Characterization of
| ogics on Infinite Linear
Orderings

Thomas Colcombet
ACTS 9-13 February 2015
Chennai

L inear orderings
Words
L ogIcs

Monadic Second-Order Logic

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is scattered »: no (induced) sub-ordering is dense

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

n MSO, « Is scattered »: no (induced) sub-ordering is dense

n MSO, « is finite »: the first and last positions exist and are
reachable one from the other by successor steps

Monadic Second-Order Logic

Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

n MSO, « Is scattered »: no (induced) sub-ordering is dense

n MSO, « is finite »: the first and last positions exist and are
reachable one from the other by successor steps

In MSO, « is complete »: all subsets have a supremum

History

History

Elgot - BuchieO
MSO=reg (finite words)
decidable

History

Elgot - BuchieO
MSO=reg (finite words)

| decidable
[BUchie?2]: w-words

decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis]
over countable linear orderings

HiStory

Elgot - BlchieO
MSO=reg (finite words)

| decidable
[BUchie?2]: w-words
decidable
[Schutzenberger65]
(Q,<): [Rabin69] [McNaughton&Papert71]

FO-definable = aperiodic

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] Many logics...
over countable linear orderings

HiStory

Elgot - BlchieO
MSO=reg (finite words)

| decidable
[BUchie?2]: w-words
decidable
[Schutzenberger65]
(Q,<): [Rabin69] [McNaughton&Papert71]

FO-definable = aperiodic

(Q,<): [Shelah75]
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] Many logics...
over countable linear orderings

|_inear orderings and infinite words

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

@ @ @ @ @ @

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

@ @ @ @ @ @

domain w (N, <)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

@ @ @ @ @ @

domain w (N, <)

domain w* (-N,<)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

finite

c a b b a a
(@, O—{O0—0

N N
A4 4

domain w (N, <)

domain w* (-N,<)

well ordered domain (ordinal)

—0-000::: 0—0-000 -0 © 0 o

W W
w times

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

finite

c a b b a a
(@, O—{O0—0

N N
A4 4

domain w (N, <)

domain w* (-N,<)

well ordered domain (ordinal)

—0-000::: 0—0-000 -0 © 0 o

W W
w times

scattered

(no dense sub-ordering)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

finite
cabbasa perfect shuffle {a,b}
- .ababab.
domain w (N, <) domain (Q,<)
every letter appears densely
domain w* (-N,<) (unique up to isomorphism)

well ordered domain (ordinal)

—0-000::: 0—0-000 -0 © 0 o

W W
w times

scattered

(no dense sub-ordering)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

i ;'Q'tfg) oerfect shuffle {a,b)
T ababab.
domain w (N, <) domain (Q,<)
every letter appears densely
domain w* (-N,<) (unique up to isomorphism)
well ordered domain (ordinal) complete
W W
w times
scattered

(no dense sub-ordering)

|_inear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

i ;'Q't@eg) oerfect shuffle {a,b)
R ababab
domain w (N, <) domain (Q,<)
every letter appears densely
domain w* (-N,<) (unique up to isomorphism)
well ordered domain (ordinal) complete
W w |
W times iIncomplete
scattered

(no dense sub-ordering)

Linear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

i ;'Q't@eg) oerfect shuffle {a,b)
T .ababab.
domain w (N, <) domain (Q,<)
every letter appears densely
domain w* (-N,<) (unique up to isomorphism)
well ordered domain (ordinal) complete
W w |
W times iIncomplete

scattered (
gap

= natural Dedekind cut

(no dense sub-ordering)

Restricting the set quantifier

Range of

set quantifiers Name of the logic

first-order logic (FO)

singleton sets « is dense », « has length k »
first-order logic with cuts (FOl[cut])
cuts « Is well ordered », « is complete », « is finite »

. weak monadic second-order logic (WMSO)
finite sets « is finite », « has even length »

MSO[finite,cut]
« there is an even number of gaps »

MSO[ordinal]

finite sets and cuts

well ordered sets

MSQO[scattered]
« |S scattered »

MSO
« there are two sets ‘dense in each other’ »

scattered sets

all sets

Structure

Olcut] WMSO
MSO[finite,cut]

MSOJordinal]

MSO[scattered]

MSO

Structure

/ \ Can we sepgrate
t]

Ofcut] WMSO these logics 7
MSO[finite,cut]

MSOJ[ordinal]

MSO[scattered]

MSO

Structure

/ \ Can we sepgrate
t]

Ofcut] WMSO these logics 7
MSO[finite,cut]

%

MSOJ[ordinal]

MSO[scattered]

MSO

Structure

/ \ Can we sepgrate
t]

Ofcut] WMSO these logics 7
MSO f'i'te cut] Can we characterize
VSOfordinal effectively these

\ logics 7
MSO[scattered]

MSO

An algebraic approacn:
O-mMonoId

Generalized concatenation

Generalized concatenation

~ Alinear ordering a
?

Generalized concatenation

~ Alinear ordering a a map from
?
‘//Q/Q o000 - o 0000 Q\O\O\‘OTO words

@ © ® ® © @

Generalized concatenation

~ Alinear ordering a a map from
. a to words

@ © ® ® © @

j generalized
~ | concatenation

. @ @ @ @ @ @

1EQ

..o 000-0—O0—O0—O0—O0—O@—0—0—000 ¢+ - - ¢ o o OOO~O—O——O——

Generalized concatenation

~ Alinear ordering a a map from
()
‘/O/O/O o000 - ® - eoo-o Q\Q\O\AO’[OWOI’C{S
U, v
generalized
concatenation

. @ @ @ @ @ @

1EQ

Said differently, this is a flattening operation : H : (A°)° — A°

O-MONOIdS

O-MONOIdS
A o-monoid (M,x) is a set M equipped 7T (H uz) - (H W(uz))

with a product = : M® = M that
satisfies generalized associativity: ATe? Ate!

O-MONOIAS «w-=a
A o-monoid (M,x) is a set M equipped
T (H uz) =T (H W(uz))

with a product = : M® = M that
satisfies generalized associativity: ATe? Ate!

O-MONOIAS (@) =a

A o-monoid (M,x) is a set M equipped
with a product : M® = M that T H U | =T H W(Uz)
satisfies generalized associativity: S’ Sle’

Example: (AO, H) s the free o-monoid generated by A.

O-MONOIAS (@) =a

A o-monoid (M,x) is a set M equipped
with a product &t : M° = M that ml [wi)=n]]m(u)

satisfies generalized associativity: ATe? Ate!

Example: (AO, H) s the free o-monoid generated by A.

Example: 1 if u consists only of 1’s
M={1,0} with: #(u) =< f if u has one but finitely many f’s, and no 0

0 otherwise

O-MONOIAS (@) =a

A o-monoid (M,x) is a set M equipped
with a product : M® = M that T H U | =T H W(Uz)

satisfies generalized associativity: ATe? Ate!

Example: (AO, H) s the free o-monoid generated by A.

Example: 1 if u consists only of 1’s
M={1,0} with: #(u) =< f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of o-monoid h is such that & <H u> = (H h(u¢)>

1€ 1€

O-MONOIAS «w-=a
A o-monoid (M,x) is a set M equipped
T (H uz) =T (H W(uz))

with a product = : M® = M that
satisfies generalized associativity: ATe? Ate!

Example: (AO, H) s the free o-monoid generated by A.

Example: 1 if u consists only of 1’s
M={1,0} with: #(u) =< f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of o-monoid h is such that & <H u> = (H h(u¢)>
1EQ (1ye’

Given a finite monoid M, a o-morphism h from A° to M, and FCM,
M,h,F recognizes {u e A° : h(u) € F'}

O-MONOIAS «w-=a
A o-monoid (M,x) is a set M equipped
T (H uz) =T (H 7T(u,,,)>

with a product = : M® = M that
satisfies generalized associativity: ATe? Ate!

Example: (AO, H) s the free o-monoid generated by A.

Example: 1 if u consists only of 1’s
M={1,0} with: #(u) =< f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of o-monoid h is such that & <H u> = (H h(u¢)>

1€ 1€

Given a finite monoid M, a o-morphism h from A° to M, and FCM,
M,h,F recognizes {u e A° : h(u) € F'}

Example: 1 if uw has no a’s
with F={1,f} h(u) = { f if v has finitely many a’s

0 ortherwise

M,h,F recognize
« finitely many a’'s »

Recognizability = definabillity

Recognizability = definabillity

Schutzenberger-Elgot-Buchi: A language of finite words is definable
INn monadic second-order logic it and only if it is recognizable by a
finite monoid.

~urthermore, there is a minimal such monoid: the syntactic monoid.

Recognizability = definabillity

Schutzenberger-Elgot-Buchi: A language of finite words is definable

INn monadic second-order logic it and only if it is recognizable by a
finite monoid.

—urthermore, there is a minimal such monoid: the syntactic monoid.

Theorem [Shelah75 & CCP11]: A language of countable words is
definable if and only if it is recognizable by a finite o-monoid.

Furthermore there is a syntactic oc-monoid.

Furthermore, finite o-monoids can be eftectively handled.

Effectiveness: induced operations

Effectiveness: induced operations

Unit: M
1 =m(e)

Effectiveness: induced operations

Unit: M Binary product: MxM—M
1 =m(e) a-b=m(ad)

Effectiveness: induced operations

Unit: M Binary product: MxM—M
1 =m(e) a-b=m(ad)

w-iteration: M—M
a“ =m7(aaa...)
N——

w

Effectiveness: induced operations

Unit: M Binary product: MxM—M
1 =m(e) a-b=m(ad)
w-iteration: M—M w*-iteration
a“ = m(aaa...) a“ =7(...aaq)
N—— ~—

w W *

Effectiveness: induced operations

shuffle n: P(M)—M

Unit: M Binary product: MxM—M
{a,b}" = w(perfectshuffle(a,b))
1 =m(e) a-b=m(ad)
w-iteration: M—M w*-iteration
a“ = m(aaa...) a“ =7(...aaq)
N—— ~—

w W *

Effectiveness: induced operations

shuffle n: P(M)—M

Unit: M Binary product: MxM—M
{a,b}" = w(perfectshuffle(a,b))
1 =mn(e) a-b=m(ab)
ababapb
w-iteration: M—M w*-iteration domain (Q,<)
a“ = 7(aaa...) a* =m(,..aaaq) every letter appears densely

w w (unique up to isomorphism)

Effectiveness: induced operations

shuffle n: P(M)—M

Unit: M Binary product: MxM—M
{a,b}" = w(perfectshuffle(a,b))
1 =mn(e) a-b=m(ab)
ababahb
w-iteration: M—M w*-iteration domain (Q,<)
a“ = 7(aaa...) a* =m(,..aaaq) every letter appears derjsely
w w (unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that:

every operations induced by a product satisty
equalities (A),

and
given 1,-,w,w*,n over some finite M satistying these

equalities, there Is a product m inducting them.

Effectiveness: induced operations

shuffle n: P(M)—M

Unit: M Binary product: MxM—M
{a,b}" = w(perfectshuffle(a,b))
1 =mn(e) a-b=m(ab)
ababahb
w-iteration: M—M w*-iteration domain (Q,<)
a“ = 7(aaa...) a* =m(,..aaaq) every letter appears derjsely
w w (unique up to isomorphism)

Theorem|[CCP11]: There are equalities (A) suchthat:| a-(b-c)=(a-b)-c

every operations induced by a product satisty (a™)* = a”
equalities (A), (a-b)Y=a-(b-a)”

and {a}7 = {a}"-a- {a)"
given 1,-,w,w*,n over some finite M satistying these |

equalities, there Is a product m inducting them.

Examples

« finitely many a’'s »

f 0
1 f 0
f f 0
O0Ir0 0 O

Examples

1 0
w | 1 0

{1 {1,71,{0,7)
n | 1 0

Examples

« finitely many a’'s »

f 0 1 f O 1 f O
1 f 0 w1 0 O w1t 0 O
f f f O * *
{1} {f! }!{O’ } h(a):f F_{_I f}
01000 nl1 o f(b)=1 ~th

« a’'s are left-closed »

1T abm2~ O 1T a bm2O©O 9=« .. .984a... »
11T ab m O wll a b 0 0 b=«..bbb... »
alaamm O m = « ...aaa...bbb... »
blb 0 b 0 0 T abmO 0=«**a*»
MmmOm 0O O w1l a b 0 0
0l oo O O

Characterizing logics

~irst order cannot detect gaps...

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bes&Carton13]: A language of countable scattered words is

definable in FO if and only if every idempotent is gap\insensitive.
N

€-€—~¢€ e -€ — €

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bes&Carton13]: A language of countable scattered words is

definable in FO if and only if every idempotent is gap\insensitive.
N

€-€—~¢€ e -€ — €

e osee-.: - seoss—s—s « |OOKkS @s » ~————— when sufficiently long.

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bés&Carton13]: A language of countable scattered words is
definable in FO if and only if every idempotent is gap insensitive.

N \
e-e—¢€ e’ e =e¢
« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bés&Carton13]: A language of countable scattered words is
definable in FO if and only if every idempotent is gap insensitive.

N \
e-e—¢€ e’ e =e¢
« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.
Proof. Take n such that a" is idempotent.

A" = (@) (@) = a- (@) (@) =

~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bés&Carton13]: A language of countable scattered words is
definable in FO if and only if every idempotent is gap insensitive.

N \
e-e—¢€ e’ e =e¢
« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.
Proof. Take n such that a" is idempotent.

A" = (@) (@) = a- (@) (@) =

Remark: The equation remains true but is not sufficient in general.

Weak monadic logic cannot detect
gaps... when in an infinite situation

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ »

e’ —=e e“* = e

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ »

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ »

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

8 e 8 e
@ O O O O O—O0—O0—0—00Q -+~
Whateveng/
we choose
8 e 8
O O Q Q O_OO@ ()().(H).() Q Q ()_().()(D

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

a f (1H) o
/\ /—\
€ & e e
o S S o e—eo—o—o0000 -

. 00

Whatever X
we choose g/

D
oM
oM

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

a f (IH) o
/\ /—\
€ e e e e
O O O O O —0—0—0000- - - =a-f-b

Whatever X
we choose g/

D
oM
oM

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

a f (IH) o
/\ /—\
€ e e e e
O O O O O —0—0—0000- - - =a-f-b

Whatever X
we choose g/

D
., 0
oM

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

ewze ew*ze

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

3 f (1H) o
% % g —0—0-000- - =a-f-b
Whatever X J
we choose ~/
e e e
O @ O—0

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

e’ —=e e“* = e

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

3 f (1H) o
% g g —0—0-000- - =a-f-b
Whatever X J
we choose ~/
e e e =a- f7f77 b
O O O—O *—0—0-000 - -
W Wk . - :Cl'f b

Weak monadic logic cannot detect
gaps... when in an infinite situation

[Bes&Carton]: A language of scattered words is definable in WMSO
if and only if all ordinal idempotents and every ordinal® idempotents

are gap insensitive. \ w

ewze ew*ze

IH: Assume « ¢(X) » recognized by a monoid satisfying the property.

3 f (1H) o
g % g —0—0-000- - =a-f-b
Whatever X J
we choose ~/
e e e =a- f7f77 b
O O O—O *—0—0-000 - -
W W k . - :Cl'f b

MSO[ordinal]
cannot see scattereq set

Lemma[C.&Sregjith A.V.]: Every formula of MSO[ordinal] has a syntactic o-
monoid such that every scattered idempotent is a shuffle idempotent.

ezewzew* 6:{6}77

MSO[ordinal]
cannot see scattereq set

Lemma[C.&Sregjith A.V.]: Every formula of MSO[ordinal] has a syntactic o-
monoid such that every scattered idempotent is a shuffle idempotent.

ezewzew* 6:{6}77

MSO|scattered]

Lemma[C.&Sreegjith A.V.]: Every formula of MSO|ordinal] has a syntactic o-
monoid such that every shuffle idempotent is shuffle simple.

For all K such that e = K,

and a such that e-a-e =e,
(KU{a})"=e.

The picture

every idempotent is

gap insensitive
aperiodic t/ \ ~—every ordinal and
O[cut]

WMSO ordinal* idempotent

\ / is gap insensitive

MSO[finite,cut] every scattered
‘ idempotent is a

MSO[ordinall \/ shuffle idempotent

‘ — _ ——every shuffle
MSO[scattered] idempotent is

‘ shuffle simple
MSO

The picture

every idempotent is

gap insensitive
aperiodic t/ \ ~—every ordinal and
O[cut]

WMSO ordinal* idempotent

\ / is gap insensitive

MSO[finite,cut] every scattered
% idempotent is a

MSO[ordinall \/ shuffle idempotent

‘ — _ ——every shuffle
MSO[scattered] idempotent is

‘ shuffle simple
MSO

The picture

every idempotent is

gap insensitive
aper|od|c/\ t/ \ —.every ordinal and
O|cut]

WMSO ordinal* idempotent

\ / IS gap insensitive

These equations MSO[finite,cut] every scattered
can be used to % idempotent is a

| huffle |
perform separation. MSOJordinal] \/ shuffle idempotent

‘ — _ ——every shuffle
MSO[scattered] idempotent is

‘ shuffle simple
MSO

The picture

every idempotent is

gap insensitive
aperiodic t/ \ ——every ordinal and
O[cut]

WMSO ordinal* idempotent

\ / IS gap insensitive

These equations MSO[finite,cut] every scattered
can be used to % idempotent is a

| huffle |
perform separation. MSOJordinal] \/ shuffle idempotent

Example: the syntactic ‘ Uff
o-monoid of ored] Coory snuitle
MSO[scattered] idempotent is

« |S scattered » ‘ .
contains a scattered shuffle simple
MSO

idempotent which is not
a shuffle idempotent.

[C.&Sreejith AV.]: The
following properties
characterize the logics:
(and these logics can
be separated)

Results

Every idempotent is
gap insensitive

Aperiodicity
Every ordinal or ordinal”
idempotent is gap insensitive

Every scattered idempotent
IS a shuffle idempotent

Every shuffle idempotent
IS shuftle simple

(V)
(V)

AN
AN
AN

AN
AN
AN

AN

To be continued...

