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First-order logic on words

First-order logic, with only the linear order ’<’.

a b b b c a a a c a

0 1 2 3 4 5 6 7 8 9

▶ A word is as a sequence of labeled positions that can be quantified.
▶ Unary predicates a(x), b(x), c(x), . . . testing the label of a position.
▶ One binary predicate: the linear-order x < y.

Example: every a comes after some b

∀x a(x) ⇒ ∃y (b(y) ∧ (y < x))
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Why look at fragments in addition to full FO?

▶ Simple formulas are better (aesthetically, algorithmically).
▶ Some parameters making formulas complex:

▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

Membership Problem for a fragment F
▶ INPUT A language L.
▶ QUESTION Is L expressible in F?
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First Problem: Membership
Membership Problem for a fragment F

▶ INPUT A language L.
▶ QUESTION Is L expressible in F?
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Can it be defined
with an F formula?

Schützenberger’65, McNaughton and Papert’71
For L a regular language, the following are equivalent:

▶ L is FO-definable.
▶ The syntactic monoid of L satisfies uω+1 = uω.
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Fragments of FO

▶ A fragment is obtained by restricting
▶ Number of quantifier alternations,
▶ Allowed predicates,
▶ Number of variable names.

▶ FO(<), FO(<,+1) and FO(<,+1,min,max): same expressiveness.

⇒ Allowing ‘=’ but not ‘<’ yields distinct fragments.

Σ1(<), Σ1(<,+1), and Σ1(<,+1,min,max)

▶ We do not want to prove membership multiple times.
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Some well-known fragments

Weak variant Strong variant
FO(=) FO(=,+1)
FO2(<) FO2(<,+1)
Σn(<) Σn(<,+1,min,max)
BΣn(<) BΣn(<,+1,min,max)

▶ Problem: Solve membership for strong variants without
reproving everything nor mimicking the proof.
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A generic result for membership

▶ Problem Solve membership for strong variants without
reproving everything nor mimicking the proof.

▶ S. Eilenberg Each fragment is associated the class of finite monoids
recognizing a language from the fragment.

Example: FO←→ [xω = xω+1].

▶ H. Straubing 1985 + M. Kulfleitner & A. Lauser 2014: generic result.

Weak Fragment F

Variety V Variety V ∗ D

Strong Fragment F+

8 / 30



Straubing’s Theorem
Weak Fragment F

Variety V Variety V ∗ D

Strong Fragment F+

1 2

3

1. Show the correspondence between F and algebraic variety V.
2. In most cases, the enriched fragment F+ corresponds to V ∗ D.
3. In most cases, V 7→ V ∗ D preserves decidability.

Remarks
▶ One need to establish the correspondence 1.
▶ That V 7→ V ∗ D preserves decidability is a difficult result.
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An alternative approach

B. Steinberg 2001
▶ All fragments share a property entailing decidability of membership.
▶ This property is preserved through enrichment.

Even if we are interested in the membership problem for F ,
it does not give sufficient information to reason about F .
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Why we want more than membership

If the membership answer for L
▶ is YES

▶ All “subparts” of the minimal automaton of L are F-definable.

▶ is NO, then even if F can talk about L:
▶ We have little information.

▶ Eg, defining L in FO would require differentiating some uω and uω+1.
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Motivations for Separation

▶ Need more general techniques to extract information for all languages.
▶ Cannot start from canonical object for the separator, which is unknown.
▶ Therefore, may give insight to solve harder problems.

▶ 2 examples of “transfer results”:
▶ decidability of separation is preserved when enriching F with successor.

▶ decidability of separation for level Σi of the quantifier alternation hierarchy
entails decidability of membership for Σi+1.

⇒ We shouldn’t restrict ourselves to membership
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Beyond membership: Separation

Decide the following problem:

Take two regular languages L1, L2
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Beyond membership: Separation

Membership can be formally reduced to separation
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Related work

▶ Separation already
considered in an algebraic framework.

▶ First result by K. Henckell ’88 for FO, then for several natural fragments.

▶ Purely algebraic proofs, hiding the combinatorial and logical intuitions.

▶ Transfer result of this talk already obtained by Ben Steinberg ’01.

▶ Simpler proof techniques.

14 / 30



A toy example: Separation for FO(=)

▶ In FO(=), one can just count occurrences of letters, up to a threshold.
▶ Example: at least 2 a’s: ∃x, y x ̸= y ∧ a(x) ∧ a(y).
▶ FO(=) can express properties like

at least 2 a’s, no more than 3 b’s, exactly 1 c.

▶ How to decide separation for FO(=)?

15 / 30



A toy example: Separation for FO(=)
▶ Let π(u) ∈ NA be the commutative (aka. Parikh) image of u.

π(aabad) = (3, 1, 0, 1).

Parikh’s Theorem
For L context-free, π(L) is (effectively) semilinear.

▶ For x⃗, y⃗ ∈ NA, x⃗ =d y⃗ if ∀i: xi = yi or both xi, yi ⩾ d.

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃u1 ∈ L1 ∃u2 ∈ L2, π(u1) =d π(u2).

Proof. ⇒ The FO(=) language {u | π(u) ∈d π(L1)} contains L1.
Since L1, L2 are not FO(=)-separable, it intersects L2.

⇐ Assume there is an FO(=)-separator K, say of threshold d.
Then L1 ⊆ K =⇒ u1 ∈ K =⇒ u2 ∈ K, impossible since u2 ∈ L2.
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A toy example: Separation for FO(=)

Fact
Languages L1, L2 are not FO(=)-separable iff

∀d ∃x⃗1 ∈ π(L1)∃x⃗2 ∈ π(L2), x⃗1 =d x⃗2.

By Parikh’s Theorem, decidability follows from that of Presburger logic.
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Separation for FO(=,+1)

▶ FO(=) can just count occurrences of letters up to a threshold.
▶ FO(=,+1) can just count occurrences of infixes up to a threshold.

There
exist
at
least
2
occurrences
of abba
and
the
word
start
with ba.

▶ For membership, decidability follows from a delay theorem:
To test FO(=,+1)-definability, one can look at infixes of bounded size.

▶ Membership proof is not trivial. Transferring separability is easier.
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The transfer result

Let F be one of FO(=),FO2(<),Σn(<),BΣn(<).

Main result
F+-separability reduces to F-separability.
For any regular L, one can build a regular language L such that

L1 and L2 are F+-separable iff. L1 and L2 are F-separable.

▶ Simple.
▶ Extends to infinite words.
▶ Mostly generic and Constructive

from an F formula separating L1 and L2,
build

an F+ formula that separates L1 from L2.
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Well formed words
▶ Intuition: adding +1 makes it to inspect infixes.
▶ Use regularity of input languages: large infixes will contain loops.

Fix α : A+ → S recognizing L1 and L2.

Li = α−1(Fi).

E(S) = set of idempotents of S.

E(S) = {e ∈ S | ee = e}

▶ New alphabet

Aα = (E(S)× S × E(S)) ∪ (S × E(S)) ∪ (E(S)× S) ∪ S.

▶ Well formed word: either a single s ∈ S, or

(s0, f0) · (e1, s1, f1) · · · (en, sn, fn) · (en+1, sn+1)

with fi = ei+1.
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Extending the morphism on well-formed words

▶ Well formed word over A: either a single s ∈ S, or

(s0, e1) · (e1, s1, e2) · (e2, s2, e3) · · · (en, sn, en+1) · (en+1, sn+1)

Fact. The language of well formed words is regular.

▶ Morphism β : A+ → S, defined by

β(s) = s β(e, s, f) = esf

β(e, s) = es β(s, f) = sf

Therefore,

β[(s0, e1) · (e1, s1, e2) · (e2, s2, e3) · · · (en, sn, en+1) · (en+1, sn+1)]
=

s0e1s1e2s2e3 · · · ensnen+1en+1sn+1
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Associated language of well-formed words

▶ To a language L ⊆ A+ recognized by α, associate L ⊆ A+.

L = {w ∈ A+ | β(w) ∈ α(L)}
= β−1(α(L)).

Fact. The language L associated to L is (effectively) regular.

Main result again

Let F be one of FO(=),FO2(<),Σn(<),BΣn(<). and F+ be its enrichment.

Let L1, L2 ⊆ A+ be regular languages recognized by α.

L1 and L2 are F+-separable iff. L1 and L2 are F-separable.
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A consequence for membership

Let F be one of FO(=),FO2(<),Σn(<),BΣn(<). and F+ be its enrichment.

Let L1, L2 ⊆ A+ be recognized by α.

Main result (separation)
L1 and L2 are F+-separable iff. L1 and L2 are F-separable.

⇒ Separation decidable for enrichment of FO(=), FO2(<), BΣ1, Σn n ⩽ 3.

Corollary (membership)
If in addition F can define the set of well formed words:

L is F+-definable iff. L is F-definable.

⇒ Membership decidable for BΣ2(<,+1) and Σ4(<,+1).
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Proof of the corollary for membership

Main result (separation)
L1 and L2 are F+-separable iff. L1 and L2 are F-separable.

Corollary (membership)
If in addition F can define the set of well formed words:

L is F+-definable iff. L is F-definable.

Proof. Let K = A+ \ L and K associated to K.
K and L partition the set of all well-formed words.

(⇐=) L is F-definable =⇒ L is F-separable from K

=⇒ L is F+-separable from K by
Main
result
=⇒ L is F+-definable.
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=⇒ L is F-separable from K by S

=⇒ L = S ∩ (L ∪K) is F-definable.
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Proof of the corollary for membership
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From F-separation to F+-separation
Main result (separation, generic direction)

If L1 and L2 are F-separable, then L1 and L2 are F+-separable.

Proof. Associate to w ∈ A+ a word ⌊w⌋ ∈ A+
α such that α(w) = β(⌊w⌋).

▶ ux: infix of length |S| ending at x.

· · · abaaaabab baa · · ·

x

︸ ︷︷ ︸
|S|

▶ Position x is distinguished if ∃e ∈ E(S) such that α(ux) · e = α(ux).
▶ x1 < · · · < xn = distinguished positions induce a splitting

w = w1 · w2 · · ·wn+1

▶ Define ⌊w⌋ ∈ A+
α by choosing ei canonically and

⌊w⌋ = (α(w1), e1) · (e1, α(w2), e2) · · · (en−1, α(wn), en) · (en, α(wn+1)).
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From F-separation to F+-separation
Main result (separation, generic direction)

If L1 and L2 are F-separable, then L1 and L2 are F+-separable.

Proof
(contd.)
w = w1 · w2 · · ·wn+1

where each wi ends at distinguished position xi.

⌊w⌋ = (α(w1), e1) · (e1, α(w2), e2) · · · (en−1, α(wn), en) · (en, α(wn+1)).

To a distinguished position xi in w, associate position ⌊x⌋ = i in ⌊w⌋.

Lemma
The infix of length 2|S| ending at position x in w determines

▶ whether position x is distinguished,
▶ the label of the corresponding position ⌊x⌋ in ⌊w⌋.

Consequence: for a ∈ A, there is a formula γa(x) of F+ testing that x is
distinguished and label of ⌊x⌋ is a.
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From F-separation to F+-separation
Main result (separation, generic direction)

If L1 and L2 are F-separable, then L1 and L2 are F+-separable.

Proof
(end) If K ⊆ A+
α is F-defined by φ, then there exists an F+ formula

φ+ over A such that for all w ∈ A+:

w |= φ+ ⇐⇒ ⌊w⌋ |= φ.

By restricting in φ quantifiers to distinguished positions, and replacing a(x)
by γa(x).

Finally, if φ defines an F-separator for L1 and L2, then φ+ defines an F+

separator for L1 and L2
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Main result, other direction

▶ Showing that L1, L2 F-separability entails L1,L2 F+-separability relies
on Ehrenfeucht-Fraïssé games.

▶ Example for FO2(<).

28 / 30



Conclusion

We shouldn’t restrict ourselves to membership

, nor to separation.

▶ Freezing the framework (to membership or separation) yields
limitations.

▶ This work is just a byproduct of the observation that one can be more
demanding on the computed information.

▶ Generalizing the needed information is often mandatory
(see the talk of Thomas P.).
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Separation everywhere

Heard when preparing these slides on the way

“Attention à la séparation des TGV.”
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