Discussion led by Alok

We list the questions and some salient points of the discussion that followed.

- 1. What is canonical gravity good for?
 - There's no spacetime to begin with, so need to build it
 - Role of spacetime diffeomorphisms in string field theory
 - Build string theory target space from solutions to Wheeler-deWitt (WdW) equation
 - What does LQG achieve, say in 2d?
 - Most older work ignored boundaries
 - (a) Does it account for topology change and signature change?
 - Using Ashtekar variables, LQG corrections to canonical answers can sometime be solved numerically. This provides a natural change from Lorentzian to Euclidean signature

References: Bojowald et. al

- (i) Deformed GR and Effective Actions from LQG
- (ii) Some implications of signature-change in cosmological models of ${\rm LQG}$
- 2. Anomaly in the constraint algebra
 - In the constraint algebra (specifically in the commutator of Hamiltonian constraint with itself), there arises a field dependent structure constant. So it's not a Lie algebra
 - Role of anomaly free constraint algebra in the quantum theory (even semi-classically)
 - LQG manages to find operators that represent the algebra. However, these are complicated and the physical meaning of the resulting states is unclear.
 - Is taking the constraint algebra seriously at the non-perturbative level a bad idea?
 - (a) Non-renormalization of gravity and the problem of time
 - Non-renormalizable even perturbatively
 - Subtleties in non-perturbative gravity
 - Choice of internal time
 - If the same wavefunction has different branches, can you make a consistent choice of time in each branch?

- (b) Reduction and quantization: ordering
 - This is the standard string theory approach. For example, while quantizing the Bosonic string on $S_1 \times R$ ala Polyakov
 - However, there are other approaches to quantization which give different results. Some of these are listed below:
 - i. Dirac quantization of 2-d gravity with "D" scalar fields References, by Kuchar and Torre:
 - (i) Worldsheet diffeomorphisms and the canonical string
 - (ii) Strings as poor relatives of relativity
 - ii. Dirac quantization of Nambu-Goto string References:
 - (i) Pohlmeyer, A group-theoretical approach to the quantization of the free relativistic closed string
 - (ii) Dorothea Bahns, The invariant charges of the Nambu-Goto String and Canonical Quantization
 - (iii) Urs Scheiber, DDF and Pohlmeyer invariants of (super)string
 - Can we take these quantizations seriously and ask what are the spacetime interpretations?
- (c) Problem of time
 - i. Can we deparametrize a gravitational system?
 - Kuchar decomposition
 - Find a canonical transformation in phase space that naturally finds an emergent time
 - References for examples of Kuchar decompositions:
 - (i) Hajicek and Ambrus, Embedding variables in finite dimensional models
 - (ii) Hajicek and Kouletski, Pair of null gravitating solutions, Parts 1 , 2 and 3
 - ii. Relational time
 - Scalar field coupled to GR as the clock
 - GR + incoherent dust Reference:
 - (i) Brown and Kuchar, Dust as a standard of space and time in canonical quantum gravity

Discussion led by Onkar

Focus on lower dimensional models

- 1. Canonical quantization in JT gravity
 - Phase space variables in the "length" basis: (ℓ, P)
 - From AdS/CFT, expect an isometric map between bulk and boundary Hilbert spaces $V: \mathcal{H}_{bulk} \to \mathcal{H}_{CFT}$
 - (a) What is V?
 - What are boundary duals of length basis states $V|\ell\rangle$?
 - i. One answer: $|\ell\rangle = \int dE f(E,\ell) |E\rangle \xrightarrow{discrete} \sum_i f(\ell,E_i) |E_i\rangle$
 - ii. Another answer: Krylov basis $B = \{|\Omega\rangle, H|\Omega\rangle, ...\}$
 - (b) What does internal time evolution look like in the dual? i.e. reparametrize boundary dynamics to get bulk evolution.
 - (c) What is special about the boundary dual of the length basis?
 - Is there a way to discover AdS/CFT?
 - Does it minimize a basis dependent quantity?
 - i. Minimize "spread"
 - ii. Minimize "non-classicality"
 - (d) How does entanglement get geometrized in this basis?

Discussion led by Sandip

- 1. Path integral is ill-defined so canonical
 - Sidnely Coleman: Universe probably has $\Lambda = 0$
- 2. Cosmology
 - Problem of time
 - What is $|\psi\rangle_{universe}$?
 - What are observables/observers?
- 3. Lower-dimensional models
 - Path integral and canonical
- 4. Blackhole Physics
 - Information loss using canonical quantization

General discussion

- Can we do QFT with relational time?
 - Parametrized field theories
- How to deal with clocks disintegrating?
- In a closed universe, deparametrize GR and find $E \neq 0$ states?
 - Look at the York Hamiltonian in JT-dS: Find eigenstates, normalize with well-defined inner product.
- Canonical quantization of JT gravity in I order formalism?
 - Blommaert, Mertens, Verschelde, Fine Structure of JT Quantum Gravity
 - Kolchmeyer, Jafferis Entanglement Entropy in JT Gravity
 - Iliesiu, Pufu, Verlinde, Wang An exact quantization of JT gravity
- Explicit violation (via some process) of global symmetry in any solvable model of quantum gravity?
- Can we do constraint analysis in f(R) theories of gravity?
 - Ezawa, Iwasaki et. al A canonical formalism of f(R) type of gravity
- What do we give up in canonical quantization of gravity if we were to include topology change?