Distributed local strategies in broadcast networks

Arnaud Sangnier

LIAFA - Université Paris Diderot-Paris 7

joint work with: Nathalie Bertrand and Paulin Fournier

ACTS - CMI - Chennai -10th February 2015

Motivation

Verify network of processes of unbounded size

Why to consider such networks?

- Classical distributed algorithms (*mutual exclusion, leader election,...*)
- Telecommunication protocols (routing,...)
- Algorithms for ad-hoc networks
- Model for biological systems
- and many more applications ...

Hypothesis

All the processes have the same behavior

In [Esparza, STACS'14], such networks are called crowd

More precisely:

- · Each process will follow the same protocol
- Process can communicate
- Communication way:
 - Message passing
 - Shared variable
 - Rendez-vous communication
 - Broadcast communication
 - Multi-diffusion (selective broadcast)

Question:

Is there a network with N processes which allows to reach a goal ?

In this talk

Today:

Decidability and complexity of reachability problems on parameterized networks

Features:

- Simple protocols with broadcast communication
- Simple reachability questions
- Take into account some locality assumptions

Outline

2 Clique and Reconfigurable Networks

3 Considering local strategies

Introduction

Outline

1 Ad Hoc Networks

2 Clique and Reconfigurable Networks

3 Considering local strategies

4 Conclusion

Defining a model for Ad Hoc Networks

Main characteristics

[Delzanno et al., CONCUR'10]

- No creation/deletion of nodes
- Each node executes the same finite state process
- Model based on the ω-calculus
- Broadcast of the messages to the neighbors
- Static topology represented by a connectivity graph

Ad Hoc Networks: syntax

A protocol $P = \langle Q, \Sigma, R, q_0 \rangle$

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

- 2 reception of messages ??m
- \bigcirc internal actions τ

where *m* belongs to the finite alphabet Σ

A protocol defines an Ad Hoc Network (AHN)

Ad Hoc Networks: configurations

A configuration is a graph $\gamma = \langle V, E, L \rangle$

- V : finite set of vertices
- E : V × V : finite set of edges
- $L: V \rightarrow Q$: labeling function

- Initial configurations: all vertices are labeled with the initial state *q*₀
- Notation : $L(\gamma)$ all the labels present in γ

Remarks:

- The size of the considered graphs is not bounded
- Infinite number of configurations

\Rightarrow AHN are infinite state systems

Ad Hoc Networks

Ad Hoc Networks: semantics

Transition system $AHN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C : set of configurations
- $\rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
- C_0 : initial configurations

The relation \rightarrow respects the following rules during an execution:

- The topology remains static
 - The number of vertices does not change
 - The edges do not change
 - Only the labels of the vertices can evolve
- Two kind of transitions according to the given protocol
 - local actions one process performs an internal action τ
 broadcast one process emits a message with !!m, all its neighbors that can receive it with ??m have to receive it

Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state $q \in Q$; Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \to^* \gamma'$ and $q \in L(\gamma')$?

Target State Reachability (TARGET)

Input: A protocol and a set of control states $T \subseteq Q$; **Output:** Does there exist $\gamma \in C_0$ and $\gamma' \in C$ s.t. $\gamma \to^* \gamma'$ and $L(\gamma') \subseteq T$?

Remarks:

- These problems consider an infinite number of possible initial configurations
- Reachability of a configuration γ' is certainly feasible, the number of processes is in fact fixed

Encoding Minsky machine to prove undecidability

Minsky machine

- Manipulates two counters c₁ and c₂
- · Finite set of labeled instructions of the form:
 - **1** $L: c_i := c_i + 1$; goto L'
 - **2** *L* : if $c_i = 0$ goto *L'* else $c_i := c_i 1$; goto *L''*
- An initial label L₀
- A special label L_F with no output instruction

Halting problem: Is the label L_F eventually reached?

Theorem

[Minsky, 67]

The halting problem for Minsky machines is undecidable.

Undecidability result

Theorem

[Delzanno et al, CONCUR'10]

REACH and TARGET for Ad Hoc Networks are undecidable.

- · Ensure that a topology is in a certain form
- Simulate the behavior of a Minsky machine

Undecidability result

Theorem

[Delzanno et al, CONCUR'10]

REACH and TARGET for Ad Hoc Networks are undecidable.

Idea of the proof:

- · Ensure that a topology is in a certain form
- · Simulate the behavior of a Minsky machine

One way to regain decidability: restrict the considered graphs or change the semantics

Outline

2 Clique and Reconfigurable Networks

3 Considering local strategies

Clique and Reconfigurable Networks

Clique Networks

Clique Networks are Ad Hoc Networks restricted to clique graphs

A configuration is a multiset $\gamma : \mathbf{Q} \mapsto \mathbb{N}$

- γ(q) gives the number of process in state q
- · We forget about the graphs since it always the same

Initial configurations: γ(q) > 0 iff q ∈ Q₀

Remarks:

- Clique Networks are Broadcast Networks with no rendez-vous communication
 [Esparza et al., LICS'99]
- In clique networks, a broadcast message is received by all the processes

Deciding REACH in Broadcast Networks

Theorem

[Esperza et al., LICS'99] [Schmitz & Schnoebelen, CONCUR'13]

REACH is decidable in Clique Networks and Ackermann-complete.

Idea of the proof (for decidability)

- Use the fact that there is a well-quasi-oder on the set of configurations
- And that this order is a simulation
 - What can be done from a configuration, can be done from a bigger one
- Class of Well Structured Transitions Systems

Concerning TARGET

Theorem

TARGET is undecidable in Clique Networks.

- · Simulate a two counter Minsky machines
- · Isolate one process (controller) thanks to the clique property
- · The other processes will simulate the counter values
 - Number of processes in state 1_i: value of counter i
- For zero-test, the controller can 'cheat'
- · Use the target set to know when this happens

Protocol for TARGET in Clique Networks

Reconfigurable Networks

Transition system $RN(P) = \langle C, \rightarrow, C_0 \rangle$ associated to P

- C : set of configurations
- $\rightarrow: \mathcal{C} \times \mathcal{C}$: transition relation
- C_0 : initial configurations

The relation \Rightarrow respects the following rules during an execution:

- The topology is not static anymore
 - The number of vertices does not change
 - The edges can change non deterministically
 - The labels of the vertices can evolve
- Three kind of transitions according to the given protocol
 - local actions
 - 2 broadcast

3 reconfiguration - the edges can change with no restriction

Results in Reconfigurable Networks

Theorem

[Delzanno et al.,FSTTCS'12]

REACH in reconfigurable networks is PTIME-complete

- Lower bound: LOGSPACE reduction from the Circuit Value Problem
- Upper bound: algorithm which builds the set of reachable states

Solving REACH in Reconfigurable Networks

PTIME algorithm to compute the set of reachable states

Input : $P = \langle Q, \Sigma, R, q_0 \rangle$ a protocol **Output :** $S \subseteq Q$ the set of reachable control states in RAN(P)1: $S := \{q_0\}$ 2: $oldS := \emptyset$ 3: while $S \neq oldS$ do 4: oldS := S5: for all $\langle q_1, !!a, q_2 \rangle \in R$ such that $q_1 \in oldS$ do 6: $S := S \cup \{q_2\} \cup \{q' \in Q \mid \langle q, ??a, q' \rangle \in R \land q \in oldS\}$ 7: end for 8: end while

- · Each time, do all the possible transactions in the network
- Terminates in at most |P| iterations of the main loop

What about TARGET

Theorem

[Fournier, Phd's thesis'15]

TARGET in reconfigurable networks is in PTIME

- Same idea as for REACH
- First compute the reachable states from q₀
- Then compute the reachable states *S* from the target set (by inversing the transition relation)
- If these two sets match, the algorithm returns S
- Otherwise it repeats the preceding actions by restricting the protocols to states in *S*

Outline

Ad Hoc Networks

2 Clique and Reconfigurable Networks

3 Considering local strategies

4 Conclusion

Local strategies

Do all the processes really behave the same in the previous networks ?

- No, they all follow the same protocol P
- If the protocol is non-deterministic, each process can make a different choice!
- How to enforce, that each process behaves exactly the same ?

Local strategy $\sigma = (\sigma_a, \sigma_r)$

- σ_a : Path(P) \mapsto ($Q \times (\{!!m\} \cup \{\varepsilon\}) \times Q$) $\cup \bot$ (for actions)
- σ_r : Path(*P*) × $\Sigma \mapsto (Q \times \{??m\} \times Q) \cup \bot$ (for receptions)
- · These two functions continue paths in the protocols

Local strategies tell a process what to do according to its (local) past Two processes with the same past will behave similarly

Reachability question with local strategies

An execution respects a local strategy iff each process during the execution does a choice matching with the strategy

Control State Reachability (REACH[L])

Input: A protocol and a control state $q \in Q$;

Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ and a local strategy σ s.t. $\gamma \rightarrow^* \gamma'$ respects σ and $q \in L(\gamma')$?

Target State Reachability (TARGET[L])

Input: A protocol and a set of control state $T \subseteq Q$;

Output: Does there exist $\gamma \in C_0$ and $\gamma' \in C$ and a local strategy σ s.t. $\gamma \rightarrow^* \gamma'$ respects σ and $L(\gamma') \subseteq T$?

Example of reachability questions under local strategies

- There exists a local strategy to reach q_F in Clique and Reconfigurable Networks
- There does not exists a local strategy to reach q'_F in Clique and Reconfigurable Networks
 - Either all the process will move in their first step to *q*₁ or they will all move to *q*₄

Strategy patterns for reconfigurable networks

To represent local strategies in reconfigurable networks, we will use trees

- Each path in the tree will be an unfolded path of the protocol
- From each node in the tree:
 - At most one edge labelled by an action (broadcast or internal action)
 - At most one edge per message *m* labelled with ??*m*
- Those trees can be seen as underspecified local strategies
- They represent sets of local strategies

Example of strategy patterns

An admissible strategy pattern:

A strategy pattern

An admissible strategy pattern:

- A strategy pattern + a total order on the edge s.t.:
 - · The order in the tree is satisfied
 - Each ??m is preceded by !!m

An admissible strategy pattern:

- A strategy pattern + a total order on the edge s.t.:
 - The order in the tree is satisfied
 - Each ??m is preceded by !!m

An admissible strategy pattern:

- A strategy pattern + a total order on the edge s.t.:
 - · The order in the tree is satisfied
 - Each ??m is preceded by !!m

An admissible strategy pattern:

- A strategy pattern + a total order on the edge s.t.:
 - The order in the tree is satisfied
 - Each ??*m* is preceded by !!*m*

Checking whether a strategy pattern is admissible can be done in polynomial time

Results

Why reason on strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks iff there is an admissible strategy pattern containing it.

Results

Why reason on strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks iff there is an admissible strategy pattern containing it.

Minimization

If there exists an admissible strategy pattern containing q there exists one of polynomial size (in the size of P).

Results

Why reason on strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks iff there is an admissible strategy pattern containing it.

Minimization

If there exists an admissible strategy pattern containing q there exists one of polynomial size (in the size of P).

Theorem

REACH[L] in Reconfigurable Networks is NP-complete.

NP-hardness

- Reduction from 3SAT
- 3SAT formula of the form $\bigwedge_{i \in [1..k]} \ell_1^i \lor \ell_2^i \lor \ell_3^i$ over the variables $\{x_1, \ldots, x_r\}$

- The local strategy ensures that even if many processes broadcast the x_i or ¬x_i, they will all make the same choices
- The choices of the local strategy corresponds to a valuation satisfying the formula

Concerning target

Theorem

TARGET[L] in Reconfigurable Networks is NP-complete.

- Used again the strategy pattern
- Refine the notion of admissible
- The order needs to ensure we can 'empty' some nodes not in the target set
- The admissible tree might be bigger but is still of polynomial size

Local strategies in clique networks

Theorem

REACH[L] and TARGET[L] are undecidable in Clique Networks.

- · Encode the behavior of a Minsky machine
- For TARGET[L], as for TARGET in Clique Networks
- For REACH[L]:
 - Simulate the same run twice
 - Locality ensures that we can do the same simulation
 - On the second run we ensure that we will use at most as manu processes for the counters as in the first run
 - As for TARGET in Clique Networks, cliques are used to guarantee that at most one process at a time changes state

How to regain decidability ?

A complete protocol

- From each state, at least one edge labelled with an action (internal or broadcast)
- From each state, for each message *m*, an edge labelled with ??*m*

For a complete protocol in a clique network, at each broadcast, all processes change their past

Theorem

REACH[L] in Clique Networks is decidable when restricted to complete protocols.

- Use an abstract system
- Encode the number of process with the same history in a single process
- Such a system is then well-structured (the order on the configuration is a simulation)

Outline

Ad Hoc Networks

2 Clique and Reconfigurable Networks

3 Considering local strategies

Conclusion

Results

	Reconfigurable Networks	Clique Networks
REACH	Ptime	Ackermann-complete
TARGET	Ptime	Undecidable
		Undecidable
REACH[L]	NP-complete	
		Decidable
		for complete protocols
TARGET[L]	NP-complete	Undecidable

• When we get decidability, we obtain also a cutoff.

Last remarks

Many many papers on this subject

- See the survey [Esparza, STACS'14]
- Aminof et al. studied model-checking with branching time logic
- Esparza & Ganty studied communication through shared variables with no locking mechanism
- · Bollig et al. studied expressivity of parameterized networks
- Bertrand et al. studied Broadcast Networks and Ad Hoc Networks with probability

And now ?

- How can this knowledge be used to verify or synthesize real distributed algorithms ?
- Often you need identity (from an infinite alphabet)
- You might have message passing systems with queues
- Or parameterized shared memory (an array whose size depends on the number of processes)