The Separation Problem: An Introduction and a Transfer Theorem

Marc Zeitoun

Joint work with Thomas Place

ACTS 2015, Chennai - February 9, 2015

Objects we consider

Objects we consider

Objects we consider

For this talk

First-order logic on words

First-order logic, with only the linear order '<'.

a b b b c a a a c a

First-order logic on words

First-order logic, with only the linear order '<'.

a b b b c a a a c a 0 1 2 3 4 5 6 7 8 9

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order x < y.

First-order logic on words

First-order logic, with only the linear order '<'.

a b b b c a a a c a 0 1 2 3 4 5 6 7 8 9

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order x < y.

Example: every *a* comes after some *b*

 $\forall x \ a(x) \Rightarrow \exists y \ (b(y) \land (y < x))$

Why look at fragments in addition to full FO?

- Simple formulas are better (aesthetically, algorithmically).
- Some parameters making formulas complex:
 - Number of quantifier alternations,
 - Allowed predicates,
 - Number of variable names.

Why look at fragments in addition to full FO?

- Simple formulas are better (aesthetically, algorithmically).
- Some parameters making formulas complex:
 - Number of quantifier alternations,
 - Allowed predicates,
 - Number of variable names.

Membership Problem for a fragment \mathcal{F}

- ► **INPUT** A language *L*.
- **QUESTION** Is L expressible in \mathcal{F} ?

First Problem: Membership

Membership Problem for a fragment \mathcal{F}

- ► **INPUT** A language *L*.
- **QUESTION** Is L expressible in \mathcal{F} ?

First Problem: Membership

Membership Problem for a fragment \mathcal{F}

- ► **INPUT** A language *L*.
- **QUESTION** Is L expressible in \mathcal{F} ?

First Problem: Membership

Membership Problem for a fragment \mathcal{F}

- ► **INPUT** A language *L*.
- **QUESTION** Is L expressible in \mathcal{F} ?

Schützenberger'65, McNaughton and Papert'71

For L a regular language, the following are equivalent:

- L is FO-definable.
- The syntactic monoid of L satisfies $u^{\omega+1} = u^{\omega}$.

Fragments of FO

- A fragment is obtained by restricting
 - Number of quantifier alternations,
 - Allowed predicates,
 - Number of variable names.

▶ FO(<), FO(<,+1) and FO(<,+1,min,max): same expressiveness.

 \Rightarrow Allowing '=' but not '<' yields distinct fragments.

 $\Sigma_1(<), \quad \Sigma_1(<,+1), \text{ and } \Sigma_1(<,+1,min,max)$

We do not want to prove membership multiple times.

Some well-known fragments

Problem: Solve membership for strong variants without reproving everything nor mimicking the proof.

A generic result for membership

 Problem Solve membership for strong variants without reproving everything nor mimicking the proof.

 S. Eilenberg Each fragment is associated the class of finite monoids recognizing a language from the fragment.
Example: FO ↔ [x^ω = x^{ω+1}].

H. Straubing 1985 + M. Kulfleitner & A. Lauser 2014: generic result.

Straubing's Theorem

- 1. Show the correspondence between ${\mathcal F}$ and algebraic variety V.
- 2. In most cases, the enriched fragment \mathcal{F}^+ corresponds to V * D.
- 3. In most cases, $V \mapsto V * D$ preserves decidability.

Straubing's Theorem

- 1. Show the correspondence between ${\mathcal F}$ and algebraic variety V.
- 2. In most cases, the enriched fragment \mathcal{F}^+ corresponds to V * D.
- 3. In most cases, $V \mapsto V * D$ preserves decidability.

Remarks

- One need to establish the correspondence 1.
- That $V \mapsto V * D$ preserves decidability is a difficult result.

An alternative approach

B. Steinberg 2001

- ► All fragments share a property entailing decidability of membership.
- This property is preserved through enrichment.

Even if we are interested in the membership problem for \mathcal{F} , it does not give sufficient information to reason about \mathcal{F} .

Why we want more than membership

If the membership answer for \boldsymbol{L}

- is YES
 - All "subparts" of the minimal automaton of L are \mathcal{F} -definable.
- is **NO**, then even if \mathcal{F} can talk about *L*:
 - We have little information.
 - ▶ Eg, defining *L* in FO would require differentiating some u^{ω} and $u^{\omega+1}$.

Motivations for Separation

- ► Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.

Motivations for Separation

- ► Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.
- 2 examples of "transfer results":
 - decidability of separation is preserved when enriching ${\cal F}$ with successor.
 - decidability of separation for level Σ_i of the quantifier alternation hierarchy entails decidability of membership for Σ_{i+1} .

Motivations for Separation

- ► Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.
- 2 examples of "transfer results":
 - \blacktriangleright decidability of separation is preserved when enriching ${\cal F}$ with successor.
 - decidability of separation for level Σ_i of the quantifier alternation hierarchy entails decidability of membership for Σ_{i+1} .
- ⇒ We shouldn't restrict ourselves to membership

Decide the following problem:

Decide the following problem:

Decide the following problem:

Membership can be formally reduced to separation

Membership can be formally reduced to separation

Related work

- Separation already considered in an algebraic framework.
- First result by K. Henckell '88 for FO, then for several natural fragments.
- Purely algebraic proofs, hiding the combinatorial and logical intuitions.
- Transfer result of this talk already obtained by Ben Steinberg '01.
- Simpler proof techniques.

- ► In FO(=), one can just count occurrences of letters, up to a threshold.
- ► Example: at least 2 *a*'s: $\exists x, y \ x \neq y \land a(x) \land a(y)$.
- ► FO(=) can express properties like

at least 2 a's, no more than 3 b's, exactly 1 c.

► How to decide separation for FO(=)?

• Let $\pi(u) \in \mathbb{N}^A$ be the commutative (aka. Parikh) image of u.

 $\pi(aabad) = (3, 1, 0, 1).$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

▶ For $\vec{x}, \vec{y} \in \mathbb{N}^A$, $\vec{x} =_d \vec{y}$ if $\forall i: x_i = y_i$ or both $x_i, y_i \ge d$.

• Let $\pi(u) \in \mathbb{N}^A$ be the commutative (aka. Parikh) image of u.

 $\pi(aabad) = (3, 1, 0, 1).$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

▶ For $\vec{x}, \vec{y} \in \mathbb{N}^A$, $\vec{x} =_d \vec{y}$ if $\forall i: x_i = y_i$ or both $x_i, y_i \ge d$.

Fact

Languages L_1, L_2 are not FO(=)-separable iff

 $\forall d \quad \exists u_1 \in L_1 \, \exists u_2 \in L_2, \quad \pi(u_1) =_{\mathbf{d}} \pi(u_2).$

• Let $\pi(u) \in \mathbb{N}^A$ be the commutative (aka. Parikh) image of u.

 $\pi(aabad) = (3, 1, 0, 1).$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

▶ For $\vec{x}, \vec{y} \in \mathbb{N}^A$, $\vec{x} =_d \vec{y}$ if $\forall i: x_i = y_i$ or both $x_i, y_i \ge d$.

Fact

Languages L_1, L_2 are not FO(=)-separable iff

$$\forall d \quad \exists u_1 \in L_1 \, \exists u_2 \in L_2, \quad \pi(u_1) =_d \pi(u_2).$$

Proof. \Rightarrow The FO(=) language $\{u \mid \pi(u) \in_d \pi(L_1)\}$ contains L_1 . Since L_1, L_2 are not FO(=)-separable, it intersects L_2 .

• Let $\pi(u) \in \mathbb{N}^A$ be the commutative (aka. Parikh) image of u.

 $\pi(aabad) = (3, 1, 0, 1).$

Parikh's Theorem

For L context-free, $\pi(L)$ is (effectively) semilinear.

▶ For $\vec{x}, \vec{y} \in \mathbb{N}^A$, $\vec{x} =_d \vec{y}$ if $\forall i: x_i = y_i$ or both $x_i, y_i \ge d$.

Fact

Languages L_1, L_2 are not FO(=)-separable iff

 $\forall \mathbf{d} \quad \exists u_1 \in L_1 \, \exists u_2 \in L_2, \quad \pi(u_1) =_{\mathbf{d}} \pi(u_2).$

Proof. \Rightarrow The FO(=) language $\{u \mid \pi(u) \in_{d} \pi(L_1)\}$ contains L_1 . Since L_1, L_2 are not FO(=)-separable, it intersects L_2 .

 \Leftarrow Assume there is an FO(=)-separator *K*, say of threshold *d*. Then $L_1 \subseteq K \implies u_1 \in K \implies u_2 \in K$, impossible since $u_2 \in L_2$.

Fact

Languages L_1, L_2 are not FO(=)-separable iff

$$\forall d \quad \exists \vec{x}_1 \in \pi(L_1) \, \exists \vec{x}_2 \in \pi(L_2), \quad \vec{x}_1 =_d \vec{x}_2.$$

By Parikh's Theorem, decidability follows from that of Presburger logic.

Separation for FO(=,+1)

- ► FO(=) can just count occurrences of letters up to a threshold.
- ► FO(=,+1) can just count occurrences of infixes up to a threshold. There exist at least 2 occurrences of abba and the word start with ba.
- For membership, decidability follows from a delay theorem: To test FO(=,+1)-definability, one can look at infixes of bounded size.

Separation for FO(=,+1)

- ► FO(=) can just count occurrences of letters up to a threshold.
- ► FO(=,+1) can just count occurrences of infixes up to a threshold. There exist at least 2 occurrences of abba and the word start with ba.
- ► For membership, decidability follows from a delay theorem: To test FO(=,+1)-definability, one can look at infixes of bounded size.
- Membership proof is not trivial. Transferring separability is easier.

The transfer result

```
Let \mathcal{F} be one of FO(=), FO^2(<), \Sigma_n(<), \mathcal{B}\Sigma_n(<).
```

Main result

 \mathcal{F}^+ -separability reduces to \mathcal{F} -separability. For any regular *L*, one can build a regular language \mathbb{L} such that

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

- Simple.
- Extends to infinite words.
- Mostly generic and Constructive

from an \mathcal{F} formula separating \mathbb{L}_1 and \mathbb{L}_2 , build an \mathcal{F}^+ formula that separates L_1 from L_2 .

Well formed words

- Intuition: adding +1 makes it to inspect infixes.
- Use regularity of input languages: large infixes will contain loops. Fix $\alpha : A^+ \to S$ recognizing L_1 and L_2 .

$$L_i = \alpha^{-1}(F_i).$$

E(S) = set of idempotents of S.

$$E(S) = \{ e \in S \mid ee = e \}$$

Well formed words

- Intuition: adding +1 makes it to inspect infixes.
- Use regularity of input languages: large infixes will contain loops. Fix $\alpha : A^+ \to S$ recognizing L_1 and L_2 .

$$L_i = \alpha^{-1}(F_i).$$

E(S) = set of idempotents of S.

$$E(S) = \{ e \in S \mid ee = e \}$$

New alphabet

 $\mathbb{A}_{\pmb{\alpha}} = (E(S) \times S \times E(S)) \quad \cup \quad (S \times E(S)) \quad \cup \quad (E(S) \times S) \quad \cup \quad S.$

• Well formed word: either a single $s \in S$, or

$$(s_0, f_0) \cdot (e_1, s_1, f_1) \cdots (e_n, s_n, f_n) \cdot (e_{n+1}, s_{n+1})$$

with $f_i = e_{i+1}$.

Extending the morphism on well-formed words

• Well formed word over \mathbb{A} : either a single $s \in S$, or

 $(s_0, e_1) \cdot (e_1, s_1, e_2) \cdot (e_2, s_2, e_3) \cdots (e_n, s_n, e_{n+1}) \cdot (e_{n+1}, s_{n+1})$

Fact. The language of well formed words is regular.

Extending the morphism on well-formed words

• Well formed word over \mathbb{A} : either a single $s \in S$, or

 $(s_0, e_1) \cdot (e_1, s_1, e_2) \cdot (e_2, s_2, e_3) \cdots (e_n, s_n, e_{n+1}) \cdot (e_{n+1}, s_{n+1})$

Fact. The language of well formed words is regular.

• Morphism $\beta : \mathbb{A}^+ \to S$, defined by

$$\begin{aligned} \beta(s) &= s & & & & & & & \\ \beta(e,s) &= es & & & & & & & \\ \beta(s,f) &= sf & & & & & & \\ \end{aligned}$$

Therefore,

$$\begin{split} & \beta[(s_0, e_1) \cdot (e_1, s_1, e_2) \cdot (e_2, s_2, e_3) \cdots (e_n, s_n, e_{n+1}) \cdot (e_{n+1}, s_{n+1})] \\ & = \\ & s_0 e_1 s_1 e_2 s_2 e_3 \cdots e_n s_n e_{n+1} e_{n+1} s_{n+1} \end{split}$$

Associated language of well-formed words

► To a language $L \subseteq A^+$ recognized by α , associate $\mathbb{L} \subseteq \mathbb{A}^+$.

$$\mathbb{L} = \{ w \in \mathbb{A}^+ \mid \beta(w) \in \alpha(L) \}$$
$$= \beta^{-1}(\alpha(L)).$$

Fact. The language \mathbb{L} associated to *L* is (effectively) regular.

Main result again

Let \mathcal{F} be one of $FO(=), FO^2(<), \Sigma_n(<), \mathcal{B}\Sigma_n(<)$. and \mathcal{F}^+ be its enrichment.

Let $L_1, L_2 \subseteq A^+$ be regular languages recognized by α .

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

A consequence for membership

Let \mathcal{F} be one of FO(=), FO²(<), $\Sigma_n(<)$, $\mathcal{B}\Sigma_n(<)$. and \mathcal{F}^+ be its enrichment.

Let $L_1, L_2 \subseteq A^+$ be recognized by α .

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

 \Rightarrow **Separation** decidable for enrichment of FO(=), FO²(<), $\mathcal{B}\Sigma_1$, $\Sigma_n \ n \leq 3$.

A consequence for membership

Let \mathcal{F} be one of FO(=), FO²(<), $\Sigma_n(<)$, $\mathcal{B}\Sigma_n(<)$. and \mathcal{F}^+ be its enrichment.

Let $L_1, L_2 \subseteq A^+$ be recognized by α .

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

 \Rightarrow Separation decidable for enrichment of FO(=), FO²(<), $\mathcal{B}\Sigma_1$, $\Sigma_n n \leq 3$.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

 \Rightarrow Membership decidable for $\mathcal{B}\Sigma_2(<,+1)$ and $\Sigma_4(<,+1)$.

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

Proof. Let $K = A^+ \setminus L$ and \mathbb{K} associated to *K*. \mathbb{K} and \mathbb{L} partition the set of all well-formed words.

 (\Leftarrow) \mathbb{L} is \mathcal{F} -definable \Longrightarrow \mathbb{L} is \mathcal{F} -separable from \mathbb{K}

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

Proof. Let $K = A^+ \setminus L$ and \mathbb{K} associated to K. \mathbb{K} and \mathbb{L} partition the set of all well-formed words.

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

Proof. Let $K = A^+ \setminus L$ and \mathbb{K} associated to K. \mathbb{K} and \mathbb{L} partition the set of all well-formed words.

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

Proof. Let $K = A^+ \setminus L$ and \mathbb{K} associated to *K*. \mathbb{K} and \mathbb{L} partition the set of all well-formed words.

 $\begin{array}{ll} (\Longrightarrow) & L \text{ is } \mathcal{F}^+\text{-definable} & \Longrightarrow & L \text{ is } \mathcal{F}^+\text{-separable from } K \\ & \Longrightarrow & \mathbb{L} \text{ is } \mathcal{F}\text{-separable from } \mathbb{K} \text{ by } \mathbb{S} \end{array}$

Main result (separation)

 L_1 and L_2 are \mathcal{F}^+ -separable iff. \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable.

Corollary (membership)

If in addition \mathcal{F} can define the set of well formed words:

L is \mathcal{F}^+ -definable iff. \mathbb{L} is \mathcal{F} -definable.

Proof. Let $K = A^+ \setminus L$ and \mathbb{K} associated to *K*. \mathbb{K} and \mathbb{L} partition the set of all well-formed words.

 $\begin{array}{ll} (\Longrightarrow) & L \text{ is } \mathcal{F}^+\text{-definable} & \Longrightarrow & L \text{ is } \mathcal{F}^+\text{-separable from } K \\ & \Longrightarrow & \mathbb{L} \text{ is } \mathcal{F}\text{-separable from } \mathbb{K} \text{ by } \mathbb{S} \\ & \Longrightarrow & \mathbb{L} = \mathbb{S} \cap (\mathbb{L} \cup \mathbb{K}) \text{ is } \mathcal{F}\text{-definable.} \end{array}$

From \mathcal{F} -separation to \mathcal{F}^+ -separation

Main result (separation, generic direction)

If \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable, then L_1 and L_2 are \mathcal{F}^+ -separable.

Proof. Associate to $w \in A^+$ a word $\lfloor w \rfloor \in \mathbb{A}^+_{\alpha}$ such that $\alpha(w) = \beta(\lfloor w \rfloor)$.

• u_x : infix of length |S| ending at x.

- ▶ Position *x* is distinguished if $\exists e \in E(S)$ such that $\alpha(u_x) \cdot e = \alpha(u_x)$.
- ▶ x₁ < · · · < x_n = distinguished positions induce a splitting

 $w = w_1 \cdot w_2 \cdots w_{n+1}$

• Define $\lfloor w \rfloor \in \mathbb{A}^+_{\alpha}$ by choosing e_i canonically and

 $\lfloor w \rfloor = (\alpha(w_1), e_1) \cdot (e_1, \alpha(w_2), e_2) \cdots (e_{n-1}, \alpha(w_n), e_n) \cdot (e_n, \alpha(w_{n+1})).$

From \mathcal{F} -separation to \mathcal{F}^+ -separation

Main result (separation, generic direction)

If \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable, then L_1 and L_2 are \mathcal{F}^+ -separable.

Proof (contd.)

 $w = w_1 \cdot w_2 \cdots w_{n+1}$

where each w_i ends at distinguished position x_i .

$$\lfloor w \rfloor = (\alpha(w_1), e_1) \cdot (e_1, \alpha(w_2), e_2) \cdots (e_{n-1}, \alpha(w_n), e_n) \cdot (e_n, \alpha(w_{n+1})).$$

To a distinguished position x_i in w, associate position $\lfloor x \rfloor = i$ in $\lfloor w \rfloor$.

Lemma

The infix of length 2|S| ending at position x in w determines

- whether position x is distinguished,
- the label of the corresponding position $\lfloor x \rfloor$ in $\lfloor w \rfloor$.

Consequence: for $\mathbf{a} \in \mathbb{A}$, there is a formula $\gamma_{\mathbf{a}}(x)$ of \mathcal{F}^+ testing that x is distinguished and label of $\lfloor x \rfloor$ is \mathbf{a} .

From \mathcal{F} -separation to \mathcal{F}^+ -separation

Main result (separation, generic direction)

If \mathbb{L}_1 and \mathbb{L}_2 are \mathcal{F} -separable, then L_1 and L_2 are \mathcal{F}^+ -separable.

Proof (end) If $\mathbb{K} \subseteq \mathbb{A}^+_{\alpha}$ is \mathcal{F} -defined by φ , then there exists an \mathcal{F}^+ formula φ^+ over A such that for all $w \in A^+$:

$$w \models \varphi^+ \Longleftrightarrow \lfloor w \rfloor \models \varphi.$$

By restricting in φ quantifiers to distinguished positions, and replacing a(x) by $\gamma_a(x)$.

Finally, if φ defines an \mathcal{F} -separator for \mathbb{L}_1 and \mathbb{L}_2 , then φ^+ defines an \mathcal{F}^+ separator for L_1 and L_2

Main result, other direction

- Showing that L₁, L₂ *F*-separability entails L₁, L₂ *F*⁺-separability relies on Ehrenfeucht-Fraïssé games.
- Example for $FO^2(<)$.

Conclusion

We shouldn't restrict ourselves to membership

Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

- Freezing the framework (to membership or separation) yields limitations.
- This work is just a byproduct of the observation that one can be more demanding on the computed information.
- Generalizing the needed information is often mandatory (see the talk of Thomas P.).

Separation everywhere

Separation everywhere

Heard when preparing these slides on the way

"Attention à la séparation des TGV."