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Monadic second-order logic (MSO)

- quantity over elements x,y,...

- quantify over sets of elements X,Y,... (monadic variables)
- use there relation predicates of the ambient signature

- Boolean connectives

For instance over the di-graph signature, « t is reachable from s »:
every set containing s and closed under edge relation also contains t.

Words signature: binary order + predicates for each letter.
In FO, « is dense »: for all x<y there is some z such that x<z<y

n MSO, « Is scattered »: no (induced) sub-ordering is dense

n MSO, « is finite »: the first and last positions exist and are
reachable one from the other by successor steps

In MSO, « is complete »: all subsets have a supremum
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Linear orderings and infinite words

Linear ordering: a=(L,<) with < total (here L is always countable)
(Countable) word: map u : a—A (A alphabet)

i ;'Q't@eg ) oerfect shuffle {a,b)
T .ababab.
domain w (N, <) domain (Q,<)
every letter appears densely
domain w* (-N,<) (unique up to isomorphism)
well ordered domain (ordinal) complete
W w |
W times iIncomplete

scattered (
gap

= natural Dedekind cut

(no dense sub-ordering)



Restricting the set quantifier

Range of

set quantifiers Name of the logic

first-order logic (FO)

singleton sets « is dense », « has length k »
first-order logic with cuts (FOl[cut])
cuts « Is well ordered », « is complete », « is finite »

. weak monadic second-order logic (WMSO)
finite sets « is finite », « has even length »

MSO[finite,cut]
« there is an even number of gaps »

MSO[ordinal]

finite sets and cuts

well ordered sets

MSQO[scattered]
« |S scattered »

MSO
« there are two sets ‘dense in each other’ »

scattered sets

all sets
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Structure

/ \ Can we sepgrate
t]

Ofcut] WMSO these logics 7
MSO f'i'te cut] Can we characterize
VSOfordinal effectively these

\ logics 7
MSO[scattered]

MSO



An algebraic approacn:
O-mMonoId



Generalized concatenation



Generalized concatenation

~ Alinear ordering a
?



Generalized concatenation

~ Alinear ordering a a map from
?
‘//Q/Q o000 - o 0000 Q\O\O\‘OTO words

@ © ® ® © @




Generalized concatenation

~ Alinear ordering a a map from
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Generalized concatenation

~ Alinear ordering a a map from
()
‘/O/O/O o000 - ® - eoo-o Q\Q\O\AO’[OWOI’C{S
U, v
generalized
concatenation

. @ @ @ @ @ @

1EQ

Said differently, this is a flattening operation : H : (A°)° — A°
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O-MONOIAS  «w-=a
A o-monoid (M,x) is a set M equipped
T (H uz) =T (H 7T(u,,,)>

with a product = : M® = M that
satisfies generalized associativity: ATe? Ate!

Example: (AO, H) s the free o-monoid generated by A.

Example: 1 if u consists only of 1’s
M={1,0} with: #(u) =< f if u has one but finitely many f’s, and no 0

0 otherwise

A morphism of o-monoid h is such that & <H u> = (H h(u¢)>

1€ 1€

Given a finite monoid M, a o-morphism h from A° to M, and FCM,
M,h,F recognizes {u e A° : h(u) € F'}

Example: 1 if uw has no a’s
with F={1,f}  h(u) = { f if v has finitely many a’s

0 ortherwise

M,h,F recognize
« finitely many a’'s »
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Recognizability = definabillity

Schutzenberger-Elgot-Buchi: A language of finite words is definable

INn monadic second-order logic it and only if it is recognizable by a
finite monoid.

—urthermore, there is a minimal such monoid: the syntactic monoid.

Theorem [Shelah75 & CCP11]: A language of countable words is
definable if and only if it is recognizable by a finite o-monoid.

Furthermore there is a syntactic oc-monoid.

Furthermore, finite o-monoids can be eftectively handled.
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Effectiveness: induced operations

shuffle n: P(M)—M

Unit: M Binary product: MxM—M
{a,b}" = w(perfectshuffle(a,b))
1 =mn(e) a-b=m(ab)
ababahb
w-iteration: M—M w*-iteration domain (Q,<)
a“ = 7(aaa...) a* =m(,..aaaq) every letter appears derjsely
w w (unique up to isomorphism)

Theorem|[CCP11]: There are equalities (A) suchthat:| a-(b-c)=(a-b)-c

every operations induced by a product satisty (a™)* = a”
equalities (A), (a-b)Y=a-(b-a)”

and {a}7 = {a}"-a- {a)"
given 1,-,w,w*,n over some finite M satistying these |

equalities, there Is a product m inducting them.
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« finitely many a’'s »

f 0
1 f 0
f f 0
O0Ir0 0 O

Examples

1 0
w | 1 0

{1 {1,71,{0,7)
n | 1 0




Examples

« finitely many a’'s »

f 0 1 f O 1 f O
1 f 0 w1 0 O w1t 0 O
f f f O * *
{1} {f! }!{O’ } h(a):f F_{_I f}
01000 nl1 o f(b)=1 ~th

« a’'s are left-closed »

1T abm2~ O 1T a bm2O©O 9=« .. .984a... »
11T ab m O wll a b 0 0 b=«..bbb... »
alaamm O m = « ...aaa...bbb... »
blb 0 b 0 0 T abmO 0=«**a*»
MmmOm 0O O w1l a b 0 0
0l oo O O
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~irst order cannot detect gaps...

Theorem|Schutzenbergere5,McNauthon&Papert71]: A language of
finite words is definable in FO if and only if it is aperiodic.

Theorem [Bés&Carton13]: A language of countable scattered words is
definable in FO if and only if every idempotent is gap insensitive.

N \
e-e—¢€ e’ e =e¢
« looks as » when sufficiently long.

Remark: « All idempotents are gap insensitive » implies aperiodicity.
Proof. Take n such that a" is idempotent.

A" = (@) (@) = a- (@) (@) =

Remark: The equation remains true but is not sufficient in general.
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MSO[ordinal]
cannot see scattereq set

Lemma[C.&Sregjith A.V.]: Every formula of MSO[ordinal] has a syntactic o-
monoid such that every scattered idempotent is a shuffle idempotent.

ezewzew* 6:{6}77

MSO|scattered]

Lemma[C.&Sreegjith A.V.]: Every formula of MSO|ordinal] has a syntactic o-
monoid such that every shuffle idempotent is shuffle simple.

For all K such that e = K,

and a such that e-a-e =e,
(KU{a})"=e.
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The picture

every idempotent is

gap insensitive
aperiodic t/ \ ——every ordinal and
O[cut]

WMSO  ordinal* idempotent

\ / IS gap insensitive

These equations MSO[finite,cut] every scattered
can be used to % idempotent is a

| huffle |
perform separation. MSOJordinal] \/ shuffle idempotent

Example: the syntactic ‘ Uff
o-monoid of ored] Coory snuitle
MSO[scattered] idempotent is

« |S scattered » ‘ .
contains a scattered shuffle simple
MSO

idempotent which is not
a shuffle idempotent.



[C.&Sreejith AV.]: The
following properties
characterize the logics:
(and these logics can
be separated)

Results

Every idempotent is
gap insensitive

Aperiodicity
Every ordinal or ordinal”
idempotent is gap insensitive

Every scattered idempotent
IS a shuffle idempotent

Every shuffle idempotent
IS shuftle simple

(V)
(V)

AN
AN
AN

AN
AN
AN

AN




To be continued...



