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Vector Addition Systems with States (VASS)

(0,0,0,0) 

finite-state
controller

i s=0 s=1

(-1,1,0,0) 

(1,0,0,0) (0,0,-1,1) (0,-1,1,0) 

(-1,1,0,0) 

(0,0,-1,1) 

(0,-1,1,0) 

(0,0,0,0) 

infinite state space

counters over
naturals

transition
updates

(0,0,0,0)(0,0,0,0)  (1,0,0,0)(1,0,0,0)  (2,0,0,0)(2,0,0,0)  
(2,0,0,0)(2,0,0,0)  (1,0,1,0)(1,0,1,0)

(1,0,0,1)(1,0,0,1)  
(1,1,0,0)(1,1,0,0)  
(0,1,0,1)(0,1,0,1)  (0,0,1,1)(0,0,1,1)  



  

Vector Addition Systems with States

(0,0,0,0) 
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Relevant Parameters:
● Operations along transitions (e.g. zero tests, update types)
● Number of counters
● Encoding of numbers
● Parametric values

Given configurations        ,         , does                    ?q (u) r (v ) q (u)⇒r (v )



  

The Reachability Problem

undecidable

decidable

2-EXPTime

EXPSpace

PSpace

NP

Minsky machines [Minsky, '61]

2-VASS [Hopcroft, Pansiot, '79]

2-VASS [Howell et al., '86]

unary one-counter machines 
[Valiant,Paterson, '75]

NL

VASS lower bound [Lipton, '76]

VASS [Mayr, '81; Kosaraju, '82;
Lambert, '92; Leroux, '09]

1-VASS [Rosier, Yen, '86]



  

One-Counter Automata

0 

i s=0 s=1
+256 =0?

-1

1975 1986
2009

Valiant and 
Paterson show 
reachability NL-
complete (unary 

encoding)

Rosier and Yen show 
reachability NP-hard

and in PSpace 
(binary encoding)

H., Kreutzer, 
Ouaknine and 
Worrell show 

reachability in NP



  

One-Counter Automata

Reachability is NP-hard via a reduction from SubsetSum

S={n1,… , nk }⊆ℕ ,T ∈ℕ S '⊆S ∑ S '=T

n1

0

n2

0

nk

0

Given there is           such that 

q (0)⇒r (T )

q r

iff



  

One-Counter Automata
co

u n
t e

r 
va

l u
e

run

O(|Q|3
)

|Q|

“If there is a run then there is one whose maximum counter 
value is polynomially bounded.” [Lafourcade et al., '04]

Reachability
 in NL and PSpace, respectively!



  

One-Counter Automata
co

u n
t e

r 
va

l u
e

runno increasing cycles no decreasing cycles

single
increasing cycle

single
decreasing cycle

Reachability
 in NP!

“Runs can be structured.” [H. et al., '09]

arbitrarily high
counter values



  

Bounded One-Counter Automata

0 

i
+256 =0?

q r

-8

<=16?

● State-space bounded by arbitrary but fixed constant
● Reachability PSpace-complete [Fearnley, Jurdzinski, '13]

bound 264



  

Bounded One-Counter Automata

no way to enforce
counter below a

value

if-then-else 
constructions possible

>=5 

-4 

+2 

>=5 

-4 

>=5 

-4 

+2 <=3 

bound 10



  

Bounded One-Counter Automata

Fearnley and Jurdzinski show that reachability is PSpace-hard
via a reduction from Quantified-SubsetSum

S={n1,… , nk }⊆ℕ ,T ∈ℕ

∃ x1∈{0,1 } ∀ x2∈{0,1} ⋯∀ xn∈{0,1 }:∑
i=1

n

x i⋅ni=T

Given , does the following hold:



  

Vector Addition Systems with States in Dimension Two

>=5 

-4 

+2 <=3 

bound 10
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(-4,+4) 

(+2,-2) (+7,-7)

(+5,-5) 

(-7,+7) 

0 

(0,10) 



  

Vector Addition Systems with States in Dimension Two

1979 1986 2004 2013

Hopcroft and Pansiot 
show decidability of 

reachability and 
semi-linearity of the 

reachability set

Howell, Rosier, Huynh 
and Yen show 2-EXP 
upper bound and NP 

lower bound

Leroux and Sutre 
show that 2-VASS 
can be flattened

Fearnley and 
Jurdzinski show 

PSpace lower bound

2015



  

Vector Addition Systems with States in Dimension Two

s=0 s=1

(0,+1) 

(+1,+1) 

(0,-1) 

t 1

t 2

t 3

p q

p(u)⇒q(v )

p(u)⇒ t1(t 3)
∗ t 2(t 1t 2)

∗ t1 ⇒q(v )

p(u)⇒ t1(t 3)
∗
⇒q(v )

iff or

Leroux and Sutre, 2004:
linear path

scheme

V=(Q ,T )



  

Vector Addition Systems with States in Dimension Two

s=0 s=1

(0,+1) 

(+1,+1) 

(0,-1) 

t 1

t 2

t 3

p q

p(u)⇒q(v ) iff

Blondin, Finkel, Göller, H., McKenzie, 2015:

V=(Q ,T )

p(u)⇒α0 β1
∗
⋯αk−1βk

∗
αk +1⇒q (v)

|α i|,|βi|≤(|Q|+‖T‖)O (1 ), k≤O(|Q|2)
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counter 1

Vector Addition Systems with States in Dimension Two

2-VASS behaves like 
a 1-VASS



  

Returning Back to One-Counter Automata
co

u n
t e

r 
va

l u
e

run

O(|Q|2
)

≤|Q|2

≤|Q|2

≤|Q|

“Paths whose counter values grow sufficiently high have an 
easy description” [Valiant, Paterson, '75].
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Vector Addition Systems with States in Dimension Two

p(u)⇒q(v ) iff

p(u)

p(u)⇒α0 β1
∗
α1β2

∗
α2⇒q (v)

|α i|,|βi|≤(|Q|+‖T‖)
O (1 )

q (v )
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Vector Addition Systems with States in Dimension Two

q (u)

q (v )



  

Vector Addition Systems with States in Dimension Two

s=0 s=1

(0,+1) 

(+1,+1) 

(0,-1) 

t 1

t 2

t 3

p q

Represent net effect of cyclic paths as semi-linear sets:

{(uv ): p (0,0)⇒ p(u , v )}={(0
1)+λ (0

1): λ∈ℕ}

period vector

base vector



  

Decomposing Linear Sets in Dimension Two



  

Decomposing Linear Sets in Dimension Two



  

Decomposing Linear Sets in Dimension Two
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Vector Addition Systems with States in Dimension Two

q (u)

q (v )

q (u)⇒q (v ) iff q (u)⇒α0 β1
∗
α1 β2

∗
α2⇒q (v )

|α i|,|βi|≤(|Q|+‖T‖)
O (1 )

β1,β2 point towardsnet effects of v−u
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Vector Addition Systems with States in Dimension Two

at most             switches neededO(|Q|
2
)

p(u)⇒q(v ) iff p(u)⇒α0 β1
∗
⋯αk−1βk

∗
αk +1⇒q (v)

|α i|,|βi|≤(|Q|+‖T‖)
O (1 ), k≤O(|Q|

2
)



  

Vector Addition Systems with States in Dimension Two

α0β1
∗
⋯αk−1 βk

∗
αk+1 .p(u) , q (v )Given and

p(u)⇒α0 β1
∗
⋯αk−1βk

∗
αk +1⇒q (v)If

then p(u)⇒α0 β1
e1⋯αk−1βk

ek αk +1⇒q (v ) with e i≤2|V|+ log‖u‖+log‖v‖O ( 1)

.
Reachability

 in PSpace!



  

Vector Addition Systems with States in Dimension Two

Approach yields NP upper bound under unary encoding.
Can we do better?

α0β1
∗
⋯αk−1 βk

∗
αk+1

(
3 0 0 0
3 −2 0 0
3 −2 4 0
3 −2 4 1

)⋅e ≥ (
1

−3
2
0

) (
−2 0 0 0
−2 4 0 0
−2 4 −1 0
−2 4 −1 3

)⋅e ≥ (
−2
1
5

−3
)

small solutions for 
individual system

∩

exponential blow-up 
in the number of 

columns



  

An Open Problem

0 

i s=0 s=1
+256 =0?

-1+p

● Decidable for one unbounded counter [H. et al., '09]
● Undecidable for three counters
● Status unknown for parametric bounded one-counter automata

and 2-VASS
● Inter-reducible with reachability in parametric two-clock timed

automata [Bundala, Ouaknine, '14]
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