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Monadic second-order logic (MSO) 
 - quantify over elements x,y,… 
 - quantify over sets of elements X,Y,… (monadic variables) 
 - use there relation predicates of the ambient signature 
 - Boolean connectives

For instance over the di-graph signature, « t is reachable from s »: 
   every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

In MSO, « is finite »: the first and last positions exist and are 
reachable one from the other by successor steps
In MSO, « is complete »: all subsets have a supremum

In MSO, « is scattered »: no (induced) sub-ordering is dense
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[Schützenberger65] 
[McNaughton&Papert71] 
FO-definable = aperiodic

Many logics…

?
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Linear orderings and infinite words
Linear ordering: α=(L,<) with < total (here L is always countable)
(Countable) word: map u : α→A (A alphabet)

domain ω (N,<)

well ordered domain (ordinal)

ω ω
ω times

finite
a bc b a a

incomplete

complete

perfect shuffle {a,b}
b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)domain ω* (-N,<)

scattered

(no dense sub-ordering)
gap 

= natural Dedekind cut



Restricting the set quantifier

singleton sets

cuts

finite sets

finite sets and cuts

well ordered sets

scattered sets

first-order logic (FO)

first-order logic with cuts (FO[cut])

weak monadic second-order logic (WMSO)

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

Range of 
set quantifiers Name of the logic

« is dense », « has length k »

« is well ordered », « is complete », « is finite »

« is finite », « has even length »

« there is an even number of gaps »

« is scattered »

…

all sets MSO
« there are two sets ‘dense in each other’ »
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Structure
FO

FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

Can we separate 
these logics ?

Can we characterize 
effectively these 

logics ?
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generalized 
concatenation

Y

i2↵

ui

a map from 
α to words

ui

A linear ordering α
i

Said differently, this is a flattening operation :
Y

: (A�)� ! A�
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Example:
⇣
A�,

Y⌘
is the free ○-monoid generated by A.

Given a finite monoid M, a ○-morphism h from A° to M, and F⊆M,  
M,h,F recognizes {u 2 A� : h(u) 2 F}

Example: 
with F={1,f} h(u) =

8
><

>:

1 if u has no a’s

f if u has finitely many a’s

0 ortherwise

M,h,F recognize 
« finitely many a’s »

⇡(a) = a
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Recognizability = definability

Theorem [Shelah75 & CCP11]: A language of countable words is 
definable if and only if it is recognizable by a finite ○-monoid. 
Furthermore there is a syntactic ○-monoid. 
Furthermore, finite ○-monoids can be effectively handled.

Schützenberger-Elgot-Büchi: A language of finite words is definable 
in monadic second-order logic if and only if it is recognizable by a 
finite monoid.  
Furthermore, there is a minimal such monoid: the syntactic monoid.
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Binary product: M×M→M
a · b = ⇡(ab)

ω-iteration: M→M
a! = ⇡(aaa . . .| {z }

!

)

ω*-iteration
a! = ⇡(. . . aaa| {z }

!⇤

)

shuffle η: P(M)→M
{a, b}⌘ = ⇡(perfectshu✏e(a, b))

b aa b a b

domain (Q,<) 
every letter appears densely 
(unique up to isomorphism)

Theorem[CCP11]: There are equalities (A) such that: 

every operations induced by a product satisfy 
equalities (A), 

and 
given 1,∙,ω,ω*,η over some finite M satisfying these 
equalities, there is a product π inducting them.

a · (b · c) = (a · b) · c
(an)! = a!

(a · b)! = a · (b · a)!

{a}⌘ = {a}⌘ · a · {a}⌘

...
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f
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Examples
« finitely many a’s »

« a’s are left-closed »

1
f
0

1 f 0
1 f 0
f
0

f
0

0

0

1 f 0
1 00

1 f 0
1 00ω ω*

{1} {f,*},{0,*}
1 0η

h(a)=f 
f(b)=1 F={1,f}

1 a b m 0
1
a
b
m
0

1 a b m 0
aa

b
m
0

b
m

0
0 m

m 0
0
0
00

0
0
00

1 a b m 0
ω 1 a b 0 0

1 a b m 0
ω* 1 a b 0 0

a = « …aaa… » 
b = « …bbb… » 
m = « …aaa…bbb… » 
0 = « *b*a* »



Characterizing logics



First order cannot detect gaps…



First order cannot detect gaps…
Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.



First order cannot detect gaps…
Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

an = (an)! · (an)!⇤ = a · (an)! · (an)!⇤ = an+1

anProof: Take n such that       is idempotent.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.

e! · e!⇤ = ee · e = e



First order cannot detect gaps…

« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.

Theorem[Schützenberger65,McNauthon&Papert71]: A language of 
finite words is definable in FO if and only if it is aperiodic.

Remark: The equation remains true but is not sufficient in general.

an = (an)! · (an)!⇤ = a · (an)! · (an)!⇤ = an+1

anProof: Take n such that       is idempotent.

Theorem [Bès&Carton13]: A language of countable scattered words is 
definable in FO if and only if every idempotent is gap insensitive.
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MSO[ordinal] 
cannot see scattered set

Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every scattered idempotent is a shuffle idempotent.

e = {e}⌘e = e! = e!⇤
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Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every scattered idempotent is a shuffle idempotent.

e = {e}⌘e = e! = e!⇤

MSO[scattered]
Lemma[C.&Sreejith A.V.]: Every formula of MSO[ordinal] has a syntactic ○-
monoid such that every shuffle idempotent is shuffle simple.

For all K such that e = K⌘
,

and a such that e · a · e = e,
(K [ {a})⌘ = e.
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The picture
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FO[cut] WMSO

MSO[finite,cut]

MSO[ordinal]

MSO[scattered]

MSO

every idempotent is 
gap insensitive

aperiodic every ordinal and 
ordinal* idempotent 
is gap insensitive

every scattered  
idempotent is a 
shuffle idempotent

every shuffle 
idempotent is  
shuffle simple

These equations 
can be used to 
perform separation.
Example: the syntactic 
○-monoid of  
     « is scattered » 
contains a scattered 
idempotent which is not 
a shuffle idempotent.



Results

Every idempotent is 
gap insensitive

Aperiodicity

Every ordinal or ordinal* 
idempotent is gap insensitive

Every scattered idempotent 
is a shuffle idempotent

Every shuffle idempotent 
is shuffle simple
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✔✔✔✔✔

✔ ✔ ✔ ✔

✔

✔

(❨✔)❩

(❨✔)❩

✔

[C.&Sreejith A.V.]: The 
following properties 
characterize the logics: 
(and these logics can 
be separated)



To be continued…


