
Overfitting

Model is too specific

Tailored to fit anomalies in training data

Performs suboptimally on general data

Prune the tree

Top-down: stop expanding tree if information gain drops below
a threshold

Bottom-up:

Use statistical estimate of error

Remove children of a node if estimated error across children is
more than for original

Overfitting . . .

Party affiliation of US
legislators based on voting
pattern

Overfitting . . .

Party affiliation of US legislators based on voting pattern, after
pruning

Bottlenecks in building a classifier

Noise : Uncertainty in classification function

Bias : Systematic inability to predict a particular value

Variance: Variation in model based on sample of training data

Models with high variance are unstable

Decision trees: choice of attributes influenced by entropy of
training data

Overfitting: model is tied too closely to training set

Is there an alternative to pruning?



Multiple models

Build many models (ensemble) and “average” them

How do we build di↵erent models from the same data?

Strategy to build the model is fixed

Same data will produce same model

Choose di↵erent samples of training data

Bootstrap Aggregating = Bagging

Training data has N items

TD = {d1, d2, . . . , dN}

Pick a random sample with replacement

Pick an item at random (probability 1
N )

Put it back into the set

Repeat K times

Some items in the sample will be repeated

If sample size is same as data size (K = N), expected number

of distinct items is (1 � 1

e
) · N

Approx 63.2%

Bootstrap Aggregating = Bagging

Sample with replacement of size N : bootstrap sample

Approx 60% of full training data

Take K such samples

Build a model for each sample

Models will vary because each uses di↵erent training data

Final classifier: report the majority answer

Assumptions: binary classifier, K odd

Provably reduces variance

Bagging with decision trees



Bagging with decision trees

Bagging with decision trees

Bagging with decision trees

Bagging with decision trees



Bagging with decision trees

Random Forest

Applying bagging to decision trees with a further twist

Each data item has M attributes

Normally, decision tree building chooses one among M
attributes, then one among remaining M � 1, . . .

Instead, fix a small limit m < M

At each level, choose m of the available attributes at random,
and only examine these for next split

No pruning

Seems to improve on bagging in practice

Boosting

Looking at a few attributes gives “rule of thumb” heuristic

If Amla does well, South Africa usually wins

If opening bowlers take at least 2 wickets within 5 overs, India
usually wins

. . .

Each heuristic is a weak classifier

Can we combine such weak classifiers to boost performance
and build a strong classifier?

Adaptively boosting a weak classifier (AdaBoost)

Weak binary classifier: output is {�1, +1}
Initially, all training inputs have equal weight, D1

Build a weak classifier C1 for D1

Compute its error rate, e1 (Details suppressed)
Increase weightage to all incorrectly classified inputs, D2

Build a weak classifier C2 for D2

Compute its error rate, e2

Increase weightage to all incorrectly classified inputs, D3

. . .

Combine the outputs o1, o2, . . . , ok of C1, C2, . . . , Ck as
w1o1 + w2o2 + · · · + wkok

Each weigth wj depends on error rate ej

Report the sign (negative 7! �1, positive 7! +1)



Boosting

Boosting

Boosting

Boosting



Boosting

Boosting

Boosting

Boosting



Summary

Variance in unstable models (e.g., decision trees) can be
reduced using an ensemble — bagging

Further refinement for decision tree bagging

Choose a random small subset of attributes to explore at each
level

Random Forest

Combining weak classifiers (“rules of thumb”) — boosting

References

Bagging Predictors, Leo Breiman,
http://statistics.berkeley.edu/sites/default/files/

tech-reports/421.pdf

Random Forests, Leo Breiman and Adele Cutler,
https://www.stat.berkeley.edu/~breiman/RandomForests/

cc_home.htm

A Short Introduction to Boosting, Yoav Fruend and Robert
E. Schapire,
http:

//www.site.uottawa.ca/~stan/csi5387/boost-tut-ppr.pdf

AdaBoost and the Super Bowl of Classifiers A Tutorial Introduction
to Adaptive Boosting, Raúl Rojas,
http://www.inf.fu-berlin.de/inst/ag-ki/adaboost4.pdf

Market Basket Analysis

Market Basket Analysis

A shopping basket contains a set of items

Analyze the content of a large number of shopping baskets

Find associations—co-occurrence relationships

Customers who buy breakfast cereal often buy packed juice

Express this as a rule

Cereal −→ Juice

When is an association worth recording?

Need a minimum threshold of baskets containing cereal and
juice — support

Of the baskets containing cereal, a reasonable fraction should
contain juice — confidence



Market Basket Analysis

More formally . . .

I = {i1, i2, . . . , im} is a set of items

T = {t1, t2, . . . , tn} is a set of transactions

Each transaction ti is a subset of I—an itemset

For an itemset X , X .count is number of transactions in T
containing X .

An association rule is of the form X → Y , where X and Y are
itemsets

Support of a rule X → Y

(X ∪ Y ).count

n

Confidence of a rule X → Y

(X ∪ Y ).count

X .count

Mining association rules

Given

Items I

Transactions T

Minimum support threshold σ

Minimum confidence threshold κ

Objective

Find all association rules with support at least σ and confidence at
least κ

Fixing σ, κ uniquely fixes the set of valid rules

Association rule mining is complete and exact

Example

Let T be as follows, with σ = 0.3, κ = 0.7

Noodles, Biscuits, Milk

Noodles, Cheese

Cheese, Boots

Noodles, Biscuits, Cheese

Noodles, Biscuits, Detergent, Cheese, Milk

Biscuits, Detergent, Milk

Biscuits, Milk, Detergent

Some valid association rules

Biscuits, Detergent → Milk [support 3/7, confidence 3/3]

Noodles → Cheese [support 3/7, confidence 3/4].

Computing association rules

Basic strategy

Generate all frequent itemsets (support above σ)

Among these, identify valid rules (confidence above κ)

Brute force is infeasible, even if we restrict to items appearing in T

` items → 2` candidate itemsets

How many itemsets can be frequent?

Suppose 106 items, 108 transactions with 10 items each,
σ = 0.01

At most 1000 frequently appearing items!

A frequent item must appear in 106 = 0.01× 108 baskets

Number of distinct items bounded by 109 = 10× 108



A priori algorithm

Key insight

If an itemset X is frequent, so is every subset Y of X

If Y is not frequent and Y ⊂ X , X cannot be frequent

A priori algorithm

Compute frequent itemsets level by level

Scan T to identify F1, frequent itemsets of size 1

Candidate itemsets of size 2, C2 = F1 × F1

Scan T to identify F2 ⊆ C2

Compute C3 such that all 2-subsets are in F2

Scan T to identify F3 ⊆ C3

. . .

A priori algorithm . . .

Computing Fk from Ck involves one scan of T

Maintain an incremental count for each X ∈ Ck

Bottleneck is computing Ck+1 from Fk

Naive strategy

Enumerate all k+1-subsets of I and

check which ones have all k-subsets in Fk

Infeasible, both in terms of time and space

A priori algorithm . . .

Generating candidate set Ck+1 from Fk

Assume I is ordered as i1 < i2 < · · ·

Sort each X ∈ Fk according to this ordering

Include Y = {i1, i2, . . . , ik−1, ik , ik+1} in Ck+1 if

Y1 = {i1, i2, . . . , ik−1, ik}
Y2 = {i1, i2, . . . , ik−1, ik+1}

both belong to Fk

Compute in single scan of Fk , using sliding window

Conservative approximation to exact Ck+1

A priori algorithm . . .

When do we stop?

Transaction size is an upper bound on size of frequent itemset

Before this bound, stop if Fk = ∅ for some k

In practice, may only want small itemsets, so impose a bound



From frequent itemsets to rules

Let F be the set of frequent itemsets

Naive strategy

For each X in F

Split X in all possible ways as X` ] Xr

Check confidence of rule X` → Xr

X .count

X`.count
≥ κ

Can we be more efficient?

From frequent itemsets to rules . . .

Consider candidate rules for X ∈ F

(X \ {x})→ {x}
(X \ {x , y})→ {x , y}

Clearly

(X \ {x}).count ≤ (X \ {x , y}).count

Hence
X .count

(X \ {x}).count ≥
X .count

(X \ {x , y}).count
Use a-priori again!

For (X \ {x , y})→ {x , y} to be a valid rule, both
(X \ {x})→ {x} and (X \ {y})→ {y} must be valid


