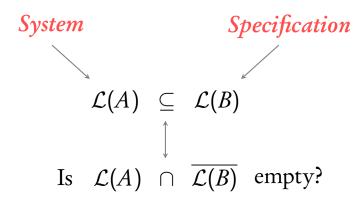
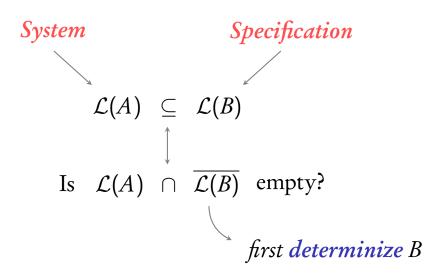
Automata for Real-time Systems

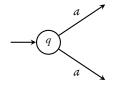
B. Srivathsan

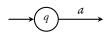
Chennai Mathematical Institute

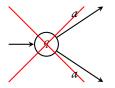


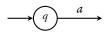


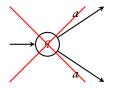
Determinizing timed automata

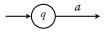




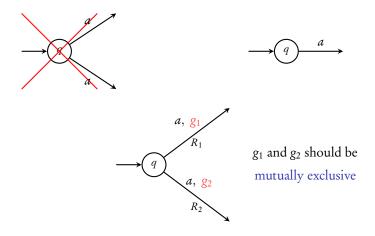






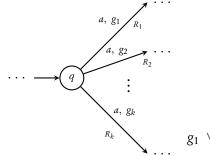




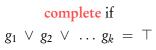


For every (q, v) there is only one choice

Deterministic Timed Automata



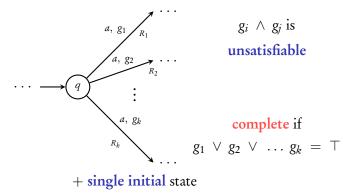
 $g_i \wedge g_j$ is **unsatisfiable**



A theory of timed automata

R. Alur and D. Dill, TCS'94

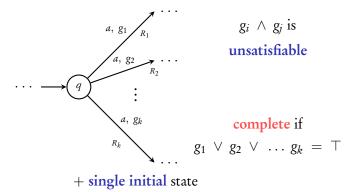
Deterministic Timed Automata



A theory of timed automata

R. Alur and D. Dill, TCS'94

Deterministic Timed Automata



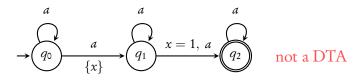
Unique run

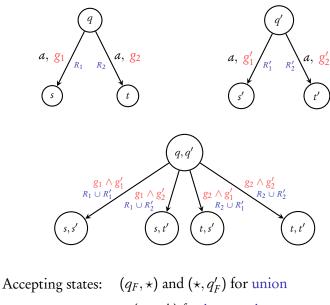
A DTA has a unique run on every timed word

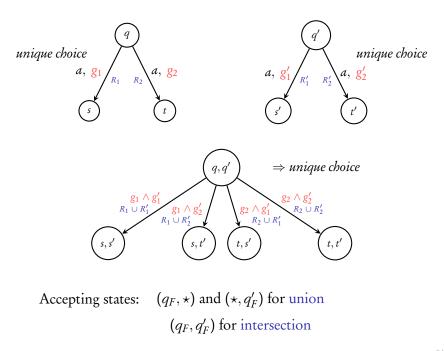
A theory of timed automata

R. Alur and D. Dill, TCS'94

$$\rightarrow \underbrace{q_0}_{\{x\}} \underbrace{x=1, a}_{\{x\}} \underbrace{q_1}_{\{x\}} \underbrace{x=1, a}_{\{x\}} a \text{ DTA}$$







Theorem

DTA are closed under union and intersection

Complementation

Unique run

A DTA has a unique run on every timed word

⇒ DTA are **closed under complement** (interchange accepting and non-accepting states)

Every DTA is a TA: $\mathcal{L}(DTA) \subseteq \mathcal{L}(TA)$

But there is a TA that **cannot be complemented** (*Previous Lecture*)

 \therefore $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

DTA

Unique run Closed under ∪, ∩, comp.

 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Given a TA, when do we know if we can determinize it?

Given a TA, when do we know if we can determinize it?

Theorem [Finkel'06]

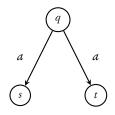
Given a TA, checking if it can be determinized is undecidable

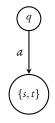
Given a TA, when do we know if we can determinize it?

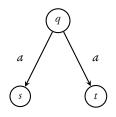
Theorem [Finkel'06]

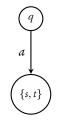
Given a TA, checking if it can be determinized is undecidable

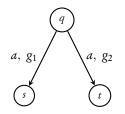
Following next: some sufficient conditions for determinizing

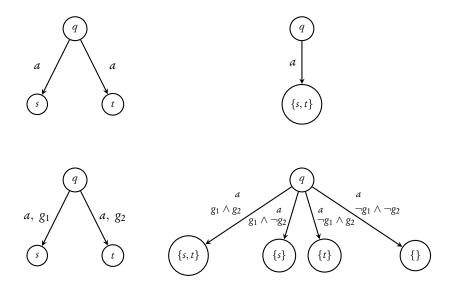


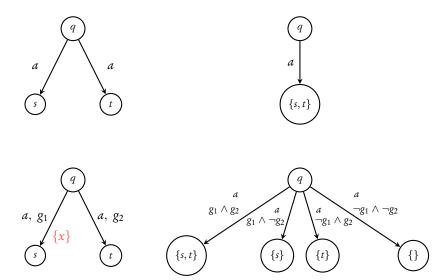


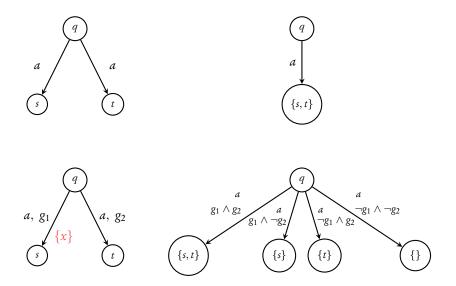




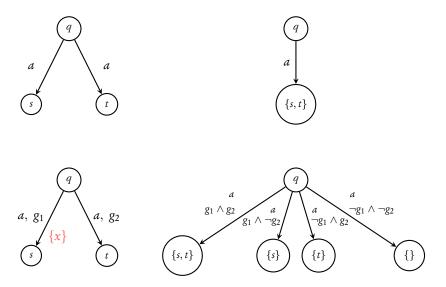








To reset or not to reset?

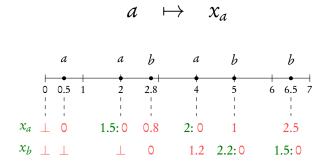


First solution:

To reset or not to reset?

Whenever a, reset x_a

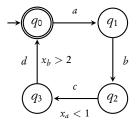
Event-recording clocks: time since last occurence of event



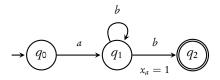
Event-clock automata: a determinizable subclass of timed automata Alur, Henzinger, Fix. TCS'99

Event-recording automata

{ ($(abcd)^k, \tau$) | a - c distance is < 1 and b - d distance is > 2}

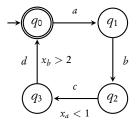


{ (ab^*b, τ) | distance between first and last letters is 1}

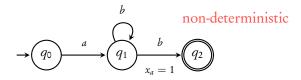


Event-recording automata

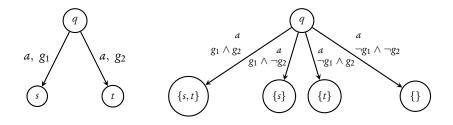
{ ($(abcd)^k, \tau$) | a - c distance is < 1 and b - d distance is > 2}



{ (ab^*b, τ) | distance between first and last letters is 1}



Determinizing ERA: modified subset construction



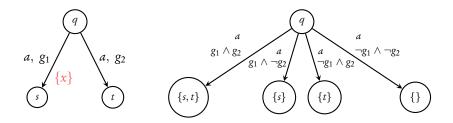
exponential in the number of states

DTA

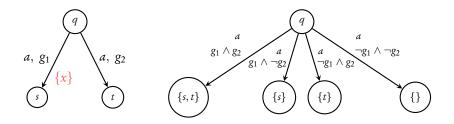
Unique run Closed under ∪, ∩, comp.

 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Determinizable subclasses ERA



To reset or not to reset?

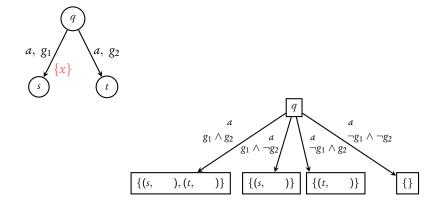


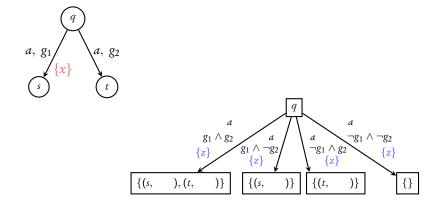
To reset or not to reset?

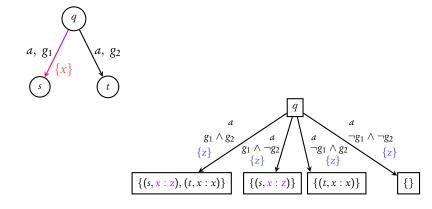
Coming next: slightly modified version of BBBB-09

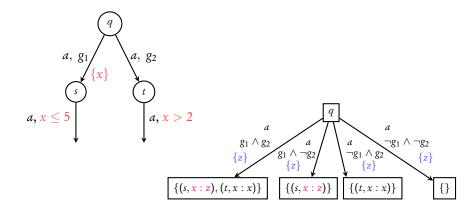
When are timed automata determinizable?

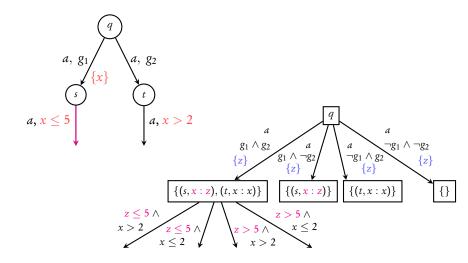
Baier, Bertrand, Bouyer, Brihaye. ICALP'09

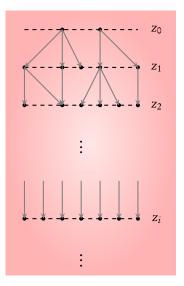






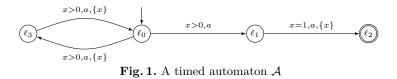






Reset a **new** clock z_i at level i

Coming next: An example illustrating the construction



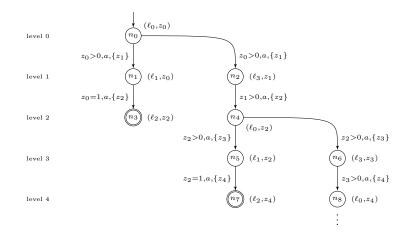
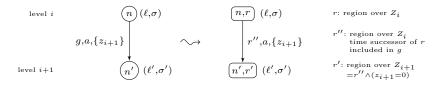


Fig. 2. The infinite timed tree \mathcal{A}^{∞} associated with the timed automaton \mathcal{A} of Fig. 1.



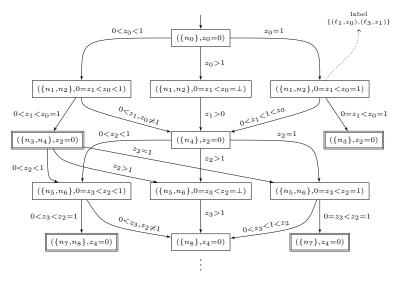


Fig. 3. The DAG induced by the infinite timed tree $\mathsf{SymbDet}(R(\mathcal{A}^{\infty}))$

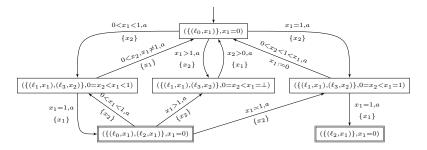
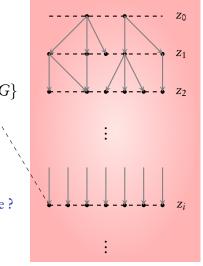


Fig. 4. The deterministic version of \mathcal{A} : the timed automaton $\mathcal{B}_{\mathcal{A},\gamma}$

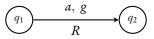


$$\{(q_1, \sigma_1), (q_2, \sigma_2), \dots, (q_k, \sigma_k), REG\}$$
$$\sigma_j : X \mapsto \{z_0, \dots, z_i\}$$

When do finitely many clocks suffice ?

Reset a **new** clock z_i at level i

Integer reset timed automata



Conditions:

- g has **integer** constants
- *R* is **non-empty iff** g has some constraint x = c

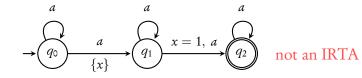
Implication:

 Along a timed word, a reset of an IRTA happens only at integer timestamps

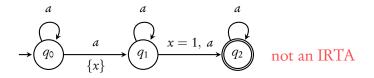
Timed automata with integer resets: Language inclusion and expressiveness

Suman, Pandya, Krishna, Manasa. FORMATS'08

$$\rightarrow \underbrace{q_0}_{\{x\}} \xrightarrow{x = 1, a} \underbrace{q_1}_{\{x\}} \xrightarrow{x = 1, a}_{\{x\}} \text{ an IRTA}$$

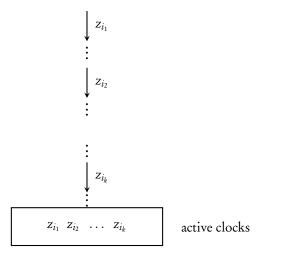


$$\rightarrow \underbrace{q_0}_{\{x\}} \xrightarrow{x = 1, a} \underbrace{q_1}_{\{x\}} \xrightarrow{x = 1, a}_{\{x\}} \text{ an IRTA}$$



Next: determinizing IRTA using the subset construction

M: max constant from among guards



• If $k \ge M + 1$, then $z_{i_1} > M$ (as reset is only in integers)

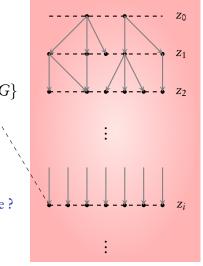
• Replace z_{i_1} with \perp and reuse z_{i_1} further

DTA

Unique run Closed under ∪, ∩, comp.

 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Determinizable subclasses ERA IRTA



$$\{(q_1, \sigma_1), (q_2, \sigma_2), \dots, (q_k, \sigma_k), REG\}$$
$$\sigma_j : X \mapsto \{z_0, \dots, z_i\}$$

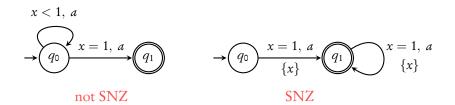
When do finitely many clocks suffice ?

Reset a **new** clock z_i at level i

Strongly non-Zeno automata

A TA is strongly non-Zeno if there is $K \in \mathbb{N}$:

every sequence of greater than K transitions elapses at least 1 time unit



Theorem

Finitely many clocks suffice in the subset construction for strongly non-Zeno automata

(The number of clocks depends on size of region automaton...)

When are timed automata determinizable?

Baier, Bertrand, Bouyer, Brihaye. ICALP'09

Complexity of subset construction

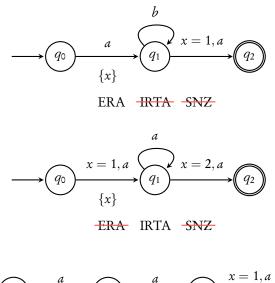
Doubly-exponential in the size of the automaton

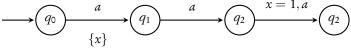
DTA

Unique run Closed under ∪, ∩, comp.

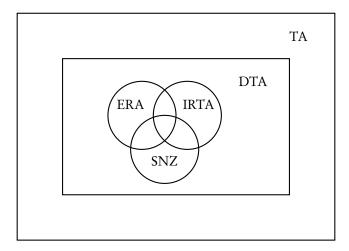
 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Determinizable subclasses ERA IRTA SNZ





ERA IRTA SNZ



Closure properties of ERA, IRTA, SNZ

- Union: disjoint union $\sqrt{}$
- Intersection: product construction $\sqrt{}$
- Complement: determinize & interchange acc. states $\sqrt{}$

DTA

Unique run Closed under ∪, ∩, comp.

 $\mathcal{L}(DTA) \subset \mathcal{L}(TA)$

Determinizable subclasses ERA IRTA SNZ

ERA, IRTA, SNZ

Incomparable

Closed under \cup , \cap , comp.

Perspectives

Other related work:

- Event-predicting clocks (Alur, Henzinger, Fix'99)
- Bounded two-way timed automata (Alur, Henzinger'92)

For the future:

- Infinite timed words: Safra?
- Efficient algorithms