Unit-10: Algorithms for CTL B. Srivathsan Chennai Mathematical Institute NPTEL-course July - November 2015 # Module 2: EX, EU and EG ## CTL model-checking problem Given transition system M and a CTL formula ϕ , find all states of M that satisfy ϕ ## CTL model-checking problem Given transition system M and a CTL formula ϕ , find all states of M that satisfy ϕ In this unit: Special case when ϕ is either E X, E U or E G ### Part 1: ## Algorithm for E X ## Algorithm for E X ϕ ### Algorithm for E X ϕ Suppose states satisfying ϕ have been labelled ### Algorithm for E X ϕ Suppose states satisfying ϕ have been labelled State s is labelled with E X ϕ if there exists a successor which is labelled ϕ ## Part 2: Algorithm for E U ### Algorithm for E ($\phi_1 \cup \phi_2$) - ► If any state is labelled with ϕ_2 , label it with \mathbf{E} (ϕ_1 \mathbf{U} ϕ_2) - ► Repeat: Label any state with \mathbf{E} (ϕ_1 \mathbf{U} ϕ_2) if it is labelled with ϕ_1 and at least one successor is labelled with \mathbf{E} (ϕ_1 \mathbf{U} ϕ_2) until no change ### Algorithm for E ($\phi_1 U \phi_2$) - If any state is labelled with ϕ_2 , label it with $\mathbf{E} (\phi_1 \mathbf{U} \phi_2)$ - ▶ *Repeat*: Label any state with \mathbf{E} ($\phi_1 \mathbf{U} \phi_2$) if it is labelled with ϕ_1 and at least one successor is labelled with \mathbf{E} ($\phi_1 \mathbf{U} \phi_2$) *until no change* ### Algorithm for E ($\phi_1 U \phi_2$) - If any state is labelled with ϕ_2 , label it with $\mathbf{E} (\phi_1 \mathbf{U} \phi_2)$ - ▶ *Repeat*: Label any state with \mathbf{E} ($\phi_1 \mathbf{U} \phi_2$) if it is labelled with ϕ_1 and at least one successor is labelled with \mathbf{E} ($\phi_1 \mathbf{U} \phi_2$) *until no change* ## Part 3: Algorithm for E G ### $\mathbf{E} \mathbf{G} p_1$ $\mathbf{E} \mathbf{G} p_1$ ### $\mathbf{E} \mathbf{G} p_1$ No state of the above transition system satisfies **E** $G p_1$ ▶ Label all states with **E G** ϕ - ▶ Label all states with **E G** ϕ - If any state is **not** labelled with ϕ , **delete** the label **E G** ϕ - ▶ Label all states with **E G** ϕ - If any state is **not** labelled with ϕ , **delete** the label **E G** ϕ #### ► Repeat: - ▶ Label all states with **E G** ϕ - If any state is **not** labelled with ϕ , **delete** the label **E G** ϕ #### ► Repeat: - ▶ Label all states with **E G** ϕ - If any state is **not** labelled with ϕ , **delete** the label **E G** ϕ #### ► Repeat: - ▶ Label all states with **E G** ϕ - If any state is **not** labelled with ϕ , **delete** the label **E G** ϕ #### ► Repeat: # Summary Algorithms EX, EU, EG