Lecture 1. Introduction to cryptographic protocols

S P Suresh, Chennai Mathematical Institute spsuresh@cmi.ac.in

Topics in Security August – November 2017 August 16, 2017

Lecture 1. Introduction to cryptographic protocols

Administrative details

- Aim: Learn about formal modelling and verification of cryptographic protocols
- Instructors: S P Suresh and Vaishnavi Sundararajan
- Evaluation: Assignments (3×15) , take-home exam (30), programming project (25)
- Moodle page: to be set up

Outline

1 What are security protocols?

2 A key establishment protocol

What are security protocols?

Outline

• What are security protocols?

2 A key establishment protocol

What are security protocols?

- Systematic sequence of message exchanges to achieve a goal.
- Based on cryptographic tools.
- Distinct from cryptography schemes.

The domain of cryptography

- Transform a plain text to cipher text in such a way that it is computationally very difficult to compute the inverse without the key.
- With public key cryptography and digital signatures, one has a reasonable assurance of secrecy and authenticity.
- Cryptanalysis: attacks on cryptographic schemes, involve sophisticated mathematical techniques and computing power.
- Works at the level of messages.
- The connection between different messages is not the concern of cryptography.

What are security protocols?

An example security protocol

$$\begin{array}{ll} \operatorname{Msg I.} & A \to B : \{x\}_{k_b} \\ \operatorname{Msg 2.} & B \to A : \{x\}_{k_a} \end{array}$$

What are security protocols?

An example security protocol

$$\begin{array}{ll} \operatorname{Msg I.} & A \to B : \{x\}_{k_b} \\ \operatorname{Msg 2.} & B \to A : \{x\}_{k_a} \end{array}$$

- To be distinguished from a mere sequence of (signed and) encrypted communcations.
- The two messages are part of one logical entity: with the *x* providing the connection.
- Authentication protocols are typically run prior to a secure session, to establish identities, keys, etc.

Outline

What are security protocols?

2 A key establishment protocol

The basic setting

• *A* and *B* wish to share a session key,

The basic setting

• *A* and *B* wish to share a session key, despite the machinations of *I* (the malicious intruder).

The basic setting

- *A* and *B* wish to share a session key, despite the machinations of *I* (the malicious intruder).
- They are aided in this by the trusted server *S*.

The basic setting

- *A* and *B* wish to share a session key, despite the machinations of *I* (the malicious intruder).
- They are aided in this by the trusted server *S*.
- *A*, *B*, and *S* do not engage in activity that deliberately compromises the security of the key.

The basic setting

- *A* and *B* wish to share a session key, despite the machinations of *I* (the malicious intruder).
- They are aided in this by the trusted server *S*.
- *A*, *B*, and *S* do not engage in activity that deliberately compromises the security of the key.
- *S* is trusted to generate a random, unguessable key.

The goals

• At the end of the protocol, the value of the session key should be known to both *A* and *B*, but to none else save *S*.

The goals

- At the end of the protocol, the value of the session key should be known to both *A* and *B*, but to none else save *S*.
- *A* and *B* should have some assurance that the key is newly generated.

A first attempt

$\begin{array}{lll} \operatorname{Msg 1.} & A {\rightarrow} S{:}A,B \\ \operatorname{Msg 2.} & S {\rightarrow} A{:}k_{ab} \\ \operatorname{Msg 3.} & A {\rightarrow} B{:}k_{ab},A \end{array}$

The hidden assumptions

• Only the messages passed in a successful run of the protocol are specified.

The hidden assumptions

- Only the messages passed in a successful run of the protocol are specified.
- There is no description of what happens if a message of the wrong format is received, or if no message is received at all.

The hidden assumptions

- Only the messages passed in a successful run of the protocol are specified.
- There is no description of what happens if a message of the wrong format is received, or if no message is received at all.
- There is no specification of the internal actions of the different principals.

Defects in our first protocol

• Obvious breach of secrecy.

Defects in our first protocol

- Obvious breach of secrecy.
- Security Assumption: *I* is able to eavesdrop on all messages sent in a cryptographic protocol.

Defects in our first protocol

- Obvious breach of secrecy.
- Security Assumption: *I* is able to eavesdrop on all messages sent in a cryptographic protocol.
- Need to use cryptography to provide secrecy.

A second attempt

• Use the shared keys k_{as} and k_{bs} :

A second attempt

• Use the shared keys k_{as} and k_{bs} :

• k_{as} is assumed to be known only to *A* and *S*. Similarly with k_{bs} .

Some modelling assumptions

• Messages are not treated as bit strings, but as symbolic terms.

- Messages are not treated as bit strings, but as symbolic terms.
- Perfect encryption assumed: *I* does not engage in cryptanalysis.

- Messages are not treated as bit strings, but as symbolic terms.
- Perfect encryption assumed: *I* does not engage in cryptanalysis.
- She learns *m* from $\{m\}_k$ only if she has the inverse of *k*.

- Messages are not treated as bit strings, but as symbolic terms.
- Perfect encryption assumed: *I* does not engage in cryptanalysis.
- She learns *m* from $\{m\}_k$ only if she has the inverse of *k*.
- Moreover, it is usually assumed that $\{m\}_k = \{m'\}_{k'}$ only if m = m' and k = k'. So *I* cannot learn secrets by accident.

- Messages are not treated as bit strings, but as symbolic terms.
- Perfect encryption assumed: *I* does not engage in cryptanalysis.
- She learns *m* from $\{m\}_k$ only if she has the inverse of *k*.
- Moreover, it is usually assumed that $\{m\}_k = \{m'\}_{k'}$ only if m = m' and k = k'. So *I* cannot learn secrets by accident.
- But still, *I* might exploit protocol loopholes to learn secrets.

Breach of authentication

• Security Assumption: *I* is able to alter all the messages sent in the public channel. She can also re-route any message to any principal. She can also generate and insert completely new messages.

Breach of authentication

- Security Assumption: *I* is able to alter all the messages sent in the public channel. She can also re-route any message to any principal. She can also generate and insert completely new messages.
- Breach of authentication ...

$$\begin{array}{lll} \operatorname{Msg I.} & A \to S:A, B \\ \operatorname{Msg 2.} & S \to A: \{k_{ab}\}_{k_{as}}, \{k_{ab}\}_{k_{bs}} \\ \operatorname{Msg 3.} & A \to (I)B: \{k_{ab}\}_{k_{bs}}, A \\ \operatorname{Msg 3.} & I \to B: \{k_{ab}\}_{k_{bs}}, I \end{array}$$

Breach of authentication

- Security Assumption: *I* is able to alter all the messages sent in the public channel. She can also re-route any message to any principal. She can also generate and insert completely new messages.
- Breach of authentication ...

 $\begin{array}{lll} \operatorname{Msg I.} & A \to S:A, B \\ \operatorname{Msg 2.} & S \to A: \{k_{ab}\}_{k_{as}}, \{k_{ab}\}_{k_{bs}} \\ \operatorname{Msg 3.} & A \to (I)B: \{k_{ab}\}_{k_{bs}}, A \\ \operatorname{Msg 3.} & I \to B: \{k_{ab}\}_{k_{bs}}, I \end{array}$

• *B* is led to the mistaken belief that she shares the key with *I*.

Another attack!!

• Security Assumption: *I* might be a legitimate member of the community, for all we know.

Another attack!!

- Security Assumption: *I* might be a legitimate member of the community, for all we know.
- No principal knows that she is indeed a hacker.

Another attack!!

- Security Assumption: *I* might be a legitimate member of the community, for all we know.
- No principal knows that she is indeed a hacker.
- A leak ...

Fixing the leak

• Include the identity of the partner in the messages.

Fixing the leak

• Include the identity of the partner in the messages.

• Are *I*'s previous attempts quelled by the new design?

Replays ...

• But *I* has a very old trick to counter this.

Replays ...

• But *I* has a very old trick to counter this.

• Security Assumption: I is able to obtain the value of the session key k_{ab} used in any sufficiently old previous run of the protocol.

Why is the replay attack bad?

• If *I* manages to break k'_{ab} in the time between the two sessions, *A* and *B* are in for a lot of trouble!

Why is the replay attack bad?

- If *I* manages to break k'_{ab} in the time between the two sessions, *A* and *B* are in for a lot of trouble!
- Even if the key is not broken, what if the next message in the original session was {"Deposit Rs. 10000 from my account into I's"}_{k'}?

Why is the replay attack bad?

- If *I* manages to break k'_{ab} in the time between the two sessions, *A* and *B* are in for a lot of trouble!
- Even if the key is not broken, what if the next message in the original session was {"Deposit Rs. 10000 from my account into I's"}_{k'}?
- Enables *I* to replay it in the later session, with obvious effects.

Challenge-response with nonces

• A nonce is a random value generated by one party and returned to that party to show that a message is newly generated.

Challenge-response with nonces

- A nonce is a random value generated by one party and returned to that party to show that a message is newly generated.
- The Needham-Schröder shared-key protocol

Msg 1.	$A \rightarrow S:A,B,m$
Msg 2.	$S \rightarrow A: \{k_{ab}, B, m, \{k_{ab}, A\}_{k_{bs}}\}_{k_{as}}$
Msg 3.	$A \rightarrow B: \{k_{ab}, A\}_{k_{bs}}, A$
Msg 4.	$B \rightarrow A: \{n\}_{k_{ab}}$
Msg 5.	$A \rightarrow B: \{n-\mathbf{I}\}_{k_{ab}}$

Denning-Sacco

• *B* does not have direct contact with *S* ...

Denning-Sacco

- *B* does not have direct contact with *S* ...
- and therefore ...

$$\begin{array}{ll} \operatorname{Msg 3.} & (I)A \to B: \{k_{ab}', A\}_{k_{bs}} \\ \operatorname{Msg 4.} & B \to (I)A: \{n\}_{k_{ab}'} \\ \operatorname{Msg 5.} & (I)A \to B: \{n-1\}_{k_{ab}'} \end{array}$$

A fifth attempt

• Let *B* get a freshness assurance directly from *S*.

A fifth attempt

• Let *B* get a freshness assurance directly from *S*.

• Is this protocol "correct"?

A fifth attempt

• Let *B* get a freshness assurance directly from *S*.

- Is this protocol "correct"?
- How do we prove correctness of protocols in general?