ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

Supervised Learning (Classification)

Supervised learning

- A set of items
 - Each item is characterized by attributes (a₁, a₂, ..., a_k), where each a_i ∈ A_i
 - Each item is assigned a class or category $c \in C$
- Given a set of examples, predict c for a new item with attributes (a'₁, a'₂, ..., a'_k)
- Examples provided are called training data
- Aim is to learn a mathematical model that generalizes the training data
- Classification problem

Basic assumptions

Fundamental assumption of machine learning

• Distribution of training examples is identical to distribution of unseen data

What does it mean to learn from the data?

- Build a model that does better than random answers
 - In the loan data set, always saying Yes would be correct about 9/15 of the time
- Performance should ideally improve with more training data

Models for supervised learning

Example: Loan application data set

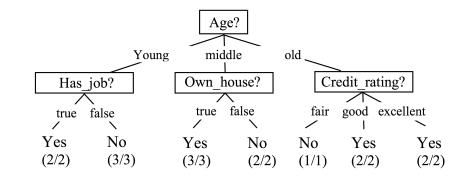
- Decision trees
- Naive Bayes classifiers
- Support vector machines

ID	Age	Has_job	Own_house	Credit_rating	Class
1	young	false	false	fair	No
2	young	false	false	good	No
3	young	true	false	good	Yes
4	young	true	true	fair	Yes
5	young	false	false	fair	No
6	middle	false	false	fair	No
7	middle	false	false	good	No
8	middle	true	true	good	Yes
9	middle	false	true	excellent	Yes
10	middle	false	true	excellent	Yes
11	old	false	true	excellent	Yes
12	old	false	true	good	Yes
13	old	true	false	good	Yes
14	old	true	false	excellent	Yes
15	old	false	false	fair	No

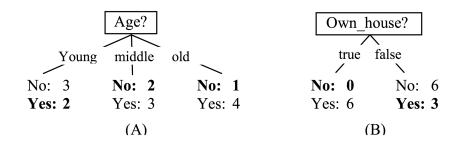
Decision trees

Example: Decision tree

- Examine attributes one at a time
- Branch according to value of attribute
- (Adaptively) choose next attribute to examine



A reasonable heuristic is to minimize impurity



(B) is a better initial choice than (A) — resulting subgroups are more homogeneous, more pure

Can we quantify this notion?

Constructing decision trees

Smaller trees are better

- Tend to be more accurate
- Easier to understand
 - Explaining the classification can be important
 - Disease diagnosis from symptoms and test results

Finding the best tree that fits the data is expensive

- NP-complete
- Need heuristics that can incrementally construct a good tree

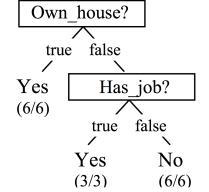
Constructing decision trees: entropy

Information theory

- Data set D, classes $C = \{c_1, c_2, \ldots, c_k\}$
- $Pr(c_j) =$ fraction of samples in *D* classified as c_j

$$entropy(D) = -\sum_{i=1}^{k} Pr(c_i) \log_2 Pr(c_i)$$

 $\sum_{i=1}^{k} Pr(c_i) = 1$



- Entropy measures disorder or impurity of data
- Entropy is maximized when all entries in C are equiprobable
 - Suppose $C = \{y, n\}$
 - $Pr(y) = 0, Pr(n) = 1 \Rightarrow$ entropy $(D) = -(0 \log 0 + 1 \log 1) = 0$
 - Note We define $0 \log 0 = 0$
 - $Pr(y) = 0.2, Pr(n) = 0.8 \Rightarrow$ entropy(D) = -(0.2 log 0.2 + 0.8 log 0.8) = 0.722
 - $Pr(y) = Pr(n) = 0.5 \Rightarrow$ entropy(D) = -(0.5 log 0.5 + 0.5 log 0.5) = 1
- Information theoretically, entropy describes the minimum number of bits required to transmit values
- Constructing decision trees: information gain

- Attributes with unique values (Aadhar ID, passport number) produce pure partitions of size 1
- Zero entropy, but not useful as a classifier!
- Normalize the information gain by the entropy of the partition
- gainratio(D, A) = $\frac{gain(D, A)}{-\sum_{i=1}^{\ell} \frac{|D_i|}{|D|} \log \frac{|D_i|}{|D|}}$
- Maximize normalized information gain-information gain ratio

Constructing decision trees: other issues

Handling numeric attribute A

- Divide into intervals, guided by actual data D
- Often a binary split into {low,high} is enough
- Actual data has fixed values $v_1 < v_2 < \cdots < v_N$ for A
- Choose threshold between v_i , v_{i+1} that maximizes information gain

At each step, choose the attribute that maximally reduces the entropy — maximizes information gain

- Current data is D, attribute A has ℓ values
- Choosing A as next node in the tree partitions D as $\{D_1, D_2, \dots, D_\ell\}$
- Define $entropy_A(D) = \sum_{i=1}^{\ell} \frac{|D_j|}{|D|} entropy(D_j)$
- Define $gain(D, A) = entropy(D) entropy_A(D)$
- Choose A_j such that $gain(D, A_j)$ is maximized

Evaluating a classifier

- Accuracy What fraction of predictions are correct?
 - Need access to an "oracle" to validate answers
- Classification is often asymmetric
 - $\bullet\,$ Suppose 1% of email traffic constitutes phishing
 - An email filter that always says "No" is 99% accurate, but totally useless!
- Note: Conventional to assume that "Yes" is the minority answer
- Need a finer classification of correct predictions and errors

	Classified positive	Classified negative
Actual Positive	1	99
Actual Negative	0	1000

Here p = 1 but r = 0.01

- No functional relationship between p and r
- In practice, they are typically inversely related—increasing *p* reduces *r* and vice versa
 - Conservative classifier higher precision, ignores valid cases
 - Permissive classifier higher recall, more mistakes

Evaluating a classifier ...

Confusion matrix

	Classified positive	Classified negative
Actual Positive	TP	FN
Actual Negative	FP	TN

Precision

What fraction of positive classifications are correct?

$$p = \frac{TP}{TP + FP}$$

Recall

What fraction of actual positive cases are correctly classified?

$$p = \frac{TP}{TP + FN}$$