
Sequences of values

Two basic ways of storing a sequence of values


Arrays


Lists


What’s the difference?

Arrays
Single block of memory


Typically fixed size


Indexing is fast


Access A[i] in constant 
time for any i


Inserting an element between 
A[i] and A[i+1] is expensive


Contraction is expensive 

Lists
Values scattered in memory


Each element points to the 
next—“linked” list


Flexible size


Follow i links to access A[i]


Cost proportional to i


Inserting or deleting an element 
is easy


“Plumbing”

Operations
Exchange A[i] and A[j]


Constant time in array, linear time in lists


Delete A[i] or Insert v after A[i]


Constant time in lists (if we are already at A[i])


Linear time in array


Algorithms on one data structure may not transfer to 
another


Example: Binary search



Search problem

Is a value K present in a collection A?


Does the structure of A matter?


Array vs list


Does the organization of the information matter?


Values sorted/unsorted

The unsorted case
function search(A,K)

  i = 0;  

 while i < n and A[i] != K do
  i = i+1;  

if i < n  
   return i;
else 
   return -1;

Worst case

Need to scan the entire sequence A


O(n) time for input sequence of size A


Does not matter if A is array or list

Search a sorted sequence
What if A is sorted?


Compare K with midpoint of A


If midpoint is K, the value is found


If K < midpoint, search left half of A


If K > midpoint, search right half of A


Binary search



Binary search …
bsearch(K,A,l,r)  // A sorted, search for K in A[l..r-1]

if (r - l == 0) return(false)

mid = (l + r) div 2  // integer division

if (K == A[mid]) return (true)

if (K < A[mid]) 

return (bsearch(K,A,l,mid))

else 

return (bsearch(K,A,mid+1,r))

Binary Search …
How long does this take?


Each step halves the interval to search


For an interval of size 0, the answer is 
immediate


T(n): time to search in an array of size n


T(0) = 1


T(n) = 1 + T(n/2)

Binary Search …
T(n): time to search in a list of size n


T(0) = 1


T(n) = 1 + T(n/2)


Unwind the recurrence


T(n) = 1 + T(n/2) = 1 + 1 + T(n/22) = … 
       = 1 + 1 + … + 1 + T(n/2k) 
       = 1 + 1 + … + 1 + T(n/2log n) = O(log n)

Binary Search …

Works only for arrays


Need to be look up A[i] in constant time


By seeing only a small fraction of the sequence, 
we can conclude that an element is not present!



Sorting
Searching for a value


Unsorted array — linear scan, O(n)


Sorted array — binary search, O(log n)


Other advantages of sorting


Finding median value: midpoint of sorted list


Checking for duplicates


Building a frequency table of values

How to sort?

You are a Teaching Assistant for a course


The instructor gives you a stack of exam answer 
papers with marks, ordered randomly


Your task is to arrange them in descending order

Strategy 1
Scan the entire stack and find the paper with 
minimum marks


Move this paper to a new stack


Repeat with remaining papers


Each time, add next minimum mark paper on 
top of new stack


Eventually, new stack is sorted in descending 
order

Strategy 1 …
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Strategy 1 …

Selection Sort

Select the next element in sorted order


Move it into its correct place in the final sorted list

Selection Sort

Avoid using a second list


Swap minimum element with value in first 
position


Swap second minimum element to second 
position


…
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Selection Sort
SelectionSort(A,n) // Sort A of size n

for (startpos = 0; startpos < n; startpos++)  
// Scan segments A[0]..A[n-1], A[1]..A[n-1], …  
 
// Locate position of minimum element in current segment  
minpos = startpos;  
for (i = minpos+1; i < n; i++)  

if (A[i] < A[minpos])  
minpos = i;

// Move minimum element to start of current segment  
swap(A,startpos,minpos)

Analysis of Selection Sort

Finding minimum in unsorted segment of length k 
requires one scan, k steps


In each iteration, segment to be scanned reduces 
by 1


t(n) = n + (n-1) + (n-2) + … + 1 = n(n+1)/2 = O(n2)

Recursive formulation

To sort A[i .. n-1]


Find minimum value in segment and move to A[i]


Apply Selection Sort to A[i+1..n-1]


Base case


Do nothing if i = n-1

Selection Sort, recursive
SelectionSort(A,start,n) // Sort A from start to n-1

if (start >= n-1)  
  return;

// Locate minimum element and move to start of segment  
minpos = start;  
for (i = start+1; i < n; i++)  
  if (A[i] < A[minpos])  
    minpos = i;

swap(A,start,minpos)

// Recursively sort the rest  
SelectionSort(A,start+1,n)



Alternative calculation
t(n), time to run selection sort on length n


n steps to find minimum and move to position 0


t(n-1) time to run selection sort on A[1] to A[n-1]


Recurrence


t(n) = n + t(n-1) 
t(1) = 1


t(n) = n + t(n-1) = n + ((n-1) + t(n-2)) = … = 
n + (n-1) + (n-2) + … + 1 = n(n+1)/2 = O(n2)

Sorting
Searching for a value


Unsorted array — linear scan, O(n)


Sorted array — binary search, O(log n)


Other advantages of sorting


Finding median value: midpoint of sorted list


Checking for duplicates


Building a frequency table of values

How to sort?

You are a Teaching Assistant for a course


The instructor gives you a stack of exam answer 
papers with marks, ordered randomly


Your task is to arrange them in descending order

Strategy 2
First paper: put in a new stack


Second paper:


Lower marks than first? Place below first paper 
Higher marks than first? Place above first paper


Third paper


Insert into the correct position with respect to first 
two papers


Do this for each subsequent paper: 
insert into correct position in new sorted stack
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Insertion Sort

Start building a sorted sequence with one element


Pick up next unsorted element and insert it into its 
correct place in the already sorted sequence



Insertion Sort
InsertionSort(A,n) // Sort A of size n

for (pos = 1; pos < n; pos++)  
// Build longer and longer sorted segments  
// In each iteration A[0]..A[pos-1] is already sorted

// Move first element after sorted segment left  
// till it is in the correct place  
nextpos = pos  
while (nextpos > 0 &&  

          A[nextpos] < A[nextpos-1])  
swap(A,nextpos,nextpos-1)  
nextpos = nextpos-1
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Analysis of Insertion Sort

Inserting a new value in sorted segment of length 
k requires upto k steps in the worst case


In each iteration, sorted segment in which to insert 
increased by 1


t(n) = 1 + 2 + … + n-1 = n(n-1)/2 = O(n2)

Recursive formulation

To sort A[0..n-1] 


Recursively sort A[0..n-2]


Insert A[n-1] into A[0..n-2]


Base case: n = 1

Insertion Sort, recursive
InsertionSort(A,k) // Sort A[0..k-1]

  if (k == 1)  
    return;

  InsertionSort(A,k-1);  
  Insert(A,k-1);  
  return;

Insert(A,j) // Insert A[j] into A[0..j-1]

  pos = j;  
  while (pos > 0 && A[pos] < A[pos-1])  
    swap(A,pos,pos-1);  
    pos = pos-1;



Recurrence
t(n), time to run insertion sort on length n


Time t(n-1) to sort segment A[0] to A[n-2]


n-1 steps to insert A[n-1] in sorted segment


Recurrence


t(n) = n-1 + t(n-1) 
t(1) = 1


t(n) = n-1 + t(n-1) = n-1 + ((n-2) + t(n-2)) = … = 
(n-1) + (n-2) + … + 1 = n(n-1)/2 = O(n2)

O(n2) sorting algorithms
Selection sort and insertion sort are both O(n2)


So is bubble sort, which we will not discuss here


O(n2) sorting is infeasible for n over 10000


Among O(n2) sorts, insertion sort is usually better 
than selection sort and both are better than 
bubble sort


What happens when we apply insertion sort to 
an already sorted list?

O(n2) sorting algorithms

Selection sort and insertion sort are both O(n2)


O(n2) sorting is infeasible for n over 100000

A different strategy?

Divide array in two equal parts


Separately sort left and right half


Combine the two sorted halves to get the full array 
sorted



Combining sorted lists

Given two sorted lists A and B, combine into a 
sorted list C


Compare first element of A and B


Move it into C


Repeat until all elements in A and B are over


Merging A and B

Merging two sorted lists
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Merge Sort

Sort A[0] to A[n/2-1]


Sort A[n/2] to A[n-1]


Merge sorted halves into B[0..n-1]


How do we sort the halves?


Recursively, using the same strategy!
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Divide and conquer

Break up problem into disjoint parts


Solve each part separately


Combine the solutions efficiently

Merging sorted lists
Combine two sorted lists A and B into C


If A is empty, copy B into C


If B is empty, copy A into C


Otherwise, compare first element of A and B and 
move the smaller of the two into C


Repeat until all elements in A and B have been 
moved

Merging
function Merge(A,m,B,n,C)  
  // Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0;  
// Current positions in A,B,C respectively 
 
while (k < m+n)  
// Case 0: One of the two lists is empty  
   if (i==m) {j++; k++;}  
   if (j==n) {i++; k++;}  
// Case 1: Move head of A into C  
  if (A[i] <= B[j]) { C[k] = B[j]; j++; k++;}  
// Case 2: Move head of B into C  
  if (A[i] > B[j]) {C[k] = B[j]; j++; k++;}



Merge Sort
To sort A[0..n-1] into B[0..n-1]


If n is 1, nothing to be done


Otherwise 


Sort A[0..n/2-1] into L (left)


Sort A[n/2..n-1] into R (right)


Merge L and R into B

Merge Sort
function MergeSort(A,left,right,B)  

// Sort the segment A[left..right-1] into B

if (right - left == 1) // Base case  
B[0] = A[left]

if (right - left > 1)  // Recursive call

mid = (left+right)/2

MergeSort(A,left,mid,L)  
MergeSort(A,mid,right,R)

Merge(L,mid-left,R,right-mid,B)

Merging sorted lists
Combine two sorted lists A and B into C


If A is empty, copy B into C


If B is empty, copy A into C


Otherwise, compare first element of A and B and 
move the smaller of the two into C


Repeat until all elements in A and B have been 
moved

Merging
function Merge(A,m,B,n,C)  

// Merge A[0..m-1], B[0..n-1] into C[0..m+n-1]

i = 0; j = 0; k = 0;  
// Current positions in A,B,C respectively 

 
while (k < m+n)  

// Case 1: Move head of A into C  
if (j==n or A[i] <= B[j])  

C[k] = A[i]; i++; k++

// Case 2: Move head of B into C  
if (i==m or A[i] > B[j])  

C[k] = B[j]; j++; k++



Analysis of Merge
How much time does Merge take?


Merge A of size m, B of size n into C


In each iteration, we add one element to C


At most 7 basic operations per iteration


Size of C is m+n


m+n ≲ 2 max(m,n)


Hence O(max(m,n)) = O(n) if m ≈ n

Merge Sort
To sort A[0..n-1] into B[0..n-1]


If n is 1, nothing to be done


Otherwise 


Sort A[0..n/2-1] into L (left)


Sort A[n/2..n-1] into R (right)


Merge L and R into B

Analysis of Merge Sort …
t(n): time taken by Merge Sort on input of size n


Assume, for simplicity, that n = 2k


t(n) = 2t(n/2) + n


Two subproblems of size n/2


Merging solutions requires time O(n/2+n/2) = O(n)


Solve the recurrence by unwinding

Analysis of Merge Sort …
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O(n log n) sorting

Recall that O(n log n) is much more efficient than 
O(n2)


Assuming 108 operations per second, feasible 
input size goes from 10,000 to 10,000,000 
(10 million or 1 crore)

Variations on merge
Union of two sorted lists (discard duplicates)


If A[i] == B[j], copy A[i] to C[k] and increment i,j,k


Intersection of two sorted lists


If A[i] < B[j], increment i


If B[j] < A[i], increment j


If A[i] == B[j], copy A[i] to C[k] and increment i,j,k


Exercise: List difference: elements in A but not in B 

Merge Sort: Shortcomings

Merging A and B creates a new array C


No obvious way to efficiently merge in place


Extra storage can be costly


Inherently recursive


Recursive call and return are expensive

Alternative approach

Extra space is required to merge


Merging happens because elements in left half 
must move right and vice versa


Can we divide so that everything to the left is 
smaller than everything to the right?


No need to merge!


