
Sequences of values

Two basic ways of storing a sequence of values

Arrays

Lists

What’s the difference?

Arrays
Single block of memory

Typically fixed size

Indexing is fast

Access A[i] in constant
time for any i

Inserting an element between
A[i] and A[i+1] is expensive

Contraction is expensive

Lists
Values scattered in memory

Each element points to the
next—“linked” list

Flexible size

Follow i links to access A[i]

Cost proportional to i

Inserting or deleting an element
is easy

“Plumbing”

Operations
Exchange A[i] and A[j]

Constant time in array, linear time in lists

Delete A[i] or Insert v after A[i]

Constant time in lists (if we are already at A[i])

Linear time in array

Algorithms on one data structure may not transfer to
another

Example: Binary search

Search problem

Is a value K present in a collection A?

Does the structure of A matter?

Array vs list

Does the organization of the information matter?

Values sorted/unsorted

The unsorted case
function search(A,K)

 i = 0;  

 while i < n and A[i] != K do
 i = i+1;  

if i < n  
 return i;
else
 return -1;

Worst case

Need to scan the entire sequence A

O(n) time for input sequence of size A

Does not matter if A is array or list

Search a sorted sequence
What if A is sorted?

Compare K with midpoint of A

If midpoint is K, the value is found

If K < midpoint, search left half of A

If K > midpoint, search right half of A

Binary search

Binary search …
bsearch(K,A,l,r) // A sorted, search for K in A[l..r-1]

if (r - l == 0) return(false)

mid = (l + r) div 2 // integer division

if (K == A[mid]) return (true)

if (K < A[mid])

return (bsearch(K,A,l,mid))

else

return (bsearch(K,A,mid+1,r))

Binary Search …
How long does this take?

Each step halves the interval to search

For an interval of size 0, the answer is
immediate

T(n): time to search in an array of size n

T(0) = 1

T(n) = 1 + T(n/2)

Binary Search …
T(n): time to search in a list of size n

T(0) = 1

T(n) = 1 + T(n/2)

Unwind the recurrence

T(n) = 1 + T(n/2) = 1 + 1 + T(n/22) = … 
 = 1 + 1 + … + 1 + T(n/2k) 
 = 1 + 1 + … + 1 + T(n/2log n) = O(log n)

Binary Search …

Works only for arrays

Need to be look up A[i] in constant time

By seeing only a small fraction of the sequence,
we can conclude that an element is not present!

Sorting
Searching for a value

Unsorted array — linear scan, O(n)

Sorted array — binary search, O(log n)

Other advantages of sorting

Finding median value: midpoint of sorted list

Checking for duplicates

Building a frequency table of values

How to sort?

You are a Teaching Assistant for a course

The instructor gives you a stack of exam answer
papers with marks, ordered randomly

Your task is to arrange them in descending order

Strategy 1
Scan the entire stack and find the paper with
minimum marks

Move this paper to a new stack

Repeat with remaining papers

Each time, add next minimum mark paper on
top of new stack

Eventually, new stack is sorted in descending
order

Strategy 1 …

74 32 89 55 21 64

Strategy 1 …

21

74 32 89 55 21 64

Strategy 1 …

21 32

74 32 89 55 21 64

Strategy 1 …

21 32 55

74 32 89 55 21 64

Strategy 1 …

21 32 55 64

74 32 89 55 21 64

Strategy 1 …

21 32 55 64 74

74 32 89 55 21 64

Strategy 1 …

21 32 55 64 74 89

74 32 89 55 21 64

Strategy 1 …

Selection Sort

Select the next element in sorted order

Move it into its correct place in the final sorted list

Selection Sort

Avoid using a second list

Swap minimum element with value in first
position

Swap second minimum element to second
position

…

Selection Sort

74 32 89 55 21 64

Selection Sort

74 32 89 55 21 64

Selection Sort

21 32 89 55 74 64

Selection Sort

21 32 89 55 74 64

Selection Sort

21 32 89 55 74 64

Selection Sort

21 32 89 55 74 64

Selection Sort

21 32 55 89 74 64

Selection Sort

21 32 55 89 74 64

Selection Sort

21 32 55 64 74 89

Selection Sort

21 32 55 64 74 89

Selection Sort

21 32 55 64 74 89

Selection Sort

21 32 55 64 74 89

Selection Sort
SelectionSort(A,n) // Sort A of size n

for (startpos = 0; startpos < n; startpos++)  
// Scan segments A[0]..A[n-1], A[1]..A[n-1], …  
 
// Locate position of minimum element in current segment  
minpos = startpos;  
for (i = minpos+1; i < n; i++)  

if (A[i] < A[minpos])  
minpos = i;

// Move minimum element to start of current segment  
swap(A,startpos,minpos)

Analysis of Selection Sort

Finding minimum in unsorted segment of length k
requires one scan, k steps

In each iteration, segment to be scanned reduces
by 1

t(n) = n + (n-1) + (n-2) + … + 1 = n(n+1)/2 = O(n2)

Recursive formulation

To sort A[i .. n-1]

Find minimum value in segment and move to A[i]

Apply Selection Sort to A[i+1..n-1]

Base case

Do nothing if i = n-1

Selection Sort, recursive
SelectionSort(A,start,n) // Sort A from start to n-1

if (start >= n-1)  
 return;

// Locate minimum element and move to start of segment  
minpos = start;  
for (i = start+1; i < n; i++)  
 if (A[i] < A[minpos])  
 minpos = i;

swap(A,start,minpos)

// Recursively sort the rest  
SelectionSort(A,start+1,n)

Alternative calculation
t(n), time to run selection sort on length n

n steps to find minimum and move to position 0

t(n-1) time to run selection sort on A[1] to A[n-1]

Recurrence

t(n) = n + t(n-1) 
t(1) = 1

t(n) = n + t(n-1) = n + ((n-1) + t(n-2)) = … = 
n + (n-1) + (n-2) + … + 1 = n(n+1)/2 = O(n2)

Sorting
Searching for a value

Unsorted array — linear scan, O(n)

Sorted array — binary search, O(log n)

Other advantages of sorting

Finding median value: midpoint of sorted list

Checking for duplicates

Building a frequency table of values

How to sort?

You are a Teaching Assistant for a course

The instructor gives you a stack of exam answer
papers with marks, ordered randomly

Your task is to arrange them in descending order

Strategy 2
First paper: put in a new stack

Second paper:

Lower marks than first? Place below first paper 
Higher marks than first? Place above first paper

Third paper

Insert into the correct position with respect to first
two papers

Do this for each subsequent paper: 
insert into correct position in new sorted stack

Strategy 2 …

74 32 89 55 21 64

Strategy 2 …

74 32 89 55 21 64

74

Strategy 2 …

74 32 89 55 21 64

32 74

Strategy 2 …

74 32 89 55 21 64

32 74 89

Strategy 2 …

74 32 89 55 21 64

32 55 74 89

Strategy 2 …

74 32 89 55 21 64

21 32 55 74 89

Strategy 2 …

74 32 89 55 21 64

21 32 55 64 74 89

Strategy 2 …

Insertion Sort

Start building a sorted sequence with one element

Pick up next unsorted element and insert it into its
correct place in the already sorted sequence

Insertion Sort
InsertionSort(A,n) // Sort A of size n

for (pos = 1; pos < n; pos++)  
// Build longer and longer sorted segments  
// In each iteration A[0]..A[pos-1] is already sorted

// Move first element after sorted segment left  
// till it is in the correct place  
nextpos = pos  
while (nextpos > 0 &&  

 A[nextpos] < A[nextpos-1])  
swap(A,nextpos,nextpos-1)  
nextpos = nextpos-1

Insertion Sort

74 32 89 55 21 64

Insertion Sort

74 32 89 55 21 64

Insertion Sort

32 74 89 55 21 64

Insertion Sort

32 74 89 55 21 64

Insertion Sort

32 74 55 89 21 64

Insertion Sort

32 55 74 89 21 64

Insertion Sort

32 55 74 21 89 64

Insertion Sort

32 55 21 74 89 64

Insertion Sort

32 21 55 74 89 64

Insertion Sort

21 32 55 74 89 64

Insertion Sort

21 32 55 74 64 89

Insertion Sort

21 32 55 64 74 89

Analysis of Insertion Sort

Inserting a new value in sorted segment of length
k requires upto k steps in the worst case

In each iteration, sorted segment in which to insert
increased by 1

t(n) = 1 + 2 + … + n-1 = n(n-1)/2 = O(n2)

Recursive formulation

To sort A[0..n-1]

Recursively sort A[0..n-2]

Insert A[n-1] into A[0..n-2]

Base case: n = 1

Insertion Sort, recursive
InsertionSort(A,k) // Sort A[0..k-1]

 if (k == 1)  
 return;

 InsertionSort(A,k-1);  
 Insert(A,k-1);  
 return;

Insert(A,j) // Insert A[j] into A[0..j-1]

 pos = j;  
 while (pos > 0 && A[pos] < A[pos-1])  
 swap(A,pos,pos-1);  
 pos = pos-1;

Recurrence
t(n), time to run insertion sort on length n

Time t(n-1) to sort segment A[0] to A[n-2]

n-1 steps to insert A[n-1] in sorted segment

Recurrence

t(n) = n-1 + t(n-1) 
t(1) = 1

t(n) = n-1 + t(n-1) = n-1 + ((n-2) + t(n-2)) = … = 
(n-1) + (n-2) + … + 1 = n(n-1)/2 = O(n2)

O(n2) sorting algorithms
Selection sort and insertion sort are both O(n2)

So is bubble sort, which we will not discuss here

O(n2) sorting is infeasible for n over 10000

Among O(n2) sorts, insertion sort is usually better
than selection sort and both are better than
bubble sort

What happens when we apply insertion sort to
an already sorted list?

O(n2) sorting algorithms

Selection sort and insertion sort are both O(n2)

O(n2) sorting is infeasible for n over 100000

A different strategy?

Divide array in two equal parts

Separately sort left and right half

Combine the two sorted halves to get the full array
sorted

Combining sorted lists

Given two sorted lists A and B, combine into a
sorted list C

Compare first element of A and B

Move it into C

Repeat until all elements in A and B are over

Merging A and B

Merging two sorted lists

32 74 89

21 55 64

Merging two sorted lists

32 74 89

21 55 64

21

Merging two sorted lists

32 74 89

21 55 64

21 32

Merging two sorted lists

32 74 89

21 55 64

21 32 55

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64 74

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64 74 89

Merge Sort

Sort A[0] to A[n/2-1]

Sort A[n/2] to A[n-1]

Merge sorted halves into B[0..n-1]

How do we sort the halves?

Recursively, using the same strategy!

Merge Sort
43 32 22 78 63 57 91 13

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

Merge Sort
43 32 22 78 63 57 91 13

63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78

Merge Sort
43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78 13 57 63 91

Merge Sort

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78 13 57 63 91

13 22 32 43 57 63 78 91

Divide and conquer

Break up problem into disjoint parts

Solve each part separately

Combine the solutions efficiently

Merging sorted lists
Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first element of A and B and
move the smaller of the two into C

Repeat until all elements in A and B have been
moved

Merging
function Merge(A,m,B,n,C)  
 // Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0;  
// Current positions in A,B,C respectively 
 
while (k < m+n)  
// Case 0: One of the two lists is empty  
 if (i==m) {j++; k++;}  
 if (j==n) {i++; k++;}  
// Case 1: Move head of A into C  
 if (A[i] <= B[j]) { C[k] = B[j]; j++; k++;}
// Case 2: Move head of B into C  
 if (A[i] > B[j]) {C[k] = B[j]; j++; k++;}

Merge Sort
To sort A[0..n-1] into B[0..n-1]

If n is 1, nothing to be done

Otherwise

Sort A[0..n/2-1] into L (left)

Sort A[n/2..n-1] into R (right)

Merge L and R into B

Merge Sort
function MergeSort(A,left,right,B)  

// Sort the segment A[left..right-1] into B

if (right - left == 1) // Base case  
B[0] = A[left]

if (right - left > 1) // Recursive call

mid = (left+right)/2

MergeSort(A,left,mid,L)  
MergeSort(A,mid,right,R)

Merge(L,mid-left,R,right-mid,B)

Merging sorted lists
Combine two sorted lists A and B into C

If A is empty, copy B into C

If B is empty, copy A into C

Otherwise, compare first element of A and B and
move the smaller of the two into C

Repeat until all elements in A and B have been
moved

Merging
function Merge(A,m,B,n,C)  

// Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0;  
// Current positions in A,B,C respectively 

 
while (k < m+n)  

// Case 1: Move head of A into C  
if (j==n or A[i] <= B[j])  

C[k] = A[i]; i++; k++

// Case 2: Move head of B into C  
if (i==m or A[i] > B[j])  

C[k] = B[j]; j++; k++

Analysis of Merge
How much time does Merge take?

Merge A of size m, B of size n into C

In each iteration, we add one element to C

At most 7 basic operations per iteration

Size of C is m+n

m+n ≲ 2 max(m,n)

Hence O(max(m,n)) = O(n) if m ≈ n

Merge Sort
To sort A[0..n-1] into B[0..n-1]

If n is 1, nothing to be done

Otherwise

Sort A[0..n/2-1] into L (left)

Sort A[n/2..n-1] into R (right)

Merge L and R into B

Analysis of Merge Sort …
t(n): time taken by Merge Sort on input of size n

Assume, for simplicity, that n = 2k

t(n) = 2t(n/2) + n

Two subproblems of size n/2

Merging solutions requires time O(n/2+n/2) = O(n)

Solve the recurrence by unwinding

Analysis of Merge Sort …

Analysis of Merge Sort …
t(1) = 1

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

log n means log2 n unless otherwise specified!

Analysis of Merge Sort …
t(1) = 1

t(n) = 2t(n/2) + n

	 	 = 2 [2t(n/4) + n/2] + n = 22 t(n/22) + 2n

	 	 = 22 [2t(n/23) + n/22] + 2n = 23 t(n/23) + 3n 
 …

	 	 = 2j t(n/2j) + jn

When j = log n, n/2j = 1, so t(n/2j) = 1

log n means log2 n unless otherwise specified!

t(n) = 2j t(n/2j) + jn = 2log

n + (log n) n = n + n log n = O(n log n)

O(n log n) sorting

Recall that O(n log n) is much more efficient than
O(n2)

Assuming 108 operations per second, feasible
input size goes from 10,000 to 10,000,000 
(10 million or 1 crore)

Variations on merge
Union of two sorted lists (discard duplicates)

If A[i] == B[j], copy A[i] to C[k] and increment i,j,k

Intersection of two sorted lists

If A[i] < B[j], increment i

If B[j] < A[i], increment j

If A[i] == B[j], copy A[i] to C[k] and increment i,j,k

Exercise: List difference: elements in A but not in B

Merge Sort: Shortcomings

Merging A and B creates a new array C

No obvious way to efficiently merge in place

Extra storage can be costly

Inherently recursive

Recursive call and return are expensive

Alternative approach

Extra space is required to merge

Merging happens because elements in left half
must move right and vice versa

Can we divide so that everything to the left is
smaller than everything to the right?

No need to merge!

