PROBLEM SET 3

ANALYSIS II

Problem 1. Let V be an inner product space (over the reals).

- (a) Prove the Cauchy-Schwarz inequality: $\langle \mathbf{x}, \mathbf{y} \rangle \leq ||x|| \cdot ||y||$.
- (b) Prove $||\mathbf{x} + \mathbf{y}|| \le ||x|| + ||y||$.
- (c) Prove $||\mathbf{x} \mathbf{y}|| \ge ||x|| ||y||$.

Problem 2. Show that the sup norm on \mathbb{R}^2 is not derived from an inner product on \mathbb{R}^2 .

Problem 3. Show that the function

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}$$

is an inner product on \mathbb{R}^2 .

Problem 4. Consider the matrix

$$A = \begin{bmatrix} 1 & 2\\ 1 & -1\\ 0 & 1 \end{bmatrix}.$$

- (a) Find two different left inverses for A.
- (b) Show that A has no right inverse.

Problem 5. Let A be an n by m matrix with $n \neq m$.

(a) If rank A = m, show there exists a matrix D that is a product of elementary matrices such that

$$D \cdot A = \begin{bmatrix} I_m \\ 0 \end{bmatrix}.$$

(b) Show that A has a left inverse if and only if rank A = m.

(c) Show that A has a right inverse if and only if rank A = n.

*All questions taken from Analysis on Manifolds by James Munkres.

Date: Jan 16, 2018.