
Characterization of 
Logics on Infinite Linear 

Orderings
Thomas Colcombet 

ACTS 9-13 February 2015 
Chennai



Linear orderings 
Words 
Logics



Monadic Second-Order Logic



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y
In MSO, « is scattered »: no (induced) sub-ordering is dense



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is finite »: the first and last positions exist and are 
reachable one from the other by successor steps

In MSO, « is scattered »: no (induced) sub-ordering is dense



Monadic Second-Order Logic
Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is finite »: the first and last positions exist and are 
reachable one from the other by successor steps
In MSO, « is complete »: all subsets have a supremum

In MSO, « is scattered »: no (induced) sub-ordering is dense



History



History
Elgot - Büchi60 

MSO=reg (finite words) 
decidable



History
Elgot - Büchi60 

MSO=reg (finite words) 
decidable

[Büchi62]: ω-words 
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] 
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] 
over countable linear orderings



History
Elgot - Büchi60 

MSO=reg (finite words) 
decidable

[Büchi62]: ω-words 
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] 
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] 
over countable linear orderings

[Schützenberger65] 
[McNaughton&Papert71] 
FO-definable = aperiodic

Many logics…



History
Elgot - Büchi60 

MSO=reg (finite words) 
decidable

[Büchi62]: ω-words 
decidable

(Q,<): [Rabin69]

(Q,<): [Shelah75] 
(R,<): [Shelah75] (undecidable)

MSO=recognizable [Carton,C.,Puppis] 
over countable linear orderings

[Schützenberger65] 
[McNaughton&Papert71] 
FO-definable = aperiodic

Many logics…

?



Linear orderings and infinite words



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

finite
a bc b a a



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

finite
a bc b a a



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

finite
a bc b a a

domain ω* (-N,<)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

domain ω* (-N,<)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

domain ω* (-N,<)

scattered

(no dense sub-ordering)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a perfect shuffle {a,b}

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)domain ω* (-N,<)

scattered

(no dense sub-ordering)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

complete

perfect shuffle {a,b}
b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)domain ω* (-N,<)

scattered

(no dense sub-ordering)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

incomplete

complete

perfect shuffle {a,b}
b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)domain ω* (-N,<)

scattered

(no dense sub-ordering)



Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

incomplete

complete

perfect shuffle {a,b}
b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)domain ω* (-N,<)

scattered

(no dense sub-ordering)
gap 

= natural Dedekind cut



Restricting the set quantifier

singleton sets

cuts

finite sets

finite sets and cuts

well ordered sets

scattered sets

first-order logic (FO)

first-order logic with cuts (FO[cut])

weak monadic second-order logic (WMSO)

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

Range of 
set quantifiers Name of the logic

« is dense », « has length k »

« is well ordered », « is complete », « is finite »

« is finite », « has even length »

« there is an even number of gaps »

« is scattered »

…

all sets MSO
« there are two sets ‘dense in each other’ »



Structure
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO



Structure
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate 
these logics ?



=

Structure
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate 
these logics ?



=

Structure
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate 
these logics ?

Can we characterize 
effectively these 

logics ?



An algebraic approach: 
○-monoid



Generalized concatenation



Generalized concatenation
A linear ordering α

i



Generalized concatenation
a map from 
α to words

ui

A linear ordering α
i



Generalized concatenation

generalized 
concatenation

Y

i2↵

ui

a map from 
α to words

ui

A linear ordering α
i



Generalized concatenation

generalized 
concatenation

Y

i2↵

ui

a map from 
α to words

ui

A linear ordering α
i

Said differently, this is a flattening operation :
Y

: (A�)� ! A�



○-monoids



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!
⇡(a) = a



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!

Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

⇡(a) = a



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!

Example: 
M={1,f,0} with: ⇡(u) =

8
><

>:

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

⇡(a) = a



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!

Example: 
M={1,f,0} with: ⇡(u) =

8
><

>:

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of ○-monoid h is such that h

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

h(ui)

!

Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

⇡(a) = a



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!

Example: 
M={1,f,0} with: ⇡(u) =

8
><

>:

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of ○-monoid h is such that h

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

h(ui)

!

Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

Given a finite monoid M, a ○-morphism h from A° to M, and F⊆M,  
M,h,F recognizes {u 2 A� : h(u) 2 F}

⇡(a) = a



○-monoids
A ○-monoid (M,𝛑) is a set M equipped 
with a product 𝛑 : M° → M that 
satisfies generalized associativity:

⇡

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

⇡(ui)

!

Example: 
M={1,f,0} with: ⇡(u) =

8
><

>:

1 if u consists only of 1’s

f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of ○-monoid h is such that h

 
Y

i2↵

ui

!
= ⇡

 
Y

i2↵

h(ui)

!

Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

Given a finite monoid M, a ○-morphism h from A° to M, and F⊆M,  
M,h,F recognizes {u 2 A� : h(u) 2 F}

Example: 
with F={1,f} h(u) =

8
><

>:

1 if u has no a’s

f if u has finitely many a’s

0 ortherwise

M,h,F recognize 
« finitely many a’s »

⇡(a) = a



Recognizability = definability



Recognizability = definability

Schützenberger-Elgot-Büchi: A language of finite words is definable 
in monadic second-order logic if and only if it is recognizable by a 
finite monoid.  
Furthermore, there is a minimal such monoid: the syntactic monoid.



Recognizability = definability

Theorem [Shelah75 & CCP11]: A language of countable words is 
definable if and only if it is recognizable by a finite ○-monoid. 
Furthermore there is a syntactic ○-monoid. 
Furthermore, finite ○-monoids can be effectively handled.

Schützenberger-Elgot-Büchi: A language of finite words is definable 
in monadic second-order logic if and only if it is recognizable by a 
finite monoid.  
Furthermore, there is a minimal such monoid: the syntactic monoid.



Effectiveness: induced operations



Effectiveness: induced operations
Unit: M
1 = ⇡(")



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)

shuffle η: P(M)→M
{a, b}⌘ = ⇡(perfectshu✏e(a, b))



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)

shuffle η: P(M)→M
{a, b}⌘ = ⇡(perfectshu✏e(a, b))

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)

shuffle η: P(M)→M
{a, b}⌘ = ⇡(perfectshu✏e(a, b))

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that: 

every operations induced by a product satisfy 
equalities (A), 

and 
given 1,∙,ω,ω*,η over some finite M satisfying these 
equalities, there is a product π inducting them.



Effectiveness: induced operations
Unit: M
1 = ⇡(")

Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)

shuffle η: P(M)→M
{a, b}⌘ = ⇡(perfectshu✏e(a, b))

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that: 

every operations induced by a product satisfy 
equalities (A), 

and 
given 1,∙,ω,ω*,η over some finite M satisfying these 
equalities, there is a product π inducting them.

a · (b · c) = (a · b) · c
(an)! = a!

(a · b)! = a · (b · a)!

{a}⌘ = {a}⌘ · a · {a}⌘

...



Examples



Examples
« finitely many a’s »

1
f
0

1 f 0
1 f 0
f
0

f
0

0

0

1 f 0
1 00

1 f 0
1 00ω ω*

{1} {f,*},{0,*}
1 0η

h(a)=f 
f(b)=1 F={1,f}



Examples
« finitely many a’s »

« a’s are left-closed »

1
f
0

1 f 0
1 f 0
f
0

f
0

0

0

1 f 0
1 00

1 f 0
1 00ω ω*

{1} {f,*},{0,*}
1 0η

h(a)=f 
f(b)=1 F={1,f}

1 a b m 0
1
a
b
m
0

1 a b m 0
aa

b
m
0

b
m

0
0 m

m 0
0
0
00

0
0
00

1 a b m 0
ω 1 a b 0 0

1 a b m 0
ω* 1 a b 0 0

a = « …aaa… » 
b = « …bbb… » 
m = « …aaa…bbb… » 
0 = « *b*a* »



Characterizing logics



First order cannot detect gaps…



First order cannot detect gaps…
Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.



First order cannot detect gaps…
Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

an = (an)! · (an)!⇤ = a · (an)! · (an)!⇤ = an+1

anProof: Take n such that       is idempotent.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Remark: The equation remains true but is not sufficient in general.

an = (an)! · (an)!⇤ = a · (an)! · (an)!⇤ = an+1

anProof: Take n such that       is idempotent.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



Weak monadic logic cannot detect 
gaps… when in an infinite situation



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose

a f (IH) b

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose

a f (IH) b

= a · f · b

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose

a f (IH) b

= a · f · b

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose IH

a f (IH) b

= a · f · b

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose IH

a f (IH) b

= a · f · b

=a · f! · f!⇤ · b
=a · f · b

e! · e!⇤

e



Weak monadic logic cannot detect 
gaps… when in an infinite situation

[Bès&Carton]: A language of scattered words is definable in WMSO 
if and only if all ordinal idempotents and every ordinal* idempotents 
are gap insensitive.

e! = e e!⇤ = e

IH: Assume « φ(X) » recognized by a monoid satisfying the property.

e e e e

e e e

Whatever X 
we choose IH

a f (IH) b

= a · f · b

=a · f! · f!⇤ · b
=a · f · b

e! · e!⇤

e



MSO[ordinal] 
cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every scattered idempotent is a shuffle idempotent.

e = {e}⌘e = e! = e!⇤



MSO[ordinal] 
cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every scattered idempotent is a shuffle idempotent.

e = {e}⌘e = e! = e!⇤

MSO[scattered]
Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every shuffle idempotent is shuffle simple.

For all K such that e = K⌘
,

and a such that e · a · e = e,
(K [ {a})⌘ = e.



The picture
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shuffle idempotent

every shuffle 
idempotent is  
shuffle simple



=

The picture
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shuffle idempotent

every shuffle 
idempotent is  
shuffle simple



=

The picture
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shuffle idempotent

every shuffle 
idempotent is  
shuffle simple

These equations 
can be used to 
perform separation.



=

The picture
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shuffle idempotent

every shuffle 
idempotent is  
shuffle simple

These equations 
can be used to 
perform separation.
Example: the syntactic 
○-monoid of  
     « is scattered » 
contains a scattered 
idempotent which is not 
a shuffle idempotent.



Results

Every idempotent is 
gap insensitive

Aperiodicity

Every ordinal or ordinal* 
idempotent is gap insensitive

Every scattered idempotent 
is a shuffle idempotent

Every shuffle idempotent 
is shuffle simple

FO FO
[c

ut]
W

MSO
MSO

[fin
ite

,cu
t] 

=M
SO

[o
rd

ina
l]

MSO
[sc

att
ere

d]

✔✔✔✔✔

✔ ✔ ✔ ✔

✔

✔

(❨✔)❩

(❨✔)❩

✔

[C.&Sreejith A.V.]: The 
following properties 
characterize the logics: 
(and these logics can 
be separated)



To be continued…


