Lecture Programme for students of class XI and XII, in association with National Academy of Sciences, Allahabad, to be held at the Chennai Mathematical Institute, Siruseri on 16th & 17th July 2018.

Monday, 16th July:

<u>Time</u>	Speaker	Title
10.00-11.00	S.P. Suresh, CMI	Introduction to algorithms
		<u>Abstract</u> : In this talk, we introduce algorithmic thinking
		to students by way of well known examples: searching
		and sorting.
11.00-11.30		Discussion
11.30 - 11.45		Tea break
11.45 - 12.45	Clare D'cruz, CMI	Fun with Geometry
		<u>Abstract:</u> Is Geometry abstract? Can we recognise it in
		nature? Is it easy or difficult. We will look into these
		aspects.
12.45-13.15		Discussion
13.15-14.15		Lunch
14.15-15.15	M.S. Krisnamoorthy	Introduction to Graph theory
	Retd. Professor of	<u>Abstract:</u> Preliminaries: Graphs, isomorphism, sub-
	Computer Science	graphs, matrix representations, degree, operations on
	Rensselaer Polytechnic	graphs, degree sequences
	Institute, USA	Connected graphs and shortest paths: Walks, trails,
		paths, connected graphs, distance, cut-vertices, cut-
		edges, blocks, connectivity, weighted graphs, shortest
		path algorithms
		Trees: Characterizations, number of trees minimum
		spanning tree
		Special classes of graphs: Complete Graphs, (complete)
		Bipartite Graphs, Eulerian Graphs, Hamiltonian Graphs,
		Line Graphs.
		Interesting Problems: Vertiex Cover Problem, Doimanat-
		ing Set Problem, Coloring Problem, Matching Problem,
15.15 - 15.45		Network Flow Problem. Discussion
15.45 - 16.00		Tea break & disperse

Tuesday.	17th	July:
rucsuay,	TIOII	oury.

Time	Speaker	Title
10.00-11.00	Manoj Kummini, CMI	Solving polynomial equations
		<u>Abstract:</u> We solve linear equations in many variables us-
		ing matrices and/or elimination. We can solve systems
		of polynomial equations in one variable using long divi-
		sion. What if we have a system of polynomial equations
		in many variables? We can put together the ideas of
		elimination and division to devise an algorithm to solve
		them. We will look at this algorithm and try to apply it
		to proving some simple results in geometry.
11.00-11.30		Discussion
11.30-11.45		Tea break
11.45 - 12.45	S Gowrishankar	How Do Airplanes Fly?
	Retd. Group Captain,	<u>Abstract</u> : One of the most awe-inspiring sights is the
	Indian Air Force	gravity-defying flight by a heavier-than-air object, be it
		a bird or an airplane. Is it not mind boggling that a
		small stone, weighing only a few grams, falls down to
		earth when thrown up, while an airplane, weighing hun-
		dreds of tonnes, is able to fly along! The trick lies in
		understanding the basics of aeronautics.
		These talks are aimed at providing a lucid explanation
		of the science and technology behind flight, within the
19 45 19 15		earths atmosphere and in the space beyond.
12.45-15.15		Lunch
13.15-14.15	Amitabh Virmani, CMI	The emergence of Cravitational Wave Science
14.15-15.15	Anntaon virmani, Own	Abstract: The discipline of gravitational wave astronomy
		<u>Abstract.</u> The discipline of gravitational wave astronomy combines General Belativity with some of the most pow-
		erful developments in geometry differential equations
		numerical analysis experimental physics and data sci-
		ence In this talk I will emphasize the synergy between
		these disciplines in the development of GW science
15.15 - 15.45		Discussion
15.45-16.00		Tea break & disperse