Characterization of Logics on Infinite Linear Orderings

Thomas Colcombet ACTS 9-13 February 2015 Chennai

Linear orderings Words Logics

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, « is dense »: for all x<y there is some z such that x<z<y

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is scattered »: no (induced) sub-ordering is dense

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, « is dense »: for all x<y there is some z such that x<z<y

- In MSO, « is scattered »: no (induced) sub-ordering is dense
- In MSO, « is finite »: the first and last positions exist and are reachable one from the other by successor steps

Monadic second-order logic (MSO)

- quantify over elements x,y,...
- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature
- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is scattered »: no (induced) sub-ordering is dense

In MSO, « is finite »: the first and last positions exist and are reachable one from the other by successor steps

In MSO, « is complete »: all subsets have a supremum

Elgot - Büchi60 MSO=reg (finite words) decidable

Elgot - Büchi60 MSO=reg (finite words) decidable

[Büchi62]: ω-words decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] (R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] over countable linear orderings

Elgot - Büchi60 MSO=reg (finite words) decidable

[Büchi62]: ω-words decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] (R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] over countable linear orderings [Schützenberger65] [McNaughton&Papert71] FO-definable = aperiodic

Many logics...

Elgot - Büchi60 MSO=reg (finite words) decidable

[Büchi62]: ω-words decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] (R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] over countable linear orderings [Schützenberger65] [McNaughton&Papert71] FO-definable = aperiodic

Many logics...

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

> finite c a b b a a

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

finite <u>c a b b a a</u> domain ω (N,<)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

finite <u>c a b b a a</u> domain ω (N,<) domain ω* (-N,<)

· · · 000-0-0-0-0

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

well ordered domain (ordinal)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

perfect shuffle {a,b}

domain (Q,<) every letter appears densely (unique up to isomorphism)

well ordered domain (ordinal)

scattered

(no dense sub-ordering)

-0-0-000 • • • • • • • 000-0-0-0-0-0-000 • • •

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

well ordered domain (ordinal)

(no dense sub-ordering)

-0-0-000 • • • • • • • 000-0-0-0-0-0-000 • • •

perfect shuffle {a,b} a b a b a b domain (Q,<)

every letter appears densely (unique up to isomorphism)

complete

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

well ordered domain (ordinal)

(no dense sub-ordering)

-0-0-000 • • • • • • • 000-0-0-0-0-0-000 • • •

perfect shuffle {a,b}

domain (Q,<) every letter appears densely (unique up to isomorphism)

Linear ordering: $\alpha = (L, <)$ with < total (here L is always countable) (Countable) word: map u : $\alpha \rightarrow A$ (A alphabet)

perfect shuffle {a,b} <u>a b a b a b</u> domain (Q,<) every letter appears densely (unique up to isomorphism)

Restricting the set quantifier

Range of set quantifiers	Name of the logic
singleton sets	first-order logic (FO) « is dense », « has length k »
cuts	first-order logic with cuts (FO[cut]) « is well ordered », « is complete », « is finite »
finite sets	weak monadic second-order logic (WMSO) « is finite », « has even length »
finite sets and cuts	MSO[finite,cut] « there is an even number of gaps »
well ordered sets	MSO[ordinal]
scattered sets	MSO[scattered] « is scattered »
all sets	MSO « there are two sets 'dense in each other' »

Can we separate these logics ?

Can we separate these logics ?

Can we separate these logics ?

Can we characterize effectively these logics ?

An algebraic approach: o-monoid

Generalized concatenation

Generalized concatenation

Generalized concatenation

Generalized concatenation

Generalized concatenation

A \circ -monoid (M, π) is a set M equipped with a product $\pi : M^{\circ} \rightarrow M$ that satisfies generalized associativity:

 $\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product $\pi : M^{\circ} \rightarrow M$ that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product π : M^{\circ} \rightarrow M that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

Example: (A°, \prod) is the free \circ -monoid generated by A.

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product π : M^{\circ} \rightarrow M that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

Example: (A°, \prod) is the free \circ -monoid generated by A.Example: $\Pi = \begin{cases} 1 & \text{if } u \text{ consists only of 1's} \\ f & \text{if } u \text{ has one but finitely many f's, and no 0} \\ 0 & \text{otherwise} \end{cases}$

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product π : M^{\circ} \rightarrow M that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

Example: (A°, \prod) is the free \circ -monoid generated by A.Example: $M=\{1,f,0\}$ with: $\pi(u) = \begin{cases} 1 & \text{if } u \text{ consists only of 1's} \\ f & \text{if } u \text{ has one but finitely many f's, and no 0} \\ 0 & \text{otherwise} \end{cases}$

A morphism of \circ -monoid h is such that $h\left(\prod_{i \in \alpha} u_i\right) = \pi\left(\prod_{i \in \alpha} h(u_i)\right)$

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product π : M^{\circ} \rightarrow M that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

Example: (A°, \prod) is the free \circ -monoid generated by A.Example: $M=\{1,f,0\}$ with: $\pi(u) = \begin{cases} 1 & \text{if } u \text{ consists only of 1's} \\ f & \text{if } u \text{ has one but finitely many f's, and no 0} \\ 0 & \text{otherwise} \end{cases}$

A morphism of \circ -monoid h is such that $h\left(\prod_{i \in I} h_{i}\right)$

$$h\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}h(u_i)\right)$$

Given a finite monoid M, a \circ -morphism h from A^{\circ} to M, and F \subseteq M, M,h,F recognizes { $u \in A^{\circ} : h(u) \in F$ }

$$\pi(a) = a$$

A \circ -monoid (M, π) is a set M equipped with a product π : M^{\circ} \rightarrow M that satisfies generalized associativity:

$$\pi\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}\pi(u_i)\right)$$

Example: (A°, \prod) is the free \circ -monoid generated by A.Example: $M=\{1,f,0\}$ with: $\pi(u) = \begin{cases} 1 & \text{if } u \text{ consists only of 1's} \\ f & \text{if } u \text{ has one but finitely many f's, and no 0} \\ 0 & \text{otherwise} \end{cases}$

A morphism of \circ -monoid h is such that $h\left(\prod_{i\in\alpha}u_i\right) = \pi\left(\prod_{i\in\alpha}h(u_i)\right)$

Given a finite monoid M, a \circ -morphism h from A^{\circ} to M, and F \subseteq M, M,h,F recognizes { $u \in A^{\circ} : h(u) \in F$ }

Example: with F={1,f} $h(u) = \begin{cases} 1 & \text{if } u \text{ has no } a\text{'s} \\ f & \text{if } u \text{ has finitely many } a\text{'s} \\ 0 & \text{ortherwise} \end{cases}$ M,h,F recognize « finitely many a's »

Recognizability = definability

Recognizability = definability

Schützenberger-Elgot-Büchi: A language of finite words is definable in monadic second-order logic if and only if it is recognizable by a finite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid.

Recognizability = definability

Schützenberger-Elgot-Büchi: A language of finite words is definable in monadic second-order logic if and only if it is recognizable by a finite monoid.

Furthermore, there is a minimal such monoid: the syntactic monoid.

Theorem [Shelah75 & CCP11]: A language of countable words is definable if and only if it is recognizable by a finite o-monoid.

Furthermore there is a syntactic o-monoid.

Furthermore, finite o-monoids can be effectively handled.

Unit: M

 $1 = \pi(\varepsilon)$

Unit: M Binary product: M×M→M

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

Unit: M Binary product: M×M→M

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

 ω -iteration: M \rightarrow M

$$a^{\omega} = \pi(\underbrace{aaa\dots}_{\omega})$$

Unit: M Binary product: $M \times M \rightarrow M$

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

ω-iteration: M→M $a^ω = π(\underbrace{aaa...}_ω)$ ω^* -iteration $a^\omega = \pi(\underbrace{\dots aaa}_{\omega*})$

Unit: M Binary product: M×M→M

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

shuffle $\eta: \mathcal{P}(M) \rightarrow M$ $\{a, b\}^{\eta} = \pi(perfect shuffle(a, b))$

ω-iteration: M→M $a^ω = π(\underbrace{aaa...}_ω)$ ω^* -iteration $a^\omega = \pi(\underbrace{\dots aaa}_{\omega*})$

Unit: M $1 = \pi(\varepsilon)$

 $a \cdot b = \pi(ab)$

 $\omega\text{-iteration: } \mathsf{M} \to \mathsf{M}$ $a^{\omega} = \pi(\underbrace{aaa\dots}_{\omega})$

$$\omega^*$$
-iteration
 $a^\omega = \pi(\underbrace{\ldots aaa}_{\omega*})$

 $\{a,b\}^{\eta} = \pi(perfect shuffle(a,b))$ $a \ b \ a \ b \ a \ b$ domain (Q,<)every letter appears densely
(unique up to isomorphism)

shuffle $\eta: \mathcal{P}(M) \rightarrow M$

Unit: M Binary product: M×M→M

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

ω-iteration: M→M $a^ω = π(\underline{aaa...})$

$$\omega^*$$
-iteration
 $a^\omega = \pi(\underbrace{\ldots aaa}_{\omega*})$

 $\{a,b\}^{\eta} = \pi(perfect shuffle(a,b))$ a b a b a b
domain (Q,<)</p>
every letter appears densely
(unique up to isomorphism)

shuffle $\eta: \mathcal{P}(M) \rightarrow M$

Theorem[CCP11]: There are equalities (A) such that: every operations induced by a product satisfy equalities (A), and given 1,·,ω,ω*,η over some finite M satisfying these

equalities, there is a product π inducting them.

Unit: M Binary product: M×M→M

 $1 = \pi(\varepsilon) \qquad \qquad a \cdot b = \pi(ab)$

ω-iteration: M→M $a^ω = π(\underline{aaa...})$

$$\omega^*$$
-iteration
 $a^\omega = \pi(\underbrace{\ldots aaa}_{\omega*})$

 $\{a,b\}^{\eta} = \pi(perfect shuffle(a,b))$ a b a b a b
domain (Q,<)</p>
every letter appears densely
(unique up to isomorphism)

shuffle $\eta: \mathcal{P}(M) \rightarrow M$

Theorem[CCP11]: There are equalities (A) such that: every operations induced by a product satisfy equalities (A), and given $1, \cdot, \omega, \omega^*, \eta$ over some finite M satisfying these equalities, there is a product π inducting them.

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$
$$(a^{n})^{\omega} = a^{\omega}$$
$$(a \cdot b)^{\omega} = a \cdot (b \cdot a)^{\omega}$$
$$\{a\}^{\eta} = \{a\}^{\eta} \cdot a \cdot \{a\}^{\eta}$$

Examples

Examples

« finitely many a's »

Examples

« finitely many a's »

« a's are left-closed »

	1	а	b	m	0		1	а	b	m	0	a = «aaa »
1	1	а	b	m	0	ω	1	а	b	0	0	b = «bbb »
а	a	а	m	m	0		I					m = «aaabbb »
b	b	0	b	0	0		1	а	b	m	0	0 = « *b*a* »
m	m	0	m	0	0	ω*	1	а	b	0	0	
0	0	0	0	0	0							

Characterizing logics

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$e \cdot e = e$$
 $e^{\omega} \cdot e^{\omega *} = e$

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$e \cdot e = e$$
 $e^{\omega} \cdot e^{\omega *} = e$

when sufficiently long.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$e \cdot e = e$$
 $e^{\omega} \cdot e^{\omega *} = e$

when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$e \cdot e = e$$
 $e^{\omega} \cdot e^{\omega *} = e$

when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity. *Proof*: Take n such that a^n is idempotent.

$$a^{n} = (a^{n})^{\omega} \cdot (a^{n})^{\omega*} = a \cdot (a^{n})^{\omega} \cdot (a^{n})^{\omega*} = a^{n+1}$$

Theorem[Schützenberger65,McNauthon&Papert71]: A language of finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is definable in FO if and only if every idempotent is gap insensitive.

$$e \cdot e = e$$
 $e^{\omega} \cdot e^{\omega *} = e$

when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity. *Proof*: Take n such that a^n is idempotent.

$$a^n = (a^n)^{\omega} \cdot (a^n)^{\omega *} = a \cdot (a^n)^{\omega} \cdot (a^n)^{\omega *} = a^{n+1}$$

Remark: The equation remains true but is not sufficient in general.

Weak monadic logic cannot detect gaps... when in an infinite situation

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} = e$

 $e^{\omega *}$

Weak monadic logic cannot detect gaps... when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

$$e^{\omega} = e$$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.
[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} = e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $\rho^{\omega*}$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

 $e^{\omega} = e$

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} \stackrel{'}{=} e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} \stackrel{'}{=} e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} = e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} \stackrel{'}{=} e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

 $\rho^{\omega*}$

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} \stackrel{'}{=} e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

[Bès&Carton]: A language of scattered words is definable in WMSO if and only if all ordinal idempotents and every ordinal* idempotents are gap insensitive.

 $e^{\omega} = e$

IH: Assume « $\phi(X)$ » recognized by a monoid satisfying the property.

MSO[ordinal] cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every scattered idempotent is a shuffle idempotent.

$$e = e^{\omega} = e^{\omega *} \qquad \qquad e = \{e\}^r$$

MSO[ordinal] cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every scattered idempotent is a shuffle idempotent.

$$e = e^{\omega} = e^{\omega *} \qquad \qquad e = \{e\}^{r}$$

MSO[scattered]

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic omonoid such that every shuffle idempotent is shuffle simple.

> For all K such that $e = K^{\eta}$, and a such that $e \cdot a \cdot e = e$, $(K \cup \{a\})^{\eta} = e$.

Results

To be continued...