pre

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2

0
pre

1

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2

0
pre

1 2
post

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

0
pre

1 2
post

3

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

0
pre

1 2
post

3

4

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

0
pre

1 2
post

3

4

5

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

0
pre

1 2
post

3

4

5 6

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

0
pre

1 2
post

3

4

5 6

7

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

0
pre

1 2
post

3

4

5 6

7

8

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

0
pre

1 2
post

3

4

5 6

7

8

9

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3
0

pre

1 2
post

3

4

5 6

7

8

9

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3
0

pre

1 2
post

3

4

5 6

7

8

9 10

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

0
pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

21

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

6
0

pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

21

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

6
0

pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

21 22

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

6
0

pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

21 22 23

DFS tree
1 2

5

9 10

3 4

7

11 12

6 8

1

2 5

9

10

3

4

8

7

11

12

6
0

pre

1 2
post

3

4

5 6

7

8

9 10

11

12

13

14 15

16 17 18

19

20

21 22 23

Any non-tree edge generates a cycle

Directed cycles
2 1

5

3

7

6 4

8

Directed cycles
2 1

5

3

7

6 4

8

1

Directed cycles
2 1

5

3

7

6 4

8

1
0

Directed cycles
2 1

5

3

7

6 4

8

2

1
0

1

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

0

1

2

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

6

0

1

2

3

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6

0

1

2

3

4

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6

0

1

2

3

4 5

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6

0

1

2

3

4 5

6

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6 8

0

1

2

3

4 5

6 7

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6 8

0

1

2

3

4 5

6 7 8

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6 8

0

1

2

3

4 5

6 7 8

9

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

7

6 8

0

1

2

3

4 5

6 7 8

9

10

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6 8

0

1

2

3

4 5

6 7 8

9

10 11

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge
Back edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge
Back edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge
Back edge
Cross edge

Directed cycles
2 1

5

3

7

6 4

8

2

1

5

3

7

6

4

8

0

1

2

3

4 5

6 7 8

9

10 11

12 13

14

15

Tree edge
Forward edge
Back edge
Cross edge

Directed cycles
A directed graph has a cycle if and only if DFS reveals a
back edge

Can classify edges using pre and post numbers

Tree/Forward edge (u,v) : 
Interval [pre(u),post(u)] contains [(pre(v),post(v)]

Backward edge (u,v):  
Interval [pre(v),post(v)] contains [(pre(u),post(u)]

Cross edge (u,v):  
Intervals [(pre(u),post(u)] and [(pre(v),post(v)] disjoint

Directed acyclic graphs

Directed graphs without cycles are useful for
modelling dependencies

Courses with prerequisites

Edge (Algebra,Calculus) indicates that Algebra
is a prerequisite for Calculus

Will look at Directed Acyclic Graphs (DAGs) soon

Connectivity in directed
graphs

Need to take directions into account

Nodes i and j are strongly connected if there is a
path from i to j and a path from j to i

Directed graph can be decomposed into strongly
connected components (SCCs)

All pairs of nodes in an SCC are strongly
connected

Computing SCCs

DFS numbering (pre and
post) can be used to
compute SCCs 
 
[Dasgupta,
Papadimitriou,Vazirani]

2 1

5

3

7

6 4

8

Computing SCCs

DFS numbering (pre and
post) can be used to
compute SCCs 
 
[Dasgupta,
Papadimitriou,Vazirani]

2 1

5

3

7

6 4

8

Computing SCCs

DFS numbering (pre and
post) can be used to
compute SCCs 
 
[Dasgupta,
Papadimitriou,Vazirani]

2 1

5

3

7

6 4

8

Computing SCCs

DFS numbering (pre and
post) can be used to
compute SCCs 
 
[Dasgupta,
Papadimitriou,Vazirani]

2 1

5

3

7

6 4

8

Computing SCCs

DFS numbering (pre and
post) can be used to
compute SCCs 
 
[Dasgupta,
Papadimitriou,Vazirani]

2 1

5

3

7

6 4

8

Other properties

A number of other structural properties can be
inferred from DFS numbering

Articulation points (vertices)

Removing such a vertex disconnects the graph

Bridges (edges)

Removing such an edge disconnects the graph

