> 5.2
PARSING AND AMBIGUITY

We have so far concentrated on the generative aspects of gram
Given a grammar G, we studied the set of strings that can be derived usin
G. In cases of practical applications, we are also concerned with the anal
cal side of the grammar: given a string w of terminals, we want to kn
whether or not w is in L(G). If so, we may want to find a derivation of
An algorithm that can tell us whether w is in L(G) is a membership al,
rithm. The term parsing describes finding a sequence of productions
which a w € L(G) is derived.

Parsing and Membership

Given a string w in L(G), we can parse it in a rather obvious fashi
we systematically construct all possible (say, leftmost) derivations and
whether any of them match w. Specifically, we start at round one by looki
at all productions of the form :

S —x,

finding all x that can be derived from § in one step. If none of these result
a match with w, we go to the next round, in which we apply all applic

productions to the leftmost variable of every x. This gives us a set of senten
forms, some of them possibly leading to w. On each subsequent round,
again take all leftmost variables and apply all possible productions. It
be that some of these sentential forms can be rejected on the grounds that

2 Parsing and Ambiguity 141

never be derived from them, but in general, we will have on each round
t of possible sentential forms. After the first round, we have sentential
that can be derived by applying a single production, after the second
d we have the sentential forms that can be derived in two steps, and so
w e L(G), then it must have a leftmost derivation of finite length. Thus,
method will eventually give a leftmost derivation of w.

For reference below, we will call this the exhaustive search parsing
od. It is a form of top-down parsing, which we can view as the con-
tion of a derivation tree from the root down.

; Example 5.7
* Consider the grammar
S — SS |aSh|bSa|\

the string w = aabb. Round one gives us .

1. § = §§,
2, § = aSh,
3. S = bSa,
4. S= A

last two of these can be removed from further consideration for obvious
ns. Round two then yields sentential forms

§ = 5§ = S8§§,
S = 58 = aShs,
S = 5§ = bSas,
S=58=3.,

ch are obtained by replacing the leftmost S in sentential form 1 with
pplicable substitutes. Similarly, from sentential form 2 we get the addi-
sentential forms

S = aSh = aS5h,
S = aSh = aaShb,
S = aSh = abSab,
§ = aSh = ab.

142 Contexi-Free Languages .2 Parsing and Ambiguity 143

- Again, several of these can be removed from contention. On the next roun
we find the actual target string from the sequence

orem §.200

Suppose that G = (V, T, S, P) is a context-free grammar which does

S = aSh = aaSbb = aabb.
t have any rules of the form

Therefore aabb is in the language generated by the grammar under consig

eration. A— 1_’

Exhaustive search parsing has serious flaws. The most obvious one
its tediousness: it is not to be used where efficient parsing is required. Bu
even when efficiency is a secondary issue, there is a more pertinent objec
tion. While the method always parses a w € L(G), it is possible that
never terminates for strings not in L(G). This is certainly the case in
previous example; with w = abb, the method will go on producing tri
sentential forms indefinitely unless we build into it some way of stoppinj 1

The problem of nontermination of exhaustive search parsing is rel
tively easy to overcome if we restrict the form that the grammar can ha
If we examine Example 5.7, we see that the difficulty comes from the pi
duction § — A; this production can be used to decrease the length of succe
sive sentential forms, so that we cannot tell easily when.to stop. If we ¢
not have any such productions, then we have much less difficulties. In fac
there are two types of productions we want to rule out, those of the fo
A — X as well as those of the form A — B. As we will see in the ne
chapter, this restriction does not affect the power of the resulting gra
in any significant way.

A — B,

re A, B € V. Then the exhaustive search parsing method can be made
o an algorithm which, for any w € %*, either produces a parsing of w,
tells us that no parsing is possible.

Proof: For each sentential form, consider both its length and the num-
of terminal symbols. Each step in the derivation increases at least one
these. Since neither the length of a sentential form nor the number of
minal symbols can exceed |w/|, a derivation cannot involve more than
w| rounds, at which time we either have a successful parsing or w cannot
generated by the grammar. B

While the exhaustive search method gives a theoretical guarantee that
rsing can always be done, its practical usefulness is limited because the
mber of sentential forms generated by it may be excessively large. Ex-
ly how many sentential forms are generated differs from case to case;
‘precise general result can be established, but we can put some rough
er bounds on it. If we restrict ourselves to leftmost derivations, we can
Ve no more than | P| sentential forms after one round, no more than |PJ?
ential forms after the second round, and so on. In the proof of Theorem
2 we observed that parsing cannot involve more than 2|w| rounds; there-
2, the total number of sentential forms cannot exceed

» Example 5.8

The grammar
S — SS |aSh|bSalab|ba

satisfies the given requirements. It generates the language in Example
without the empty string.

Given any w € {a, b}, the exhaustive search parsing method ¥
always terminate in no more than |w| rounds. This is clear because ¢
length of the sentential form grows by at least one symbol in each rouf
After |w| rounds we have either produced a parsing or we know that w
L(G).

M =|P| +|P]+ -+ |PP™ (5.2)

'S_indicates that the work for exhaustive search parsing may grow expo-
-tl.ally with the length of the string, making the cost of the method pro-
Itlve. Of course, Equation (5.2) is only a bound, and often the number
sentential forms is much smaller. Nevertheless, practical observation
OWs that exhaustive search parsing is very inefficient in most cases.

The idea in this example can be generalized and made into a theo!
The construction of more efficient parsing methods for context-free

for context-free languages in general.

144 Context-Free Languages) Parsing and Ambiguity 145

grammars is a complicated matter that belongs to a course on compile;
We will not pursue it here except for some isolated results.

not an s-grammar because the pair (S, @) occurs in the two productions
aS and § — aSSs.

Theorem 5.3

~ While s-grammars are quite restrictive, they are of some interest. As
will see in the next section, many features of common programming
guages can be described by s-grammars.

If G is an s-grammar, then any string w in L(G) can be parsed with
effort proportional to [w|. To see this, look at the exhaustive search
thod and the string w = a,a; - - - a,. Since there can be at most one rule
h S on the left, and starting with a, on the right, the derivation must

For every context-free grammar there exists an algorithm that parses
any w € L(G) in a number of steps proportional to |w|’.

There are several known methods to achieve this, but all of them a
sufficiently complicated that we cannot even describe them without develj
oping some additional results. In Section 6.3 we will take this question
again briefly. More details can be found in Harrison 1978 and Hopcrof
and Ullman 1979. One reason for not pursuing this in detail is that eve:
these algorithms are unsatisfactory. A method in which the work rises wi
the third power of the length of the string, while better than an exponentia
algorithm, is still quite inefficient, and a compiler based on it would need
an excessive amount of time to parse even a moderately long program
What we would like to have is a parsing method which takes time propor:
tional to the length of the string. We refer to such a method as a linea
time parsing algorithm. We do not know any linear time parsing method:
for context-free languages in general, but such algorithms can be found fo
restricted, but important, special cases.

S= alAlAz v ‘Am-

2xt, we substitute for the variable A,, but since again there is at most one
pice, we must have

S=*> ﬂ]ﬂzB;Bz' " Ag ‘A,,..

see from this that each step produces one terminal symbol and hence
whole process must be completed in no more than |w| steps.

Definition 5.4

Ambiguity in Grammars
A context-free grammar G = (V, T, S, P) is said to be a simple gram ‘-.lmd Lang.uages ' .
mar or s-grammar if all its productions are of the form 1 - On the basis of our argument we can Cl_alm_ that given any w € Lf‘G,):
y austive search parsing will produce a derivation tree for w. We say “‘a
ivation tree rather than ‘‘the’’ derivation tree because of the possibility
a number of different derivation trees may exist. This situation is re-

ed to as ambiguity.

A — ax,

where A € V,ae T, x € V* and any pair (A, a) occurs at most once in P

» Example 5.9 : inition 5.5
The grammar

A context-free grammar G is said to be ambiguous if there exists some
= L(G) which has at least two distinct derivation trees. Alternatively,
guity implies the existence of two or more leftmost or rightmost deri-

S — aS|bSS|c
is an s-grammar. The grammar

S — aS|bSS|aSS|c

146 Context-Free Languages » 5.2 Parsing and Ambiguity 147

Figure 5.4 Two derivation trees for aabb.. Figure 5.5 Two derivation trees fora + b * .

The grammar in Example 5.4, with productions § — aSh|SS|A, is am-
biguous. The sentence aabb has the two derivation trees shown in Figure
54. -

The strings (@ + b) * cand a * b + c are in L(G). It is easy to see that
this grammar generates a restricted subset of arithmetic expressions for
FORTRAN and Pascal-like programming languages. The grammar is am-
biguous. For instance, the string @ + b * ¢ has two different derivation
Ambiguity is a common feature of natural languages, where it is toler- rees, as shown in Figure 5.5.
ated and dealt,with in a variety of ways. In programming languages, where
there should be only one interpretation of each statement, ambiguity must
be removed when possible. Often we can achieve this by rewriting the
grammar in an equivalent, unambiguous form.

» Example 5.11
Consider the grammar G = (V, T, E, P) with

One way to resolve the ambiguity is, as is done in programming manu-
8, to associate precedence rules with the operators + and *. Since * nor-
ally has higher precedence than +, we would take Figure 5.5(a) as the
correct parsing as it indicates that b * ¢ is a subexpression to be evaluated
defore performing the addition. However, this resolution is completely out-
Side the grammar. It is better to rewrite the grammar so that only one pars-
ng is possible.

Example 5.12

To rewrite the grammar in Example 5.11 we introduce new variables,
aking V as {E, T, F, I'} and replace the productions with

{E, I},
{a, b, c, o *s (»)}l

Vv
T

and productions

E—-I,

E—E+E, E->T,
E—-E*E, T=F,

E — (E), FoI,

I — albjec. E—-E+T,

148 Context-Free Languages B2 Parsing and Ambiguity

149

T>T*%F
F = (E),
I — alb|c.

ofinition 5.6

If L is a context-free language for which there exists an unambiguous
mar, then L is said to be unambiguous. If every grammar that generates
A derivation tree of the sentence a + b * ¢ is shown in Figure 5.6. No other is ambiguous, then the language is called inherently ambiguous.
erivatio: i .
derivation tree is possible for this string: the grammar i3 unambiguous. It
also is equivalent to the grammar in Example 5._11. It is not too harfl to
justify these claims in this specific instance, but, in general, the questfons.
whether a given context-free grammar is ambigupus or whether two given
context-free grammars are equivalent are very dlfﬁ(:.ult to answer. In tlf.:m,
we will later show that there are no general algorithms by which

questions can always be resolved.

It is @ somewhat difficult matter even to exhibit an inherently ambigu-
s language. The best we can do here is give an example with some rea-
nably plausible claim that it is inherently ambiguous.

Example 5.13
The language iy

L = {a"b"c"} U {a"b"c"™},

i igui from the grammar i
In the foregoing example the amblgu!ty came fr :
the sense that it could be removed by finding an equlyalent unambigu
_In some instances, however, this is not possible because the
biguity is in the language.

ith n and m non-negative, is an inherently ambig{lou.s context-free lan-
ge.
That L is context-free is easy to show. Notice that

\

L= L| U Lz,
re L, is generated by
Fisures.s Sl—)S|C|A,
A — aAb|A,

L, is given by an analogous grammar with start symbol S, and produc-

SQ - aSle,
B — bBc|A.

L is generated by the combination of these two grammars with the
itional production

S5 - 519,

The grammar is ambiguous since the string a"b”c" has two distinct
Vations, one starting with § = §,, the other with § = S,. It does of

not follow from this that L is inherently ambiguous as there might
some other nonambiguous grammars for it. But in some way L, and
ve conflicting requirements, the first putting a restriction on the num-

150 Context-Free Languages

ber of a’s and b’s, while the second does the same for b’s and c’s. A few
tries will quickly convince you of the impossibility of combining these
requirements in a single set of rules that cover the case n = m uniquely,

A rigorous argument, though, is quite technical. One proof can be found
in Harrison 1978.

