
Merge Sort: Shortcomings

Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call and return are expensive

Alternative approach

Extra space is required to merge

Merging happens because elements in left half
must move right and vice versa

Can we divide so that everything to the left is
smaller than everything to the right?

No need to merge!

Divide and conquer without merging

Suppose the median value in A is m

Move all values ≤ m to left half of A

Right half has values > m

This shifting can be done in place, in time O(n)

Recursively sort left and right halves

A is now sorted! No need to merge

t(n) = 2t(n/2) + n = O(n log n)

Divide and conquer without merging

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in A — pivot

Split A with respect to this pivot element

Quicksort

Choose a pivot element

Typically the first value in the array

Partition A into lower and upper parts with respect
to pivot

Move pivot between lower and upper partition

Recursively sort the two partitions

Quicksort

High level view

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

13 32 22 43 63 57 91 78

Quicksort

High level view

13 22 32 43 57 63 78 91

Quicksort: Partitioning

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 78 63 57 91 13

Quicksort: Partitioning

43 32 22 13 63 57 91 78

Quicksort: Partitioning

13 32 22 43 63 57 91 78

Quicksort(A,l,r) // Sort A[l..r-1]
 

if (r - l <= 1)) return; // Base case  

// Partition with respect to pivot, a[l]
yellow = l+1;
for (green = l+1; green < r; green++)

if (A[green] <= A[l])
swap(A,yellow,green);
yellow++;

swap(A,l,yellow-1); // Move pivot into place

Quicksort(A,l,yellow); // Recursive calls
Quicksort(A,yellow+1,r);

Quicksort: Implementation

Quicksort:  
Another Partitioning Strategy

Quicksort:  
Another Partitioning Strategy

43 32 22 78 63 57 91 13

Quicksort:  
Another Partitioning Strategy

43 32 22 78 63 57 91 13

Quicksort:  
Another Partitioning Strategy

43 32 22 78 63 57 91 13

Quicksort:  
Another Partitioning Strategy

43 32 22 78 63 57 91 13

Quicksort:  
Another Partitioning Strategy

43 32 22 13 63 57 91 78

Quicksort:  
Another Partitioning Strategy

43 32 22 13 63 57 91 78

Quicksort:  
Another Partitioning Strategy

43 32 22 13 63 57 91 78

Quicksort:  
Another Partitioning Strategy

43 32 22 13 63 57 91 78

Quicksort:  
Another Partitioning Strategy

13 32 22 43 63 57 91 78

Quicksort

Choose a pivot element

Typically the first value in the array

Partition A into lower and upper parts with respect
to pivot

Move pivot between lower and upper partition

Recursively sort the two partitions

Analysis of Quicksort

Partitioning with respect to pivot takes O(n)

If pivot is median

Each partition is of size n/2

t(n) = 2t(n/2) + n = O(n log n)

Worst case?

Analysis of Quicksort
Worst case

Pivot is maximum or minimum

One partition is empty

Other is size n-1

t(n) = t(n-1) + n = t(n-2) + (n-1) + n 
 = … = 1 + 2 + … + n = O(n2)

Already sorted array is worst case input!

Analysis of Quicksort

But …

Average case is O(n log n)

Sorting is a rare example where average case
can be computed

What does average case mean?

Quicksort: Average case

Assume input is a permutation of {1,2,…,n}

Actual values not important

Only relative order matters

Each input is equally likely (uniform probability)

Calculate running time across all inputs

Expected running time can be shown O(n log n)

Quicksort: randomization
Worst case arises because of fixed choice of pivot

We chose the first element

For any fixed strategy (last element, midpoint), can
work backwards to construct O(n2) worst case

Instead, choose pivot randomly

Pick any index in [0..n-1] with uniform probability

Expected running time is again O(n log n)

Iterative Quicksort

Recursive calls work on disjoint segments of array

No recombination of results required

Can use an explicit stack to simulate recursion

Stack only needs to store left and right
endpoints of interval to be sorted

Quicksort in practice

In practice, Quicksort is very fast

Typically the default algorithm for in-built sort
functions

Spreadsheets

Built in sort function in programming
languages

Graphs, formally
G = (V,E)

Set of vertices V

Set of edges E

E is a subset of pairs (v,v’): E ⊆ V × V

Undirected graph: (v,v’) and (v’,v) are the same edge

Directed graph:

(v,v’) is an edge from v to v’

Does not guarantee that (v’,v) is also an edge

Finding a
route

Directed graph

Find a sequence
of vertices v0, v1,
…, vk such that

v0 is New
Delhi

Each (vi,vi+1) is
an edge in E

vk is
Trivandrum

v0

v1

v2

v3

v4

v5

Finding a
route

Also makes sense
for undirected
graphs

Find a sequence
of vertices v0, v1,
…, vk such that

v0 is New Delhi

Each (vi,vi+1) is
an edge in E

vk is Trivandrum

v0

v1

v2

v3

v4

v5

Working with graphs

We are given G = (V,E), undirected

Is there a path from source vs to target vt?

Look at the picture and see if vs and vt are
connected

How do we get an algorithm to “look at the
picture”?

Representing graphs
Let V have n vertices

We can assume vertices are named 1,2,…,n

Each edge is now a pair (i,j), where 1 ≤ i,j ≤ n

Let A(i,j) = 1 if (i,j) is an edge and 0 otherwise

A is an n x n matrix describing the graph

Adjacency matrix

Adjacency matrix
1

2

3

4

5

6 7

8 9

10

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Adjacency matrix

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Neighbours of i

Any column j in row i
with entry 1

Scan row i from left
to right to identify all
neighbours

Neighbours of 4 are
{1,5,8}

Adjacency matrix

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Neighbours of i

Any column j in row i
with entry 1

Scan row i from left
to right to identify all
neighbours

Neighbours of 4 are
{1,5,8}

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Finding a path

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Start with vs

New Delhi is 1

Mark each neighbour as
reachable

Explore neighbours of
marked vertices

Check if target is
marked

vt =10 = Trivandrum

Exploring graphs
Need a systematic algorithm

Mark vertices that have been visited

Keep track of vertices whose neighbours have
already been explored

Avoid going round indefinitely in circles

Two fundamental strategies: breadth first and
depth first

An alternative representation

1 2 3 4 5 6 7 8 9 10
1 0 1 1 1 0 0 0 0 0 0
2 1 0 1 0 0 0 0 0 0 0
3 1 1 0 0 0 0 0 0 0 0
4 1 0 0 0 1 0 0 1 0 0
5 0 0 0 1 0 1 1 0 0 0
6 0 0 0 0 1 0 1 1 1 0
7 0 0 0 0 1 1 0 0 0 0
8 0 0 0 1 0 1 0 0 1 0
9 0 0 0 0 0 1 0 1 0 1

10 0 0 0 0 0 0 0 0 1 0

Adjacency matrix has
many 0’s

Size of the matrix is n2
regardless of number
of edges

Maximum size of E is
n(n-1)/2 if we disallow
self loops

Typically E is much
smaller

Adjacency list
1

2

3

4

5

6 7

8 9

10

For each vertex, maintain a
list of its neighbours

1 2,3,4
2 1,3
3 1,2
4 1,5,8
5 4,6,7
6 5,7,8,9
7 5,6
8 4,6,9
9 6,8,10

10 9

Comparing representations
Adjacency list typically requires less space

Is j a neighbour of i?

Just check if A[i][j] is 1 in adjacency matrix

Need to scan neighbours of i in adjacency list

Which vertices are neighbours of i?

Scan all n columns in adjacency matrix

Takes time proportional to neighbours in adjacency
list

