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Motivation

Verify network of processes of unbounded size

Why to consider such networks?

• Classical distributed algorithms (mutual exclusion, leader

election,...)

• Telecommunication protocols (routing,...)

• Algorithms for ad-hoc networks

• Model for biological systems

• and many more applications ...
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Hypothesis

All the processes have the same behavior

In [Esparza, STACS’14], such networks are called crowd

More precisely:

• Each process will follow the same protocol

• Process can communicate

• Communication way:

• Message passing
• Shared variable
• Rendez-vous communication
• Broadcast communication
• Multi-diffusion (selective broadcast)

Question:
Is there a network with N processes which allows

to reach a goal ?
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In this talk

Today:

Decidability and complexity of reachability problems on
parameterized networks

Features:

• Simple protocols with broadcast communication

• Simple reachability questions

• Take into account some locality assumptions
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Defining a model for Ad Hoc Networks

Main characteristics [Delzanno et al., CONCUR’10]

• No creation/deletion of nodes

• Each node executes the same finite state process

• Model based on the ω-calculus

• Broadcast of the messages to the neighbors

• Static topology represented by a connectivity graph
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Ad Hoc Networks: syntax

A protocol P = 〈Q,Σ,R, q0〉

Finite state system whose transitions are labeled with:

1 broadcast of messages - !!m

2 reception of messages - ??m

3 internal actions - τ

where m belongs to the finite alphabet Σ

τ

??m

!!m

??m

A protocol defines an Ad Hoc Network (AHN)
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Ad Hoc Networks: configurations

A configuration is a graph γ = 〈V ,E , L〉

• V : finite set of vertices

• E : V × V : finite set of edges

• L : V → Q : labeling function

• Initial configurations: all vertices are labeled with the initial

state q0

• Notation : L(γ) all the labels present in γ

Remarks:

• The size of the considered graphs is not bounded
• Infinite number of configurations

⇒ AHN are infinite state systems
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Ad Hoc Networks: semantics

Transition system AHN(P) = 〈C,→, C0〉 associated to P

• C : set of configurations

• →: C × C : transition relation

• C0 : initial configurations

The relation → respects the following rules during an execution:

• The topology remains static

• The number of vertices does not change
• The edges do not change
• Only the labels of the vertices can evolve

• Two kind of transitions according to the given protocol

1 local actions - one process performs an internal action τ

2 broadcast - one process emits a message with !!m, all its

neighbors that can receive it with ??m have to receive it
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Ad Hoc Networks: an example

τ
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??m
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Reachability question

Parameters: Number of processes

Control State Reachability (REACH)

Input: A protocol and a control state q ∈ Q;

Output: Does there exist γ ∈ C0 and γ′ ∈ C s.t. γ →∗ γ′ and

q ∈ L(γ′)?

Target State Reachability (TARGET)

Input: A protocol and a set of control states T ⊆ Q;

Output: Does there exist γ ∈ C0 and γ′ ∈ C s.t. γ →∗ γ′ and

L(γ′) ⊆ T?

Remarks:

• These problems consider an infinite number of possible initial

configurations

• Reachability of a configuration γ′ is certainly feasible, the
number of processes is in fact fixed
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Encoding Minsky machine to prove undecidability

Minsky machine

• Manipulates two counters c1 and c2

• Finite set of labeled instructions of the form:

1 L : ci := ci + 1; goto L′

2 L : if ci = 0 goto L′ else ci := ci − 1; goto L′′

• An initial label L0

• A special label LF with no output instruction

Halting problem: Is the label LF eventually reached?

Theorem [Minsky, 67]

The halting problem for Minsky machines is undecidable.
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Undecidability result

Theorem [Delzanno et al, CONCUR’10]

REACH and TARGET for Ad Hoc Networks are undecidable.

Idea of the proof:

• Ensure that a topology is in a certain form

• Simulate the behavior of a Minsky machine

Ad Hoc Networks 14



Undecidability result

Theorem [Delzanno et al, CONCUR’10]

REACH and TARGET for Ad Hoc Networks are undecidable.

Idea of the proof:

• Ensure that a topology is in a certain form

• Simulate the behavior of a Minsky machine

One way to regain decidability:
restrict the considered graphs or change the semantics
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Clique Networks
Clique Networks are Ad Hoc Networks restricted to clique

graphs

A configuration is a multiset γ : Q 7→ N

• γ(q) gives the number of process in state q

• We forget about the graphs since it always the same

• Initial configurations: γ(q) > 0 iff q ∈ Q0

Remarks:

• Clique Networks are Broadcast Networks with no rendez-vous

communication [Esparza et al., LICS’99]
• In clique networks, a broadcast message is received by all

the processes
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Clique Networks: an example

τ

??m

!!m

??m
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Deciding REACH in Broadcast Networks

Theorem [Esperza et al., LICS’99]
aa [Schmitz & Schnoebelen, CONCUR’13]

REACH is decidable in Clique Networks and Ackermann-complete.

Idea of the proof (for decidability)

• Use the fact that there is a well-quasi-oder on the set of

configurations

• And that this order is a simulation

• What can be done from a configuration, can be done from a bigger

one

• Class of Well Structured Transitions Systems
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Concerning TARGET

Theorem

TARGET is undecidable in Clique Networks.

Idea of the proof:

• Simulate a two counter Minsky machines

• Isolate one process (controller) thanks to the clique property

• The other processes will simulate the counter values

• Number of processes in state 1i : value of counter i

• For zero-test, the controller can ’cheat’

• Use the target set to know when this happens
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Protocol for TARGET in Clique Networks

q0 L0

stock1 INIT

!!start

??start
L Laux L′′

L′

⊥ CONTROL

!!decr(i) ??ok

??start ??start

!!zero(i)

stock1 incri 1i decri stock2

⊥ COUNTER

??incr(i)

??ok

!!ok

??decr(i)

??ok

!!ok

??zero(i)??start

??start
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Reconfigurable Networks

Transition system RN(P) = 〈C,→, C0〉 associated to P

• C : set of configurations

• →: C × C : transition relation

• C0 : initial configurations

The relation ⇒ respects the following rules during an execution:

• The topology is not static anymore

• The number of vertices does not change
• The edges can change non deterministically
• The labels of the vertices can evolve

• Three kind of transitions according to the given protocol

1 local actions

2 broadcast

3 reconfiguration - the edges can change with no restriction
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Reconfigurable Networks: an example

τ

??m

!!m

??m
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Results in Reconfigurable Networks

Theorem [Delzanno et al.,FSTTCS’12]

REACH in reconfigurable networks is PTIME-complete

Idea of the proof:

• Lower bound: LOGSPACE reduction from the Circuit Value

Problem

• Upper bound: algorithm which builds the set of reachable states
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Solving REACH in Reconfigurable Networks

PTIME algorithm to compute the set of reachable states

Input : P = 〈Q,Σ,R,q0〉 a protocol

Output : S ⊆ Q the set of reachable control states in RAN(P)
1: S := {q0}
2: oldS := ∅
3: while S 6= oldS do
4: oldS := S

5: for all 〈q1, !!a,q2〉 ∈ R such that q1 ∈ oldS do
6: S := S ∪ {q2} ∪ {q′ ∈ Q | 〈q, ??a,q′〉 ∈ R ∧ q ∈ oldS}
7: end for
8: end while

• Each time, do all the possible transactions in the network

• Terminates in at most |P| iterations of the main loop
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What about TARGET

Theorem [Fournier,Phd’s thesis’15]

TARGET in reconfigurable networks is in PTIME

Idea of the proof:

• Same idea as for REACH

• First compute the reachable states from q0

• Then compute the reachable states S from the target set (by

inversing the transition relation)

• If these two sets match, the algorithm returns S

• Otherwise it repeats the preceding actions by restricting the

protocols to states in S
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Local strategies

Do all the processes really behave the same in the previous
networks ?

• No, they all follow the same protocol P

• If the protocol is non-deterministic, each process can make a

different choice!

• How to enforce, that each process behaves exactly the same ?

Local strategy σ = (σa, σr )

• σa : Path(P) 7→ (Q × ({!!m} ∪ {ε})× Q) ∪ ⊥ (for actions)

• σr : Path(P)× Σ 7→ (Q × {??m} × Q) ∪ ⊥ (for receptions)

• These two functions continue paths in the protocols

Local strategies tell a process what to do according to its (local)
past

Two processes with the same past will behave similarly
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Reachability question with local strategies

An execution respects a local strategy iff each process during
the execution does a choice matching with the strategy

Control State Reachability (REACH[L])

Input: A protocol and a control state q ∈ Q;

Output: Does there exist γ ∈ C0 and γ′ ∈ C and a local strategy

σ s.t. γ →∗ γ′ respects σ and q ∈ L(γ′)?

Target State Reachability (TARGET[L])

Input: A protocol and a set of control state T ⊆ Q;

Output: Does there exist γ ∈ C0 and γ′ ∈ C and a local strategy

σ s.t. γ →∗ γ′ respects σ and L(γ′) ⊆ T?
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Example of reachability questions under local

strategies

q0 q1 q2 q3 qF

q4 q′

F

!!m

ε

!!m

??m

ε ??m

??m

ε, ??m

ε, ??m

• There exists a local strategy to reach qF in Clique and

Reconfigurable Networks

• There does not exists a local strategy to reach q′

F in Clique and
Reconfigurable Networks

• Either all the process will move in their first step to q1 or they will all

move to q4
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Strategy patterns for reconfigurable networks

To represent local strategies in reconfigurable networks, we will
use trees

• Each path in the tree will be an unfolded path of the protocol

• From each node in the tree:

• At most one edge labelled by an action (broadcast or internal

action)
• At most one edge per message m labelled with ??m

• Those trees can be seen as underspecified local strategies

• They represent sets of local strategies
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Example of strategy patterns

q0 q1

q2

q1 q2 q3 qF

!!m

!!m

??m
!!m ε ??m
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Admissible strategy patterns

q0 q1

q2

q1 q2 q3 qF

ADMISSIBLE

!!m

!!m

??m
!!m ε ??m

An admissible strategy pattern:

• A strategy pattern
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Admissible strategy patterns

q0 q1

q2

q1 q2 q3 qF

ADMISSIBLE

!!m

!!m

??m
!!m ε ??m

An admissible strategy pattern:

• A strategy pattern + a total order on the edge s.t.:

• The order in the tree is satisfied
• Each ??m is preceded by !!m
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Admissible strategy patterns

q0 q1

q2

q1 q2 q3 qF

NOT ADMISSIBLE

!!m

!!m

??m
!!m ε ??a

An admissible strategy pattern:

• A strategy pattern + a total order on the edge s.t.:
• The order in the tree is satisfied
• Each ??m is preceded by !!m
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Admissible strategy patterns

q0 q1

q2

q1 q2 q3 qF

ADMISSIBLE

!!m

!!a

??m
!!m ε ??a

An admissible strategy pattern:

• A strategy pattern + a total order on the edge s.t.:

• The order in the tree is satisfied
• Each ??m is preceded by !!m
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Admissible strategy patterns

q0 q1

q2

q1 q2 q3 qF

ADMISSIBLE

!!m

!!a

??m
!!m ε ??a

An admissible strategy pattern:

• A strategy pattern + a total order on the edge s.t.:

• The order in the tree is satisfied
• Each ??m is preceded by !!m

Checking whether a strategy pattern is admissible can be done
in polynomial time
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Results

Why reason on strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks iff there is an admis-

sible strategy pattern containing it.
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If there exists an admissible strategy pattern containing q there exists

one of polynomial size (in the size of P).
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Results

Why reason on strategy patterns ?

Soundness and correctness

A state is reachable in Reconfigurable Networks iff there is an admis-

sible strategy pattern containing it.

Minimization

If there exists an admissible strategy pattern containing q there exists

one of polynomial size (in the size of P).

Theorem

REACH[L] in Reconfigurable Networks is NP-complete.
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NP-hardness

• Reduction from 3SAT

• 3SAT formula of the form
∧

i∈[1..k ] ℓ
i
1 ∨ ℓi

2 ∨ ℓi
3 over the variables

{x1, . . . , xr}

q0q′

1q′

2· · ·q′

r+1 q1 · · · qk
ε

!!x1

!!¬x1

!!x2

!!¬x2

!!xr

!!¬xr

??ℓ1
1

??ℓ1
2

??ℓ1
3

??ℓ2
1

??ℓ2
2

??ℓ2
3

??ℓk
1

??ℓk
2

??ℓk
3

• The local strategy ensures that even if many processes

broadcast the xi or ¬xi , they will all make the same choices

• The choices of the local strategy corresponds to a valuation

satisfying the formula
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Concerning target

Theorem

TARGET[L] in Reconfigurable Networks is NP-complete.

Idea of the proof:

• Used again the strategy pattern

• Refine the notion of admissible

• The order needs to ensure we can ’empty’ some nodes not in the

target set

• The admissible tree might be bigger but is still of polynomial size
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Local strategies in clique networks

Theorem

REACH[L] and TARGET[L] are undecidable in Clique Networks.

Idea of the proof:

• Encode the behavior of a Minsky machine

• For TARGET[L], as for TARGET in Clique Networks

• For REACH[L]:

• Simulate the same run twice
• Locality ensures that we can do the same simulation
• On the second run we ensure that we will use at most as manu

processes for the counters as in the first run
• As for TARGET in Clique Networks, cliques are used to guarantee

that at most one process at a time changes state
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Protocol for REACH[L] in Clique Networks

q0 wC st L0

stock1 ⊥

CONTROL

ǫ ǫ !!start

??start??start

L Laux L′′

L′

⊥ CONTROL

!!decr(i) ??ok

??start ??start

!!zero(i)

stock1 incri 1i decri stock2

⊥ COUNTER

??incr(i)

??ok

!!ok

??decr(i)

??ok

!!ok

??zero(i)??start

??start

??start
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How to regain decidability ?
A complete protocol

• From each state, at least one edge labelled with an action

(internal or broadcast)

• From each state, for each message m, an edge labelled with ??m

For a complete protocol in a clique network, at each broadcast,
all processes change their past

Theorem

REACH[L] in Clique Networks is decidable when restricted to complete

protocols.

Idea of the proof:

• Use an abstract system

• Encode the number of process with the same history in a single

process

• Such a system is then well-structured (the order on the

configuration is a simulation)
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Conclusion

Results

Reconfigurable Networks Clique Networks

REACH Ptime Ackermann-complete

TARGET Ptime Undecidable

Undecidable
REACH[L] NP-complete

Decidable
for complete protocols

TARGET[L] NP-complete Undecidable

• When we get decidability, we obtain also a cutoff.
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Last remarks

Many many papers on this subject

• See the survey [Esparza, STACS’14]

• Aminof et al. studied model-checking with branching time logic

• Esparza & Ganty studied communication through shared

variables with no locking mechanism

• Bollig et al. studied expressivity of parameterized networks

• Bertrand et al. studied Broadcast Networks and Ad Hoc

Networks with probability

And now ?

• How can this knowledge be used to verify or synthesize real

distributed algorithms ?

• Often you need identity (from an infinite alphabet)

• You might have message passing systems with queues

• Or parameterized shared memory (an array whose size depends

on the number of processes)
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