# The Separation Problem: An Introduction and a Transfer Theorem 

Marc Zeitoun<br>Joint work with Thomas Place

ACTS 2015, Chennai - February 9, 2015

## Objects we consider

Structures

## Descriptive Formalism



## Objects we consider

Structures
Descriptive Formalism


## Objects we consider

Structures

Descriptive Formalism


For this talk

## First-order logic on words

First-order logic, with only the linear order ' $<$ '.

$$
a b b b c a a a c a
$$

## First-order logic on words

First-order logic, with only the linear order ' $<$ '.

$$
\begin{array}{llllllllll}
a & b & b & b & c & a & a & a & c & a \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order $x<y$.


## First-order logic on words

First-order logic, with only the linear order ' $<$ '.

$$
\begin{array}{llllllllll}
a & b & b & b & c & a & a & a & c & a \\
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}
$$

- A word is as a sequence of labeled positions that can be quantified.
- Unary predicates $a(x), b(x), c(x), \ldots$ testing the label of a position.
- One binary predicate: the linear-order $x<y$.


## Example: every $a$ comes after some $b$

$$
\forall x a(x) \Rightarrow \exists y(b(y) \wedge(y<x))
$$

## Why look at fragments in addition to full FO?

- Simple formulas are better (aesthetically, algorithmically).
- Some parameters making formulas complex:
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.


## Why look at fragments in addition to full FO?

- Simple formulas are better (aesthetically, algorithmically).
- Some parameters making formulas complex:
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.

Membership Problem for a fragment $\mathcal{F}$

- INPUT A language $L$.
- QUESTION Is $L$ expressible in $\mathcal{F}$ ?


## First Problem: Membership

Membership Problem for a fragment $\mathcal{F}$

- INPUT A language $L$.
- QUESTION Is $L$ expressible in $\mathcal{F}$ ?



## First Problem: Membership

Membership Problem for a fragment $\mathcal{F}$

- INPUT A language $L$.
- QUESTION Is $L$ expressible in $\mathcal{F}$ ?



## First Problem: Membership

Membership Problem for a fragment $\mathcal{F}$

- INPUT A language $L$.
- QUESTION

Is $L$ expressible in $\mathcal{F}$ ?


## Schützenberger'65, McNaughton and Papert'71

For $L$ a regular language, the following are equivalent:

- $L$ is FO-definable.
- The syntactic monoid of $L$ satisfies $u^{\omega+1}=u^{\omega}$.


## Fragments of FO

- A fragment is obtained by restricting
- Number of quantifier alternations,
- Allowed predicates,
- Number of variable names.
- $\mathrm{FO}(<), \mathrm{FO}(<,+1)$ and $\mathrm{FO}(<,+1$, min, max $)$ : same expressiveness.
$\Rightarrow$ Allowing ' $=$ ' but not ' $<$ ' yields distinct fragments.

$$
\Sigma_{1}(<), \quad \Sigma_{1}(<,+1), \text { and } \Sigma_{1}(<,+1, \min , \max )
$$

- We do not want to prove membership multiple times.


## Some well-known fragments



- Problem: Solve membership for strong variants without reproving everything nor mimicking the proof.


## A generic result for membership

- Problem Solve membership for strong variants without reproving everything nor mimicking the proof.
- S. Eilenberg Each fragment is associated the class of finite monoids recognizing a language from the fragment. Example: FO $\longleftrightarrow\left[x^{\omega}=x^{\omega+1}\right]$.
- H. Straubing 1985 + M. Kulfleitner \& A. Lauser 2014: generic result.

Weak Fragment $\mathcal{F}$


Variety V

Strong Fragment $\mathcal{F}^{+}$


Variety V * D

## Straubing's Theorem

Weak Fragment $\mathcal{F}$


Variety V

Strong Fragment $\mathcal{F}^{+}$


3

1. Show the correspondence between $\mathcal{F}$ and algebraic variety V .
2. In most cases, the enriched fragment $\mathcal{F}^{+}$corresponds to $\mathrm{V} * \mathrm{D}$.
3. In most cases, $\mathrm{V} \mapsto \mathrm{V} * \mathrm{D}$ preserves decidability.

## Straubing's Theorem

Weak Fragment $\mathcal{F}$


Variety V

Strong Fragment $\mathcal{F}^{+}$


Variety $\mathrm{V} * \mathrm{D}$

1. Show the correspondence between $\mathcal{F}$ and algebraic variety V .
2. In most cases, the enriched fragment $\mathcal{F}^{+}$corresponds to $\mathrm{V} * \mathrm{D}$.
3. In most cases, $\mathrm{V} \mapsto \mathrm{V} * \mathrm{D}$ preserves decidability.

## Remarks

- One need to establish the correspondence 1.
- That $\mathrm{V} \mapsto \mathrm{V} * \mathrm{D}$ preserves decidability is a difficult result.


## An alternative approach

## B. Steinberg 2001

- All fragments share a property entailing decidability of membership.
- This property is preserved through enrichment.

Even if we are interested in the membership problem for $\mathcal{F}$, it does not give sufficient information to reason about $\mathcal{F}$.

## Why we want more than membership

If the membership answer for $L$

- is YES
- All "subparts" of the minimal automaton of $L$ are $\mathcal{F}$-definable.
- is NO, then even if $\mathcal{F}$ can talk about $L$ :
- We have little information.
- Eg, defining $L$ in FO would require differentiating some $u^{\omega}$ and $u^{\omega+1}$.


## Motivations for Separation

- Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.


## Motivations for Separation

- Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.
- 2 examples of "transfer results":
- decidability of separation is preserved when enriching $\mathcal{F}$ with successor.
- decidability of separation for level $\Sigma_{i}$ of the quantifier alternation hierarchy entails decidability of membership for $\Sigma_{i+1}$.


## Motivations for Separation

- Need more general techniques to extract information for all languages.
- Cannot start from canonical object for the separator, which is unknown.
- Therefore, may give insight to solve harder problems.
- 2 examples of "transfer results":
- decidability of separation is preserved when enriching $\mathcal{F}$ with successor.
- decidability of separation for level $\Sigma_{i}$ of the quantifier alternation hierarchy entails decidability of membership for $\Sigma_{i+1}$.
$\Rightarrow$ We shouldn't restrict ourselves to membership


## Beyond membership: Separation

Decide the following problem:


## Beyond membership: Separation

Decide the following problem:


## Beyond membership: Separation

Decide the following problem:


## Beyond membership: Separation

Membership can be formally reduced to separation


## Beyond membership: Separation

Membership can be formally reduced to separation


## Related work

- Separation already considered in an algebraic framework.
- First result by K. Henckell '88 for FO, then for several natural fragments.
- Purely algebraic proofs, hiding the combinatorial and logical intuitions.
- Transfer result of this talk already obtained by Ben Steinberg '01.
- Simpler proof techniques.


## A toy example: Separation for $\mathrm{FO}(=)$

- In $\mathrm{FO}(=)$, one can just count occurrences of letters, up to a threshold.
- Example: at least $2 a$ 's: $\exists x, y \quad x \neq y \wedge a(x) \wedge a(y)$.
- $\mathrm{FO}(=)$ can express properties like at least $2 a$ 's, no more than $3 b$ 's, exactly $1 c$.
- How to decide separation for $\mathrm{FO}(=)$ ?


## A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of $u$.

$$
\pi(a a b a d)=(3,1,0,1)
$$

## Parikh's Theorem

For $L$ context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.


## A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of $u$.

$$
\pi(a a b a d)=(3,1,0,1)
$$

## Parikh's Theorem

For $L$ context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.


## Fact

Languages $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right) .
$$

## A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of $u$.

$$
\pi(a a b a d)=(3,1,0,1)
$$

## Parikh's Theorem

For $L$ context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.


## Fact

Languages $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right)
$$

Proof. $\Rightarrow$ The $\mathrm{FO}(=)$ language $\left\{u \mid \pi(u) \in_{d} \pi\left(L_{1}\right)\right\}$ contains $L_{1}$. Since $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable, it intersects $L_{2}$.

## A toy example: Separation for $\mathrm{FO}(=)$

- Let $\pi(u) \in \mathbb{N}^{A}$ be the commutative (aka. Parikh) image of $u$.

$$
\pi(a a b a d)=(3,1,0,1)
$$

## Parikh's Theorem

For $L$ context-free, $\pi(L)$ is (effectively) semilinear.

- For $\vec{x}, \vec{y} \in \mathbb{N}^{A}, \quad \vec{x}={ }_{d} \vec{y} \quad$ if $\quad \forall i: x_{i}=y_{i}$ or both $x_{i}, y_{i} \geqslant d$.


## Fact

Languages $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists u_{1} \in L_{1} \exists u_{2} \in L_{2}, \quad \pi\left(u_{1}\right)={ }_{d} \pi\left(u_{2}\right) .
$$

Proof. $\Rightarrow$ The $\mathrm{FO}(=)$ language $\left\{u \mid \pi(u) \in_{d} \pi\left(L_{1}\right)\right\}$ contains $L_{1}$. Since $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable, it intersects $L_{2}$.
$\Leftarrow$ Assume there is an $\mathrm{FO}(=)$-separator $K$, say of threshold $d$.
Then $L_{1} \subseteq K \Longrightarrow u_{1} \in K \Longrightarrow u_{2} \in K$, impossible since $u_{2} \in L_{2}$.

## A toy example: Separation for $\mathrm{FO}(=)$

## Fact

Languages $L_{1}, L_{2}$ are not $\mathrm{FO}(=)$-separable iff

$$
\forall d \quad \exists \vec{x}_{1} \in \pi\left(L_{1}\right) \exists \vec{x}_{2} \in \pi\left(L_{2}\right), \quad \vec{x}_{1}={ }_{d} \vec{x}_{2} .
$$

By Parikh's Theorem, decidability follows from that of Presburger logic.

## Separation for $\mathrm{FO}(=,+1)$

- $\mathrm{FO}(=)$ can just count occurrences of letters up to a threshold.
- $\mathrm{FO}(=,+1)$ can just count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba and the word start with ba.

- For membership, decidability follows from a delay theorem: To test $\mathrm{FO}(=,+1)$-definability, one can look at infixes of bounded size.


## Separation for $\mathrm{FO}(=,+1)$

- $\mathrm{FO}(=)$ can just count occurrences of letters up to a threshold.
- $\mathrm{FO}(=,+1)$ can just count occurrences of infixes up to a threshold.

There exist at least 2 occurrences of abba and the word start with ba.

- For membership, decidability follows from a delay theorem: To test $\mathrm{FO}(=,+1)$-definability, one can look at infixes of bounded size.
- Membership proof is not trivial. Transferring separability is easier.


## The transfer result

Let $\mathcal{F}$ be one of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \Sigma_{n}(<), \mathcal{B} \Sigma_{n}(<)$.

## Main result

$\mathcal{F}^{+}$-separability reduces to $\mathcal{F}$-separability.
For any regular $L$, one can build a regular language $\mathbb{L}$ such that

```
L
```

- Simple.
- Extends to infinite words.
- Mostly generic and Constructive
from an $\mathcal{F}$ formula separating $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$,
build
an $\mathcal{F}^{+}$formula that separates $L_{1}$ from $L_{2}$.


## Well formed words

- Intuition: adding +1 makes it to inspect infixes.
- Use regularity of input languages: large infixes will contain loops. Fix $\alpha: A^{+} \rightarrow S$ recognizing $L_{1}$ and $L_{2}$.

$$
L_{i}=\alpha^{-1}\left(F_{i}\right) .
$$

$E(S)=$ set of idempotents of $S$.

$$
E(S)=\{e \in S \mid e e=e\}
$$

## Well formed words

- Intuition: adding +1 makes it to inspect infixes.
- Use regularity of input languages: large infixes will contain loops. Fix $\alpha: A^{+} \rightarrow S$ recognizing $L_{1}$ and $L_{2}$.

$$
L_{i}=\alpha^{-1}\left(F_{i}\right) .
$$

$E(S)=$ set of idempotents of $S$.

$$
E(S)=\{e \in S \mid e e=e\}
$$

- New alphabet

$$
\mathbb{A}_{\alpha}=(E(S) \times S \times E(S)) \cup(S \times E(S)) \cup(E(S) \times S) \cup S
$$

- Well formed word: either a single $s \in S$, or

$$
\left(s_{0}, f_{0}\right) \cdot\left(e_{1}, s_{1}, f_{1}\right) \cdots\left(e_{n}, s_{n}, f_{n}\right) \cdot\left(e_{n+1}, s_{n+1}\right)
$$

with $f_{i}=e_{i+1}$.

## Extending the morphism on well-formed words

- Well formed word over $\mathbb{A}$ : either a single $s \in S$, or

$$
\left(s_{0}, e_{1}\right) \cdot\left(e_{1}, s_{1}, e_{2}\right) \cdot\left(e_{2}, s_{2}, e_{3}\right) \cdots\left(e_{n}, s_{n}, e_{n+1}\right) \cdot\left(e_{n+1}, s_{n+1}\right)
$$

Fact. The language of well formed words is regular.

## Extending the morphism on well-formed words

- Well formed word over $\mathbb{A}$ : either a single $s \in S$, or

$$
\left(s_{0}, e_{1}\right) \cdot\left(e_{1}, s_{1}, e_{2}\right) \cdot\left(e_{2}, s_{2}, e_{3}\right) \cdots\left(e_{n}, s_{n}, e_{n+1}\right) \cdot\left(e_{n+1}, s_{n+1}\right)
$$

Fact. The language of well formed words is regular.

- Morphism $\beta: \mathbb{A}^{+} \rightarrow S$, defined by

$$
\begin{aligned}
\beta(s) & =s & \beta(e, s, f) & =e s f \\
\beta(e, s) & =e s & \beta(s, f) & =s f
\end{aligned}
$$

Therefore,

$$
\begin{gathered}
\beta\left[\left(s_{0}, e_{1}\right) \cdot\left(e_{1}, s_{1}, e_{2}\right) \cdot\left(e_{2}, s_{2}, e_{3}\right) \cdots\left(e_{n}, s_{n}, e_{n+1}\right) \cdot\left(e_{n+1}, s_{n+1}\right)\right] \\
= \\
s_{0} e_{1} s_{1} e_{2} s_{2} e_{3} \cdots e_{n} s_{n} e_{n+1} e_{n+1} s_{n+1}
\end{gathered}
$$

## Associated language of well-formed words

- To a language $L \subseteq A^{+}$recognized by $\alpha$, associate $\mathbb{L} \subseteq \mathbb{A}^{+}$.

$$
\begin{aligned}
\mathbb{L} & =\left\{w \in \mathbb{A}^{+} \mid \beta(w) \in \alpha(L)\right\} \\
& =\beta^{-1}(\alpha(L)) .
\end{aligned}
$$

Fact. The language $\mathbb{L}$ associated to $L$ is (effectively) regular.

## Main result again

Let $\mathcal{F}$ be one of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \Sigma_{n}(<), \mathcal{B} \Sigma_{n}(<)$. and $\mathcal{F}^{+}$be its enrichment.
Let $L_{1}, L_{2} \subseteq A^{+}$be regular languages recognized by $\alpha$.
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

## A consequence for membership

Let $\mathcal{F}$ be one of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \Sigma_{n}(<), \mathcal{B} \Sigma_{n}(<)$. and $\mathcal{F}^{+}$be its enrichment.
Let $L_{1}, L_{2} \subseteq A^{+}$be recognized by $\alpha$.
Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.
$\Rightarrow$ Separation decidable for enrichment of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \mathcal{B} \Sigma_{1}, \Sigma_{n} n \leqslant 3$.

## A consequence for membership

Let $\mathcal{F}$ be one of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \Sigma_{n}(<), \mathcal{B} \Sigma_{n}(<)$. and $\mathcal{F}^{+}$be its enrichment.
Let $L_{1}, L_{2} \subseteq A^{+}$be recognized by $\alpha$.
Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.
$\Rightarrow$ Separation decidable for enrichment of $\mathrm{FO}(=), \mathrm{FO}^{2}(<), \mathcal{B} \Sigma_{1}, \Sigma_{n} n \leqslant 3$.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:

$$
L \text { is } \mathcal{F}^{+} \text {-definable iff. } \mathbb{L} \text { is } \mathcal{F} \text {-definable. }
$$

$\Rightarrow$ Membership decidable for $\mathcal{B} \Sigma_{2}(<,+1)$ and $\Sigma_{4}(<,+1)$.

## Proof of the corollary for membership

Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:
$L$ is $\mathcal{F}^{+}$-definable iff. $\mathbb{L}$ is $\mathcal{F}$-definable.
Proof. Let $K=A^{+} \backslash L$ and $\mathbb{K}$ associated to $K$.
$\mathbb{K}$ and $\mathbb{L}$ partition the set of all well-formed words.
$(\Longleftrightarrow) \quad \mathbb{L}$ is $\mathcal{F}$-definable $\quad \Longrightarrow \mathbb{L}$ is $\mathcal{F}$-separable from $\mathbb{K}$

## Proof of the corollary for membership

Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:
$L$ is $\mathcal{F}^{+}$-definable iff. $\mathbb{L}$ is $\mathcal{F}$-definable.
Proof. Let $K=A^{+} \backslash L$ and $\mathbb{K}$ associated to $K$.
$\mathbb{K}$ and $\mathbb{L}$ partition the set of all well-formed words.
$(\Longleftrightarrow) \quad \mathbb{L}$ is $\mathcal{F}$-definable $\quad \Longrightarrow \mathbb{L}$ is $\mathcal{F}$-separable from $\mathbb{K}$
$\Longrightarrow L$ is $\mathcal{F}^{+}$-separable from $K$ by Main result

## Proof of the corollary for membership

Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:
$L$ is $\mathcal{F}^{+}$-definable iff. $\mathbb{L}$ is $\mathcal{F}$-definable.
Proof. Let $K=A^{+} \backslash L$ and $\mathbb{K}$ associated to $K$.
$\mathbb{K}$ and $\mathbb{L}$ partition the set of all well-formed words.
$(\Longleftrightarrow \quad \mathbb{L}$ is $\mathcal{F}$-definable $\quad \Longrightarrow \mathbb{L}$ is $\mathcal{F}$-separable from $\mathbb{K}$
$\Longrightarrow L$ is $\mathcal{F}^{+}$-separable from $K$ by Main result
$\Rightarrow L$ is $\mathcal{F}^{+}$-definable.

## Proof of the corollary for membership

Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:
$L$ is $\mathcal{F}^{+}$-definable iff. $\mathbb{L}$ is $\mathcal{F}$-definable.
Proof. Let $K=A^{+} \backslash L$ and $\mathbb{K}$ associated to $K$.
$\mathbb{K}$ and $\mathbb{L}$ partition the set of all well-formed words.
$(\Longrightarrow) \quad L$ is $\mathcal{F}^{+}$-definable $\quad \Longrightarrow L$ is $\mathcal{F}^{+}$-separable from $K$
$\Longrightarrow \mathbb{L}$ is $\mathcal{F}$-separable from $\mathbb{K}$ by $\mathbb{S}$

## Proof of the corollary for membership

Main result (separation)
$L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable iff. $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable.

Corollary (membership)
If in addition $\mathcal{F}$ can define the set of well formed words:

$$
L \text { is } \mathcal{F}^{+} \text {-definable iff. } \mathbb{L} \text { is } \mathcal{F} \text {-definable. }
$$

Proof. Let $K=A^{+} \backslash L$ and $\mathbb{K}$ associated to $K$.
$\mathbb{K}$ and $\mathbb{L}$ partition the set of all well-formed words.
$(\Longrightarrow) \quad L$ is $\mathcal{F}^{+}$-definable $\quad \Longrightarrow L$ is $\mathcal{F}^{+}$-separable from $K$
$\Longrightarrow \mathbb{L}$ is $\mathcal{F}$-separable from $\mathbb{K}$ by $\mathbb{S}$
$\Longrightarrow \mathbb{L}=\mathbb{S} \cap(\mathbb{L} \cup \mathbb{K})$ is $\mathcal{F}$-definable.

## From $\mathcal{F}$-separation to $\mathcal{F}^{+}$-separation

Main result (separation, generic direction)
If $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable, then $L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable.
Proof. Associate to $w \in A^{+}$a word $\lfloor w\rfloor \in \mathbb{A}_{\alpha}^{+}$such that $\alpha(w)=\beta(\lfloor w\rfloor)$.

- $u_{x}$ : infix of length $|S|$ ending at $x$.

- Position $x$ is distinguished if $\exists e \in E(S)$ such that $\alpha\left(u_{x}\right) \cdot e=\alpha\left(u_{x}\right)$.
- $x_{1}<\cdots<x_{n}=$ distinguished positions induce a splitting

$$
w=w_{1} \cdot w_{2} \cdots w_{n+1}
$$

- Define $\lfloor w\rfloor \in \mathbb{A}_{\alpha}^{+}$by choosing $e_{i}$ canonically and

$$
\lfloor w\rfloor=\left(\alpha\left(w_{1}\right), e_{1}\right) \cdot\left(e_{1}, \alpha\left(w_{2}\right), e_{2}\right) \cdots\left(e_{n-1}, \alpha\left(w_{n}\right), e_{n}\right) \cdot\left(e_{n}, \alpha\left(w_{n+1}\right)\right)
$$

## From $\mathcal{F}$-separation to $\mathcal{F}^{+}$-separation

Main result (separation, generic direction)
If $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable, then $L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable.

## Proof (contd.)

$$
w=w_{1} \cdot w_{2} \cdots w_{n+1}
$$

where each $w_{i}$ ends at distinguished position $x_{i}$.

$$
\lfloor w\rfloor=\left(\alpha\left(w_{1}\right), e_{1}\right) \cdot\left(e_{1}, \alpha\left(w_{2}\right), e_{2}\right) \cdots\left(e_{n-1}, \alpha\left(w_{n}\right), e_{n}\right) \cdot\left(e_{n}, \alpha\left(w_{n+1}\right)\right) .
$$

To a distinguished position $x_{i}$ in $w$, associate position $\lfloor x\rfloor=i$ in $\lfloor w\rfloor$.

## Lemma

The infix of length $2|S|$ ending at position $x$ in $w$ determines

- whether position $x$ is distinguished,
- the label of the corresponding position $\lfloor x\rfloor$ in $\lfloor w\rfloor$.

Consequence: for ${ }_{a} \in \mathbb{A}$, there is a formula $\gamma_{\mathfrak{a}}(x)$ of $\mathcal{F}^{+}$testing that $x$ is distinguished and label of $\lfloor x\rfloor$ is a.

## From $\mathcal{F}$-separation to $\mathcal{F}^{+}$-separation

Main result (separation, generic direction)
If $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$ are $\mathcal{F}$-separable, then $L_{1}$ and $L_{2}$ are $\mathcal{F}^{+}$-separable.
Proof (end) If $\mathbb{K} \subseteq \mathbb{A}_{\alpha}^{+}$is $\mathcal{F}$-defined by $\varphi$, then there exists an $\mathcal{F}^{+}$formula $\varphi^{+} \quad$ over $A$ such that for all $w \in A^{+}$:

$$
w \vDash \varphi^{+} \Longleftrightarrow\lfloor w\rfloor \vDash \varphi .
$$

By restricting in $\varphi$ quantifiers to distinguished positions, and replacing a $(x)$ by $\gamma_{\mathfrak{a}}(x)$.

Finally, if $\varphi$ defines an $\mathcal{F}$-separator for $\mathbb{L}_{1}$ and $\mathbb{L}_{2}$, then $\varphi^{+}$defines an $\mathcal{F}^{+}$ separator for $L_{1}$ and $L_{2}$

## Main result, other direction

- Showing that $L_{1}, L_{2} \mathcal{F}$-separability entails $\mathbb{L}_{1}, \mathbb{L}_{2} \mathcal{F}^{+}$-separability relies on Ehrenfeucht-Fraïssé games.
- Example for $\mathrm{FO}^{2}(<)$.


## Conclusion

We shouldn't restrict ourselves to membership

## Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

## Conclusion

We shouldn't restrict ourselves to membership, nor to separation.

- Freezing the framework (to membership or separation) yields limitations.
- This work is just a byproduct of the observation that one can be more demanding on the computed information.
- Generalizing the needed information is often mandatory (see the talk of Thomas P.).


## Separation everywhere

## Separation everywhere

Heard when preparing these slides on the way
"Attention à la séparation des TGV."

