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Classical automata theory

w = abaabba T =

a

b

a a

b

Parikh (1961) suggested to remove ordering

P(w) = (4, 3) P(T ) = (3, 2)

Q: What’s the expressive power of standard automata models “modulo Parikh

mapping P” (i.e. treated as sets of vectors)?
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Parikh’s Theorem: Parikh images of regular and context-free languages are

effectively semilinear.

Semilinear sets = Presburger-definable subsets of Nk.
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� Verification of concurrent systems

� Bounded context-switch analysis [Esparza-Ganty’11, Hague-Lin’12]

� Asynchronous programs [Ganty-Majumdar’10]

� Message-passing programs [Abdulla-Atig-Cederberg’13]

� Verification of (restrictions of) counter machines:

� Reversal-bounded verification [Ibarra’79]

� Flat counter machines [Fribourg-Olsen’97, Comon-Jurski’98]

� Flattable counter machines [Bardin-Finkel-Leroux-Schnoebelen’05,

Leroux-Sutre’05]

� Path logics over graph databases [Barcelo-Libkin-Lin-Woods’12]

� Cryptographic Analysis of C programs [Verma et al.’06]
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Descriptional Complexity: How succinct are the different automata models for

representing semilinear sets?

i.e. the size of the smallest semilinear sets for NFA, CFG, ...?

Computational complexity: Can we compute semilinear sets for Parikh images

of these models efficiently?
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� Parikh Image P(L) of a language L over Σ = {a1, . . . , ak} is a subset of Nk

� L = {anbn : n ∈ N}

� P(L) = {(0, 0), (1, 1), (2, 2), (3, 3), . . .}

� Note: L′ = (ab)∗ and P(L) = P(L′).
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� A linear set (over Nk) is a set of the form

L(v0; {v1, . . . , vm}) :=

{

v0 +
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}
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� A linear set (over Nk) is a set of the form

L(v0; {v1, . . . , vm}) :=

{

v0 +
m∑

i=1

aivi : a1, . . . , am ∈ N

}

for some offset v0 ∈ N
k and periods v1, . . . , vm ∈ N

k and m ∈ N.

� Example: {(i, i) : i ∈ N} = L((0, 0); {(1, 1)})
� A semilinear set over Nk is a finite union of linear sets.
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Theorem (Parikh): Parikh images of context-free and regular languages are

effectively semilinear.

� Descriptional complexity: size of smallest description

� Computational complexity: how efficient to compute

Parikh’s original proof gives exponential complexity bound with linearly many

periods for each linear set!
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S → A (1)

A → aBb (2)

B → aAb (3)

B → ε (4)

(Esparza’97): a sufficient and necessary condition for a multiset X ⊆ {1, . . . , 4}
to be realisable based on (C1) flow condition, and (C2) connectivity condition.

The following are not realisable:

� {12, 2, 4} — need at least two S (C1)

� {1, 2, 37, 4} — need at least seven B (C1)

� {1, 3, 4} — 3 cannot be fired without 2 (C2)
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� Flow and connectivity conditions are expressible as an exponential sized

semilinear set (Esparza’97)

� Flow and connectivity conditions are expressible as a linear sized existential

Presburger formula (Verma et al.’05)

n.b. checking existential Presburger formulas are NP-complete: can use fast SMT

solvers.

Note: This has been successfully used in many applications in infinite-state

verification.



Lower bound for semilinear sets for CFGs

ACTS 2015 – 13 / 43

Proposition: There is an infinite sequence {Gn}n∈N of CFGs over Σ = {a}
s.t. P(L(Gn)) must have at least 2Ω(|Gn|) linear sets.



Lower bound for semilinear sets for CFGs

ACTS 2015 – 13 / 43

Proposition: There is an infinite sequence {Gn}n∈N of CFGs over Σ = {a}
s.t. P(L(Gn)) must have at least 2Ω(|Gn|) linear sets.

The CFG Gn generates {aj : j ∈ [0, 2n − 1]}:



Lower bound for semilinear sets for CFGs

ACTS 2015 – 13 / 43

Proposition: There is an infinite sequence {Gn}n∈N of CFGs over Σ = {a}
s.t. P(L(Gn)) must have at least 2Ω(|Gn|) linear sets.

The CFG Gn generates {aj : j ∈ [0, 2n − 1]}: (2n linear sets!!)



Lower bound for semilinear sets for CFGs

ACTS 2015 – 13 / 43

Proposition: There is an infinite sequence {Gn}n∈N of CFGs over Σ = {a}
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Proposition: There is an infinite sequence {Gn}n∈N of CFGs over Σ = {a}
s.t. P(L(Gn)) must have at least 2Ω(|Gn|) linear sets.

The CFG Gn generates {aj : j ∈ [0, 2n − 1]}: (2n linear sets!!)

S → A0 . . . An−1

Ai → ε for each 0 ≤ i < n

Ai → Bi for each 0 ≤ i < n

Bi → Bi−1Bi−1 for each 0 < i < n

B0 → a

n.b. this kind of encoding for CFG is from (Stockmeyer-Meyer’73)
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Proposition: There is an infinite sequence {An}n∈N of DFAs s.t. P(L(An))
must have at least 2Ω(|An|) linear sets.

An is over Σn := {a1, . . . , an+1}:

Σn · Σn · · · · · Σn
︸ ︷︷ ︸

n copies

P(L(An)) contains each (r1, . . . , rn+1) s.t.
∑n+1

i=1 ri = n. There are
(
2n
n

)
≥ 22n−1

√
n

of these.

Note: Σn grows with n
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Let us assume that the alphabet is unary, i.e., Σ = {a}.

Theorem (Chrobak-Martinez): Descriptional and computational complexity of

Parikh Images of unary regular languages are polynomial.

Note:

� quadratically many union of arithmetic progressions with periods of linear size

suffice.
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Parikh image of L(A) is 8 + 4N+ 3N which is equal to

(8 + 4N) ∪ (11 + 4N) ∪ (14 + 4N) ∪ (17 + 4N)
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Let Σ := {a1, . . . , ak} for fixed k ∈ Z>0.

Theorem (Kopczynski & Lin’10): Descriptional and computational complexity of

Parikh Images of NFAs are polynomial.

� union of polynomially many linear sets with at most k polynomially-bounded

periods

� Complexities are exponential in k

� Generalizes Chrobak-Martinez Theorem (case k = 1).
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� Normal-Form Theorem for Semilinear sets.

� Normal-Form Theorem for Parikh images of NFA
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Given V = {v1, . . . , vn} ⊆ R
k, define the real cone over V :

cone(V ) := {Σn
i=1aivi : ai ∈ R≥0}.

Note: akin to definition of vector subspace of Rk “spanned” by some set V (but ...)
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Theorem: Given a finite V ⊆ R
k of rank d ≤ k, we have

cone(V ) =
⋃

V ′⊆V,|V ′|=‖V ′‖=d

cone(V ′).

� Cones over Rk can be decomposed into smaller subcones with ≤ k vertices

� Note: if k is fixed, there are only polynomially many such subcones.
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� Question: Does the integer version of Caratheodory’s theorem hold?

� Unfortunately, no!

� Fortunately, it does if you allow nonzero offsets :)
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Theorem: Fix k ∈ N. Given a finite V ⊆ Z
k of rank d ≤ k, we can compute in

pseudopolynomial time linear sets L(w1;S1), . . . , L(ws;Ss) s.t. each Si ⊆ V

and |Si| = d
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i=1
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Each number in wi is polynomially large (in unary)
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Theorem: Fix k ∈ N. Given a finite V ⊆ Z
k of rank d ≤ k, we can compute in

pseudopolynomial time linear sets L(w1;S1), . . . , L(ws;Ss) s.t. each Si ⊆ V

and |Si| = d

L(0;V ) =
s⋃

i=1

L(wi;Si).

Use Caratheodory’s theorem

Use bounds from integer programming (Papadimitriou’83) for estimating the

biggest entries in wi’s

Use dynamic programming to compute all wi’s
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Key observations:

� Each parallelogram has a quadratically many integer points

� There is a natural ordering on these parallelograms:

� The parallelogram above or to the right of a parallelogram is larger.

� Once a point “appears”, it stays in the larger parallelograms.

� So, only need to keep track of minimal representatives M, i.e.,

L(0; {(3, 1), (2, 3), (2, 2)}) = M+ (3, 1)N+ (2, 3)N

where:

M = {(2, 2), (4, 4), (6, 6), (8, 8), (10, 10), (12, 12)}

� |M| and all numbers in M are “not big”.
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� Need to use linear sets with different periods (unlike d = 2)

� Replace finding two outermost vectors with Caratheodory’s

� The rest are similar:

� Dynamic programming,

� Bounds from integer programming
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Let Σ := {a1, . . . , ak} for fixed k ∈ Z>0.

Theorem (Kopczynski & Lin, LICS 2010): Descriptional and computational

complexity of Parikh Images of NFAs are polynomial.

� poly many union of linear sets with at most k periods with poly-bounded

numbers

� Complexities are exponential in k .

� Generalizes Chrobak-Martinez Theorem (case k = 1).
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Notation: Q = {q0, . . . , qn−1} with initial state q0 and final state qn−1.

Given a path π and simple cycles C1, . . . , Cm meeting with π:

Cm

πp q

C1

C2

The path type Tπ of π is the linear set L(P(π); {P(Ci)}
m
i=1).

There are at most nkO(1)
many periods.
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Characterization of Parikh images of L(A)

Lemma: P(L(A)) =
⋃

π Tπ, where π ranges over paths from initial to final

state of length at most O(n2).

Problem: There are 2(n+k)O(1)
such π.

BUT: can apply Caratheodory-like theorem on each Tπ:

Corollary: P(L(A)) coincides with a union of polynomially many linear sets with

polynomially large offsets and at most k polynomially large periods.
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Theorem: P(L(A)) coincides with a union of polynomially many linear sets with

polynomially large offsets and at most k polynomially large periods.

A naive implementation takes exponential time.

Can improve to PTIME using dynamic programming!
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S → A (5)

A → aBb (6)

B → aAb (7)

B → ε (8)

The r.h.s. of a rule has at most 1 variable.

Proposition: Generalised Chrobak-Martinez Theorem extends to Linear

Grammars.

Proof: Linear grammars are essentially NFA ...
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Theorem (Esparza-Ganty-Kiefer-Luttenberger’11): Generalised

Chrobak-Martinez Theorem extends to CFG of fixed dimensions.
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A1

A1

a

A2

c A1

a

Theorem (Esparza-Ganty-Kiefer-Luttenberger’11): Generalised

Chrobak-Martinez Theorem extends to CFG of fixed dimensions.

Dimensions measure how many times “doubling tricks” possibly get used in a CFG.

Linear grammars have dimension 0.

Proof: Compute an equivalent NFA of polynomial size and use Generalised

Chrobak-Martinez Theorem.
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Minsky’s counter automata

Control

X3

X2

X1

Counters
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Time

R

R

R

This variable has 3 reversals

Restricted problem: examine paths with r ∈ N reversals for all variables

No finite bounds on length of 0-reversal-bounded paths!
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Theorem: Generalised Chrobak-Martinez Theorem extends to reversal-bounded

counter automata with a fixed number of reversals and a fixed number of

counters.

Proof idea: follow Ibarra’s proof, but use Generalised Chrobak-Martinez for Parikh

images of NFA.

Note: This result can be used to derive optimal complexity for reversal-bounded

verification counter automata.

Theorem (Hague-Lin’11): This does not work if # reversals/# counters are

non-fixed, but you can compute an existential Presburger formula in polynomial

time (even if a pushdown stack is added).
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Alternative notion of Complexity

ACTS 2015 – 41 / 43

Study the complexity of decision problems (e.g. membership, universality, ...)

over different models.

There is also a stark difference, e.g., for emptiness:

� NFA: P (f.a.), NP (u.a.) [Kopczynski-Lin’10]

� CFG: NP (f.a.), NP (u.a.) [Hyunh’83]

Can be proven by first constructing Parikh images (as semilinear set

representation or existential Presburger formulas).
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� Does generalised Chrobak-Martinez Theorem extend to one-counter

automata?

� How do we compare the descriptional complexity of alternating finite-state

automata vs. CFG?

� Study succinctness hierarchy in Parikh’s Theorem.

THANKS!!
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