
Pointer-induced Aliasing: A Problem Classification*

William Landi Barbara G. Ryder

(landi@cs.rutgers. edu) (ryder@cs.rutgers. edu)

Department of Computer Science

Rutgers University, New Brunswick, NJ 08903

Abstract

A?iasing occurs at some program point during execu-

tion when two or more names exist for the same loca-

tion. We have isolated various programming language

mechanisms which create aliases. We have classified the

complexity of the fllas problem induced by each mech-

anism alone and in combination, as AfP-hard, comple-

ment tip-hard, or polynomial (’P). We present our

problem classification, give an overview of our proof

that finding interprocedural aliases in the presence of

single level pointers is in 7, and present a represent

tive proof for the NP-hard problems.

1 Introduction

Aliasing occurs at some program point during program

execution when two or more names exist for the same

location. The aliases of a name at a program point t are

all other names that may refer to the same memory loca-

t ion on some execution path to t.While the calculation

of aliases for FORTRAN is well understood [1, 5, 6, 18],

if general pointers are added as a language construct, the

problem of computing aliases becomes A/p-hard and no

good approximation algorithms exist. Moreover, alias-

ing complicates most data flow analysis problems, and

the absence of alias information can prevent many opti-

mization.

Our results show which aspects of aliae problems are

provably hard and need to be approximated. A clear un-

derstanding of what makes aliasing hard, lends insight

*The research reported here was supported, in part, by
the New Jersey Commission on Science and Technology,
the CAIP Center’s Industrial Members, NSF grant CCR-

8920078, and Siemens Research Corporation.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission,

@ 1990 ACM 089791-419-8/90/0012/0093 $1.50

into where information is lost in various approximations

and whether that loss of information is justified. Also,

an understanding of how easier alias problems can be

handled precisely, can be useful as a framework for ap-

proximating harder alias problems.

Theoretical Complexity Results In this paper,

we present the theoretical complexity of solving the In-

traprocedural May Alias, Intraprocedural Must Alias, In-

ter-procedural May Alias, and InterProcedural Must Alias

problems in the presence of several programming lan-

guage mechanisms that create aliases, The following

mechanisms are considered alone and in combination:

reference formal parameters, single level pointers, multi-

ple level pointers (i.e., pointers whose dereferenced val-

ues are pointers), and pointers to structures containing

single level pointers. Informally, our results show that

multiple levels of indirection lead to Af’P-hard or co-tiP-

hard alias problems, whereas a single level of indirection

introduces aliases that can be found in polynomial time.

Comparison to FORTRAN Aliasing In FOR-

TRAN, the only dynamic method for creating aliases is

through the use of reference formals. Solving for alias-

ing in the presence of pointers presents several additional

complications. The most obvious difference is that with

only reference formals, aliases that hold at invocation

of a procedure, hold during the entire execution of the

called procedure. However, when pointers are present,

this is not the case, because pointer assignments can

change aliases in the called procedure. In addition, with

only reference formals, a call to a procedure cannot af-

fect the aliases in the calling procedure, but if pointers

are present, this is no longer true. Both these facts in-

dicate that existing FORTRAN alias algorithms are not

93

extensible to handle pointers.

Related Work Weihl devised an approximation al-

gorithm for finding aliases in the presence of pointers [21,

22]. Essentially relational in approach, his algorithm is

very imprecise because it ignores control flow. Chow

and Rudmik [3] also presented an algorithm for find-

ing aliases in the presence of pointers; however, their

algorithm is inadequate, because they treat interproce-

dural aliasing as an intraprocedural problem. Benjamin

Cooper [4] has developed an algorithm which uses ex-

plicit path information in the form of alias histories to

insure (for interprocedural paths) that a procedure re-

turns to the call site that invoked it. This method seems

infeasible for an implementation and is reminiscent of

the work of Sharir and Pnueli [20].

A related area of research is the work done by the

compiling community on conflict detection in recursive

structures [2, 8, 9, 11, 15], A conflict occurs between two

statements when one statement writes a location and

the other accesses (reads or writes) the same location,

thus preventing the possibility of those statements be-

ing executed in parallel. Aliasing occurs at a program

point, and conflicts, in general, occur between two or

more program points. The research on conflict detection

has largely been concerned with statically representing

and determining the structure of dynamically allocated

objects (e.g. trees, dags, lists). It has not addressed the

interprocedural complications that result because calls

must return to the call site which invoked them; we,

conversely, concentrate on these interprocedural issues.

Overview Section 2 states relevant definitions and

a summary of our theoretical results. Section 3 presents

an overview of the Interprocedural May Alias proof by

specifying a polynomial algorithm. Section 4 presents

the proof that Intraprocedural May Alias in the presence

of multiple level pointers is Af?-hard. Section 5 previews

future work.

2 Alias Problem Classification

Program Representation We represent programs by

interp?’ocedural control j?ow graphs, (ICFGS) that are in-

tuitively, the union of the control flow graphs (CFGS)l

[7] for each procedure, with calls connected to the pro-

cedures they invoke. Formally, an ICFG is a triple (Af,

E, p) where: p is the entry node for mairq hf contains

one node for each statement in the program, an entry

and ed node for each procedure, a call and Teturn node

for each call site; and & contains all edges in the CFG

for each procedure, with a slight modification of edges

involving call sites. In the ICFG, a call site is split into

a call and a return node. An intraprocedural edge into a

call node represents execution flow into a call site, while

an intraprocedural edge out of a return node represents

flow from a call site. In addition to the intraprocedu-

ral edges, two interprocedural edges are added for each

call site: one from the call node to the entry node of

the invoked procedure, and one from the exit node of

the procedure to the return node of the call site. See

Figure 1 for an example of an ICFG.

Definitions The following definitions will be used

throughout the paper:

realizable: A path is realizable iff itis a path in the

ICFG (CFG in intraprocedural problems) such that

whenever a procedure on this path returns, it returns

‘to the call site which invoked it. Basically, realizable

means potentially executable under the common as-

sumption of static analysis that all program paths are

executable.

holds: Alias <a, b> holds on the realizable path

~1n2...ni iff a and b refer to the same location at

program point ni whenever the execution sequence de-

fined by the path occurs. Note that aliases are sym.

metric, thus <a, b> holds on a path iff <b, a> also

holds on that path.

Interprocedmral May Alias: The precise solution for

Interprocedural May Alias is

{
[n, <a, b>]

3 a realizable path, pnlnz . ..ni _ In,

in the ICFG on which <a, b> holds 1
1Each node in our CFG is a source code statement.

94

int *q,

void A(f)

int *R

{
q=fi

}

main()

{
int *q, *G

A(q);

r=~s

A(p);

} &
Figure 1: A program and its ICFG

Int erprocedural Must Alias: The precise solution

for Interprocedural Must Alias is

{
[n, <a, b>]

V realizable paths, pnlnz. ,.ni _ In,

in the ICPG <a, b> holds
}

visible: At a call site, an object name (e.g. *z) in the

calling procedure is visible in the called procedure iff

the called procedure is in the scope of the object name

and at run time, the object name refers to the same

object in both the calling and the called procedure. z

Problem Classification We have analyzed the the-

oretical difficulty of solving for aliases (assuming no pro-

cedure variables) in the presence of reference formals,

single level pointers, multiple level pointers, and struc-

tures containing single level pointers. The results our

analyses are shown in Table 1, Blanks in Table 1 cor-

respond to problems which involve reference parameters

and thus are inherently interprocedural. Surprisingly,

2The notion of visibility is needed to define precisely the
aliases of objects in recursive procedures. We are assuming

that all program variables have unique names.

there is no difference in problem difficulty between in-

traprocedural and interprocedural problems, at least in

terms of Afp-hard vs P. The salient property is the

number of possible levels of indirection, regardless of the

mechanism used to create the indirection. If only one

level of indirection is possible, then aliasing can be pre-

cisely solved in a polynomial amount of time, but as soon

as two levels are present, the problem becomes MP-hard,

There must be at least two distinct approximations in

any practical aliasing algorithm. In any program that

contains recursive data structures, there are potentially

an infinite number of objects which can have aliases. Any

aliasing algorithm will have to represent all possible ob-

jects by a finite (polynomial) number of objects3. The

type of representation and its precision are what distin-

guishes the different conflict detection methods.

There is a second source of approximation illustrated

by the following scenario. Suppose there is an assign-

ment p = z at program point i, alias pair <p, q> holds on

3For example, k-limited as defined by Jones and Muchnick
[11].

95

Intraprocedural Intraprocedural Interprocedural Interprocedural

Alias Mechanism May Alias Must Alias May Alias Must Alias

Reference Formals, Polynomial[l, 5] Polynomial [l, 5]

No Pointers,

No Structures

Single level pointers, Polynomial Polynomial Polynomial Polynomial

No Reference Formals,

No Structures

Single level pointers, Polynomial Polynomial

Reference Formals,

No Pointer Reference Formals,

No Structures

Multiple level pointers, Af~-hard Complement ALP-hard Complement

No Reference Formals, is AfP-hard

No Structures

is hfP-hard

Single level pointers, hfP-hard Complement

Pointer Reference Formals, is N?-hard

No Structures

Single level pointers, Af’P-hard[14] Complement NP-hard[14] Complement

Structures, is Afp-hard is hfp-hard

No Reference Formals

Table 1: Alias problem decomposition and classification

some path to t and <*z, *y> also holds on some path to these two problems are, surprisingly, fairly disparate).

t. If both <p, q> and <*x, *Y> occur on the same path,

then <*q, *y> holds at t;therefore, to be safe we must

conclude this, even though it may not be true. Thus, to

solve for alias pairs precisely, we need information about

multiple alias pairs on a path. Unfortunately, this prop-

ert y generalizes; that is, to determine precisely if there

is a single path on which a set of i alias pairs hold, you

need information about sets of more than i alias pairs.

Since it is hf~-hard even in the presence of single level

pointers to determine if there is an intraprocedural path

on which a set of O(n) (n, the number of variables in

a program) aliases hold [13], some approximate ion must

occur.

All the A.fP-hardness proofs are variations of proofs

by Myers [18]; a similar, although independently discov-

ered, proof for recursive structure aliasing (as indicated

in Table 1) was developed by Larus [14]. All problems

which are categorized as polynomial are corollaries of

proofs that the Interprocedural May Alias and Interpro-

cedural Must Alias problems in the presence of single

level pointers are polynomially solvable (the proofs for

The key ideas used in the proof that the Interprocedural

May Alias problem in the presence of single level point-

ers is in P are presented in Section 3. The proof that the

Intraprocedural May Alias problem is NP-hard is given

in Section 4. This proof is representative of all those for

hf~-hard problems. Other proofs are omitted but can

be found in [13].

3 Inteqxocedural May Alias
with Single Level Pointers

The main difficulty in solving Interprocedural May Alias

is to determine how to restrict information propagation

only to realizable paths. To accomplish this, we solve

data flow problems for a procedure assuming an alias

condition on entry; that is, we solve data flow condition.

ally based on some assumption at procedure entry. This

is somewhat reminiscent of Lomet’s approach to solving

data flow problems under different aliasing conditions

[16] and Marlowe’s notion of a representative data flow

problem within a region[17].

We use a two step algorithm to solve for aliases. In

the first step, we solve for conditional aliases, that is,

we answer the question “If there is a path to the entry

node of the procedure containing n~ on which the alias

set A holds, then may a be aliased to b at n~?”. In the

second step, we use these conditional aliases to solve for

the actual aliases.

This two step approach avoids the unrealizable path

problem. In the first step, the edges from call nodes

to entry nodes in the ICFG are ignored. Information

is propagated from procedure entry nodes to exits; the

calculation at a return node combines information from

its corresponding call node and the called procedures

exit node. Thus, potential alias effects of the called pro-

cedure on the calling procedure are incorporated; how-

ever, the aliases introduced by the call itself are ignored.

In the second step, aliases introduced are propagated

through a call node to the corresponding entry node of

the called procedure, ignoring edges from exit nodes to

return nodes. Conceptually, this is analogous to propa-

gation on the program call graph [7]. Related ideas for

handling the unrealizable path problem were presented

in [10].

This idea of using conditional aliases does not seem

promising at first, as there are an exponential number of

possible sets of aliases. But Lemma 3.1 insures that it is

sufficient to consider sets A where I A I~ 1. If more than

one level of indirection is possible, it is no longer precise

to use I ~ 1<1, but it is safe (i.e., our alias solution will

be imprecise, but all actual alias pairs will be contained

within the calculated solution).

Lemma 3.1 If pointeT usage is restricted to single level

pointers then

● for aii ?’ealizabie paths P == nlnz . ..n~ (where nl is

the entry node of the procedure containing ni and the

number of calls on the path nl, n2, ni equals the

number of returns),

● and for all possible alias pairs <a, b>;

If

all alias pairs in the set d = {Al, A2, Am} hold-

ing at nl and the execution of path P implies that

<a, b> holds at ni

then

either assuming no aliases at nl and ezecuting path

P forces <a, b> to hold at ni

OT

%(1 ~ k ~ m) such that when assuming only the

alias Ak at nl, executing the path P forces <a, b>

to hold at ni.

The proof of Lemma 3.1 is by induction on IPI, the

basis is trivially true and the induction step is an easy,

but messy, case analysis on possible ni [12]. ❑

We use the holds relation to represent conditional

alias information.

holds([(ICFG-node, assumed-alias-pair), alias-pair])

is tme iff alias-pair holds on some path to ICFG-node,

assuming there is a path to the entry of the proce-

dure containing ICFG-node on which assumed-alias-

paiT holds. By Lemma 3.1, assumed-alias-psi?’ is either

a single alias pair or 0, where 0 represents assuming no

aliases on procedure entry,

3.1 Computing May Alias using

Conditional May Alias

Given the holds relation, Interprocedural May Alias in-

formation can be computed by a simple data flow prob-

lem on the ICFG. We will use the function bindcalr to

model the effects of parameter bindings at each call site.

bindcafl (A) is the set of aliases which hold on the path

pnl...ni_2[cail] [entryP] if A holds on pnl . ..ni_2[call].

bindcall (A) is formally defined in Figure 2.

Given holds and the bind functions, for any node n

in the ICFG=(JV, $, p), may-alias(n) can be defined as

follows:

● may-alias(p) = 0

● if n is an entry node then may-alias(n) =

● otherwise, may-a jias(n) =

{

[holds([(n, 0), <a, b>])= true] V

<a, b> [(3<c, d> E may-alias(entTy(n)))

hoids([(n, <c, d>), <a, b>]) = true] }

Theorem 3.1 There ezista a polynomial algorithm for

determining precise Interprocedural May Alias sets

in the presence of single level pointers.

97

bind~al,(0) =

{
<*fi, *fj>

~i and ~j are pointer formals

}
u

with actuals ai and aj respectively, and ai = aj

{
<*fi, *Ui>

{
<*CJi, *f~>

bind~all(<a, b>) =

fi is a pointer formal with actual aa,

and ai is visible in the called procedure

fi is a pointer formal with actual ai,

and ai is visible in the called procedure

1u

}

{ <a, b> I if a and b are visible in the called procedure } U

{
<a, *f~>

if a is visible in the called procedure, fi is

}
u

a pointer formal with actual aa, and *ai = b

{
<*fi, b>

if b is visible in the called procedure, ji is

}
u

a pointer formal with actual ai, and *ai = a

{
<*fi, *fj>

if fi and fj are pointer formals with corresponding

actuals ai and aj, and *a~ = a and +aj = b 1

Figure 2: Specification of bindeall (A)

The claim is that calculating the fixed point of ●

may-alias is such an algorithm. We can prove that the

holds calculation can be computed in polynomial time

(Lemma 3,2 in Section 3.2). Therefore, the fixed point ,

calculation for Interprocedural May Alias takes polyno-

mial time because, for each node in the ICFG, may-alias

can change its value at most 0(v2) times, where w is the

number of variables in the program. The precision of our

algorithm stems from Lemmas 3.1 and 3.2. The formal

proof is by induction on path length and by induction on

number of iterations of the fixed point calculation [12]. ❑

3.2 Computing Conditional May Alias

We handle the intraprocedural aspects of Interproce-

dural May Alias similarly to Chow and Rudmik [3].

On an execution path, we consider the relationship be-

tween aliases that hold before a statement is executed

and aliases that hold after it is executed. Consider-
●

ing holds ([(n, AA), <a, b>]), the following statements are

true:

if n is not an assignment to a pointer

hoids([(n, d.4), <a, b>]) is true iff for some immediate

predecessor m of n, ho~ds([(m, old), <a, b>]) is true.

if n is “p = q“ {or “p = &v”} for p and q pointers

— if a is *p then holds([(n, old), <*p, b>]) is true

iff for some immediate predecessor m of n,

hoids([(m, AA), <*g, b>]) {holds([(m, AA), <v, b>])

for “p = &v”} is true.

— if b is *p then holds ([(n, .4.4), <a, *P>]) is true

iff for some immediate predecessor m of n,

holds([(wz, w.4./t), <u, w>])

for “p = &v”} is true.

otherwise,

{holds([(m,AA), <a, w>])

hozds([(n, old), <a, b>]) is

diate predecessor m of n,

true iff for some imme.

hohls([(m, fl), <a, b>])

is true.

if n is “p = malloco’” or “p = null”. (We are mallocing

a primitive type here, not a structure.)

98

— if a or b is *P then hohis([(n, d.A), <a, ZI>]) must be

false (<a, b> does not hold on any path).

— otherwise,

holds([(n, Ad), <a, b>]) is true iff for some imme-

diate predecessor m of n, holds([(m, AA), <a, b>])

is true.

Recall that the main problem in computing pre-

cise Interprocedural May Alias is insuring that only

realizable paths are considered. However, this is

easily handled by our conditional alias formulation.

hozds([(entrv, AA), <a, b>]) is true if (AA = <a, b>) or

(a= b) and otherwise is false. call and exit nodes sim-

ply collect alias information. Thus:

holds([(caU/ezit, AA), <a, b>]) =

V<m,rxS1/e.it>G&
(hokis([(w4..4),<cz! b]))

Now, for simplicity, assume that we are dealing with

a programming language that haa no local variables,

and thus no formal parameters. We are interested in

whether holds([(retumt, assumed-alias), <a, b>]) is true

(see Figure 3). Clearly it is true if <a, b> holds at the

corresponding ezit node, conditional on assumed-alias’

holding at its entry and assumed-alias’, conditional on

assumed-alias, holds at the corresponding call node.

Let ASSUM/Z?3 be the set of all possible assumed aliases

in the program. Holds for a return node is defined as:

holds([(return, assumed-alias), <a, b>]) =

holds([(ezit, 0), <a, b>]) V

(

holds([(ezit,AA), <a, b>]) A
VAAeASSUMtW hoids([(.all, aswwned-alia.), old])

)

Factoring in local variables Unfortunately, adding

local variables complicates matters considerably. A pro-

cedure call can both create and destroy an alias in the

calling procedure, involving a non-visible object in the

called procedure. For example, the second call of A in

Figure 1 creates the alias <*q, *p> and destroys the alias

<*q, *r> at returnA(p) even though *p and *r are not

visible in A. However, only references to a visible object

in an alias pair can affect whether the alias holds on a

path (i.e., there can be no direct references to a non-

visible object). Fortunately, a procedure has the same

effect on all alias pairs which contain visible object w and

any non-visible object. Thus for every object w, which

may have aliases, we introduce the alias pair <w, .>,

representing w aliased to a non-visible object, into the

set of possible alias pairs and the set of possible assumed

aliases.

As in Interprocedural May Alias, we need to be

able to model the effects of parameter bindings. How-

ever, we now have a different perspective and will

use the functions baclc-bindCallP and back-bind~allP

for each call site to model parameter bindings.

baci&bindCallP (assumed-alias) specifies the alias holding

on any path p.. .[callp] that guarantees assumed-alias

holds on p,., [callp][entryp]. back-bind~al~p (<a, .>, o)

specifies the alias holding on any path p... [callp] that

guarantees a will be aliased to the non-visible object o

on p... [callP] [entryP]. back-bind and back-bind’ are for-

mally defined in Figure 4.

Assume that we are interested in whether <a, b> holds

on the realizable path PTetUrnQ to node ?’etu?’nQ. We will

use the following conventions:

Preturnq =~l...n~[entry~] mmj[CU~~Q][e~try Q] OlQ,,l.,,

ok [e*~tQ] [r(?t?.H’~Q]

l’ezit~ = P??l ...ni[e~try~]’ml . ..mj [d~Q] [enf?’yQ]ol..,

@ [f?dQ]

pentry~ =~1 ...~i [entryR]ml . ..mj [d/Q] [e’d?’yQ]

‘call~ =Pnl ...n~ [ent~~~]ml. ..mj [d/Q]

pentry~ = pnl ...ni [entry~]

where ?’durnQ is in procedure R, both ml . ..mj and

01.. .ok are realizable paths with the same number of calls

as returns, and ent?’yQ, I%i?itQ, dlQ, and ?’du?’%Q are

the entry, exit, call, and return nodes, respectively, as-

sociated with the call. Consider the following cases:

● a and b are both not visible in the called procedure;

It is impossible for the called procedure to create or

destroy this alias pair, thus <a, b> holds on Pretu,nQ

iff itholds on PCallQ. This implies Rule 1 of Figure 5.

holds([(Entr_yA ,assummed-aiias’),ass~d-alias’1) = true

!

holds([(CallA(~ ,assumed-alias) , assumed-alias’]) = true holds([(ExitA ,assumed-alias’),<a,b>]) = true

holds([(Retur~(~ ,assuwd-alias), ca,b>]) = true

Figure 3: holds at a return node (no local variables)

●

●

a and b are both visible in the called procedure;

If <a, b> holds on Preiurnq, it must also hold on

p.zit~. By Lemma 3.1, either no aliases need

hold on PentrY~ for <a, b> to hold on pezitQ

or there exists a <c, d> such that only <c, d>

must hold on PentrYQ for <a, b> to hold on

pexitQ . In the first case, holds([(ezit, 0), <a, b>])

will be true (by definition of holds). In the sec-

ond case, hotds([(ezit, <c, d>), <a, b>]) must be true

and back-bindCallQ (<c, d>) must hold on pcallQ .

Again by Lemma 3.1 there is an assumed-alias

(either 0 or a single alias pair) which must

hold on Pent,Y~ and by definition of holds,

hOkh([(Cal~Q, aS$U’Wted-dk9), bdd~?d..~lq (< Cad>)]) k

true. Thus holds obeys Rule 2 of Figure 5.

a is visible but b is not (the symmetric case is simi-

lar);

The alias <a, b> holds on P,~t~,~Q iff <a,”> holds

on PeZ;t Q and b is the non-visible object “.”. By

Lemma 3.1 there is a single <a’, t> which must

hold on P,nt,yQ and thus bac?c-bhzd~allQ (<a’, ->, b)

must hold on PCWQ. By Lemma 3.1 there is an

assumed-alias (either 0 or a single alias pair) which

must hold on P~nt~vn and by definition of holds,

hokls([(cailQ, assumed-alias)), back-bind~~,,Q (<a’, .>, b)])

is true. This justifies Rule 3 of Figure 5.

Lemma 3.2 In the presence of single level pointers,

holds can be precisely computed in polynomial time.

The computation of holds is a simple fixed point

computation (initial value of holds at nodes is false).

The calculation takes time polynomial in the size of the

program because each hoids([(node, U), ‘PA]) can only

change its value once and there is only a polynomial

number of such triples (polynomial in the size of the

ICFG and the number of variables in the program). The

proof of precision is by induction on number of itera-

tions of the fixed point algorithm and induction on path

length[12]. ❑

q Intraprocedural May Alias

with Multiple Level Pointers

Theorem 4.1 In the presence of two level pointers, the

problem of determining precise Intraprocedural May

Alias sets is ~P-hard.

The proof of Theorem 4.1 is by reduction from the

3-SAT problem for A~=l(li,l V li,2 V /i,3) with variables

{Vi, vz,...um}m}. The reduction is specified by the pro-

gram in Figure 6 which is polynomial in the size of the

3-SAT problem. The conditionals are not specified in

the program since we are assuming that all paths are

executable. ❑

100

back-bindcalln (0) = @

(<a, b> if a and b are both visible in the procedure called by cailp

<a, *Uj > if a is visible in the procedure called by callP, and b is the

dereferenced formal *fj with corresponding actual Uj

{

<*aj, b> if b is visible in the procedure called by callP, and a is the

back-bindcall, (<a, b>) = dereferenced formal * fj with corresponding actual aj

< *aj, *ak > if a is the dereferenced formal * fj with corresponding

actual aj ,and b is the dereferenced formal *fk with

corresponding actual ak

[false otherwise (either a or b is a local [non-parameter] object)

I
<a, o> if a is visible in the procedure called by callP

back-bind~allp(<a, .>, o) =
<*aj, o> if a is the dereferenced formal * fj with corresponding

actual (lj

fa18e otherwise (a is a local [non-parameter] object)

Figure 4: Specification of bath-bind,allp (assumed-alias) and back-bindcanp (<a, ,>, o)

Rule 1 If a and b are both not visible in the called procedure:

holds([(retwm, assumed-alias), <a, b>]) = hoids([(ca~l, assumed-alias), <a, b>])

Rule 2 If a and b are both visible in the called procedure:

holds([(rettirn, assumed-alias), <a, b>]) =

holds([(ezit, 0), <a, b>]) V VAA&ASSUMcn

Rule 3 If a is visible but b is not (the symmetric

(holds([(ezit, AA), <a, b>]) A

hoids([(call, a.mnned-alia.), back-bindC.ll(AA)]))

case is similar):

holds([(return, aa.sumed-alias), <a, b>]) = V<o,,>ee (holds([(edt, <o, .>), <a, .>]) A
ASSUM.fV holds([(call, ag.wmed-ahas), back-bhd~all(<o, .>, b)]))

Figure 5: holds relation at return nodes

101

int **vi, **v2, ...,**%;
int ** fi, **~,**~.

int *%rue, *false;

int yes, no;

/* A path through this section of

code corresponds to a truth

assignment */

Li :

if (-) {VI = &true; ~ = &false}

else {vl = &false; ~ = &true}

if (–) {wz = &true; ~ = &false}

else {q = &false; ~ = &true}

. . .

if (-) {vm = &true; ~ = &false}

else {v~ = &false; K = &true}

L2: false = &no;

/+

if

if

if

L3 :

The code below will break the

<*~alse,no> alias before

reaching L3 iff the truth

assignment fronr above makes

formula false */

(-) *l~,~t= &yes

else if (-) *11,2 = &yes

else *11,3 = &yes;

(-) *lz,~ = &yes

else if (-) *~z,z = &yes

else *lz,3 = &yes;

,..

(-) *lm,~ = &yes

else if (-) *ln,z = &yes

else *ln,3 = &yes;

the

tli)j is not thestringli,j, but theliteral it represents

(i.e. v, or ~ for some k).

Figure 6: 3-SAT solution iff [L3,<*~alse, no>] in In-

traprocedural May Alias

5 Future Work

Naively calculating the fixed point yields a polyno-

mial time O(n * V6) algorithm where n is the num-

ber of ICFG nodes and w is the number of objects

that may have aliases; thus, our theoretical algorithm

is not practically viable. However, by intelligent calcu-

lation of the fixed point, we can reduce the complexity

to 0(Isize of conditional alias solution12/n) in the worst

case. We expect a solution of conditional alias to be

sparse in comparison to the possible solution space and

have hopes foran O(lsize ofalias solutionl) average case

complexity.

Our goal is to develop agood alias approximation al-

gorithm for general pointer usage in C. Currently, we are

working on a practical approximation algorithm for In-

terprocedural May Alias in the presence ofmultiple level

pointers. Our algorithm design combines ideas from the

proof infection 3, with modifications aimedat accept-

able performance and precision. We plan to implement

this algorithm and empirically test its performance on

actual C programs. We intend to both theoretically and

empirically examine the amount of imprecision of our

approximations (i.e., the percentage of spurious aliases

reported).

Avalidationofthe usefulness ofour algorithm willbe

its incorporation in various data flow analyses, including

interprocedural modification side effect analysis for C

systems. Specifically, we intend to use our algorithm

in a new version of ISMM, our semantic change impact

analyzer for C [19].

We also plan to include the analysis work on recursive

data structures in our framework for pointer aliasing,

6 Conclusions

We have presented a classification of pointer-induced

aliasing problems including Intraprocedural May Alias,

Intraprocedural Must Alias, Interprocedural May Alias

and Interprocedural Must Alias. Each problem has been

defined by the programming language constructs that

cause aliasing alone and in combination: reference for-

102

reals, single level pointers, multiple level pointers and

structures with embedded pointers. We have categorized

the theoretical complexity of these problems, noting that

the presence of multiple levels of indirection leads to

AfP-hard and co-hfP-hard problems. An explanation of

a polynomial time Interprocedural May Alias algorithm

has been given. Current work focuses on design and im-

plementation of a practical, approximate interprocedural

aliasing algorithm based, in part, on the ideas in these

complexity results.

Acknowledgments: We thank Hemant Pande for

his help in improving this presentation.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

J. Banning. An efficient way to find the side effects of
procedure calls and the aliases of variables. In Con-
ference Record of the Sixth Annual ACM Symposium

on Principles of Programming Languages, pages 29–41,
January 1979.

D. R. Chase, M. Wegman, and F. K. %adeck. Analysis of
pointers and structures. In Proceedings of the SIGPLAN
’90 Conference on Programming Language Design and
Implementation, pages 296-310, June 1990. SIGPLAN
Notices, Vol 25, No 6.

A. Chow and A. Rudmik. The design of a data flow ana-
lyzer. In Proceedings of the ACM SIGPLAN Symposium
on Compiler Construction, pages 106–113, June 1982.

B. G. Cooper. Ambitious data flow analysis of procedu-

ral programs. Master’s thesis, University of Minnesota,
May 1989.

K. Cooper. Analyzing aliases of reference formal param-
eters. In Conference Record of the Twelfth Annual A CM

Symposium on Principles of Programming Languages,
pages 281–290, January 1985,

K. Cooper and K. Kennedy. Fast interprocedural alias

analysis. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Lan-

guages, pages 49-59, January 1989.

M. S. Hecht. Flow Analysis of Computer Programs. El-

sevier North-Holland, 1977.

L. J. Hendren and A. Nicolau. Parallelizing programs
with recursive data structures. In Proceedings of the

1989 International Conference on Parallel Processing,

pages 49–56, August 1989.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence anal-
ysis for pointer variables. In Proceedings of the ACM

SIGPLA N Symposium on Compiler Construction, pages
28-40, June 1989.

S. Horwitz, T. Reps, and D. Binjdey. Interprocedural
slicing using dependence graphs. In Proceedings o} the

SIGPLAN ’88 Conference on Programming Language
Design and Implementation, pages 35–46, July 13B6.
SIGPLAN NOTICES, Vol. 23, No. 7.

N. Jones and S. Muchnick. A survey of data flow anal.

ysis techniques. In S. Muchnick and N. Jones, editors,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Program Flow Analysis: Theory and Applications, pages

102–131. Prentice Hall, 1979.

W. LandL Inter-procedural Aliasing in the Presence of
Pointers. PhD thesis, Rutgers University, 1991. in
preparation.

W. Landi and B. G. Ryder. Aliasing with and with-

out pointers: A problem taxonomy. Center for Com-
puter Aids for Industrial Productivity Technical Report

CAIP-TR-125, Rutgers University, September 1990.

J. R. Larus. Restructuring Symbolic Programs for Con-
current Ezecution on Multiprocessors. PhD thesis, Uni-
versit y of California Berkeley, May 1989,

J. R. Larus and P. N. Hilfinger. Detecting conflicts be-

tween structure accesses. In Proceedings of the SIG-

PLAN ’88 Conference on Programming Language De-

sign and Implementation, pages 21-34, July 1988. SIG-
PLAN NOTICES, Vol. 23, No. 7.

D. Lomet. Data flow analysis in the presence of pro-
cedure calls. Journal of Research and Development,
21(6):559-571, November 1977.

T. J. Marlowe and B. G. Ryder. An efficient hybrid algo-
rithm for incremental data flow analysis. In Conference
Record of the Seventeenth Annual ACM Symposium on
Principles of Programming Languages, pages 184-196,
January 1990.

E. M. Myers. A precise interprocedural data flow algo-
rithm. In Conference Record of the Eighth Annual ACM

Symposium on Principles of Programming Languages,
pages 219-230, January 1981.

B. G. Ryder. Ismm: Incremental software maintenance
manager. In Proceedings of the IEEE Computer Society

Conference on Software Maintenance, pages 142-164,
October 1989.

M. Sharir and A. Pnueli. Two approaches to interproce-
dural data flow analysis. In S. Muchnick and N. Jones,
ed~tors, Program Flow Analysis: Theory and Applica-

tions, pages 189-234. Prentice Hall, 1981.

W. E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables and label vari-
ables. Master’s thesis, M. I. T., June 1980.

W. E. Weihl. Interprocedural data flow analysis in the
presence of pointers, procedure variables and label vari-
ables. In Conference Record of the Seventh Annual A CM

Symposium on Principles of Programming Languages,

pages 83-94, January 1980.

103

