PROBLEM SET 1

ANALYSIS II

Problem 1. Consider $f(x)=1 / x$ over the interval [1, 4]. Let P be the partition consisting of the points $\left\{1, \frac{3}{2}, 2,4\right\}$.
(a) Compute $L(f, P), U(f, P)$, and $U(f, P)-L(f, P)$.
(b) What happens to the value of $U(f, P)-L(f, P)$ when we add the point 3 to the partition?
(c) Find a partition P^{\prime} of $[1,4]$ for which $U\left(f, P^{\prime}\right)-L\left(f, P^{\prime}\right)<\frac{2}{5}$.

Problem 2. Suppose f_{n} is an integrable function on $[a, b]$ for each natural number n. If $\left(f_{n}\right) \rightarrow f$ uniformly on $[a, b]$, prove that f is also integrable on this set. (We will see that this conclusion can fail to hold if convergence is merely pointwise.)

Problem 3. Let $f:[a, b] \rightarrow \mathbb{R}$ be monotone increasing on the set $[a, b]$. Show that f is integrable on $[a, b]$.
*All questions taken from Understanding Analysis: 2nd Edition by Stephen Abbott.

