PROBLEM SET 3

ANALYSIS II

Problem 1. Let V be an inner product space (over the reals).
(a) Prove the Cauchy-Schwarz inequality: $\langle\mathbf{x}, \mathbf{y}\rangle \leq\|x\| \cdot\|y\|$.
(b) Prove $\|\mathbf{x}+\mathbf{y}\| \leq\|x\|+\|y\|$.
(c) Prove $\|\mathbf{x}-\mathbf{y}\| \geq\|x\|-\|y\|$.

Problem 2. Show that the sup norm on \mathbb{R}^{2} is not derived from an inner product on \mathbb{R}^{2}.
Problem 3. Show that the the function

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]
$$

is an inner product on \mathbb{R}^{2}.
Problem 4. Consider the matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
1 & -1 \\
0 & 1
\end{array}\right]
$$

(a) Find two different left inverses for A.
(b) Show that A has no right inverse.

Problem 5. Let A be an n by matrix with $n \neq m$.
(a) If rank $A=m$, show there exists a matrix D that is a product of elementary matrices such that

$$
D \cdot A=\left[\begin{array}{c}
I_{m} \\
0
\end{array}\right]
$$

(b) Show that A has a left inverse if and only if rank $A=m$.
(c) Show that A has a right inverse if and only if rank $A=n$.
*All questions taken from Analysis on Manifolds by James Munkres.

