Towards a Regular Theory of Parameterized Concurrent Systems

Benedikt Bollig

Laboratoire Spécification et Vérification ENS Cachan & CNRS, France

Reports on joint works with Paul Gastin, Akshay Kumar, and Jana Schubert.

ACTS 2015 Chennai Mathematical Institute The verification problem for parmeterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

The verification problem for parmeterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic
- Nonemptiness

We are looking for «robust» models of parameterized systems.

The verification problem for parmeterized systems:

«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic
- Nonemptiness

We are looking for «robust» models of parameterized systems.

There have been robust models for fixed process architectures:

- Thomas: *On logical definability of trace languages.* ASMICS 1990.
- Henriksen-Mukund-Narayan Kumar-Sohoni-Thiagarajan: *A Theory of Regular MSC Languages.* I&C 2005.
- Genest-Kuske-Muscholl: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. I&C 2006.

finite automaton

finite automaton

determinization

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

 $\forall x(a(x) \to \exists y(\mathsf{succ}(x,y) \land b(y)))$

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

 $\forall x(a(x) \to \exists y(\mathsf{succ}(x,y) \land b(y)))$

Proof:

free variables — extended alphabet

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

 $\forall x(a(x) \to \exists y(\mathsf{succ}(x,y) \land b(y)))$

Proof:

- free variables extended alphabet
- existential quantification projection

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

 $\forall x(a(x) \to \exists y(\mathsf{succ}(x,y) \land b(y)))$

Proof:

- free variables extended alphabet
- existential quantification projection
- negation complementation

Fir Outline ata

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

 $\forall x(a(x) \to \exists y(\mathsf{succ}(x,y) \land b(y)))$

Proof:

- free variables extended alphabet
- existential quantification projection
- negation complementation

non-fixed & unbounded

non-fixed & unbounded

A PCA is given by:

- finite automaton over $\{l, r\} \times \{!, ?\} \times Msg$ (here: $Msg = \{0, 1\}$)

A PCA is given by:

- finite automaton over $\{l, r\} \times \{!, ?\} \times Msg$ (here: $Msg = \{0, 1\}$)

A PCA is given by:

- finite automaton over $\{l, r\} \times \{!, ?\} \times Msg$ (here: $Msg = \{0, 1\}$)

A PCA is given by:

- finite automaton over $\{l, r\} \times \{!, ?\} \times Msg$ (here: $Msg = \{0, 1\}$)

A PCA is given by:

- finite automaton over $\{l, r\} \times \{!, ?\} \times Msg$ (here: $Msg = \{0, 1\}$)

5

L

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Proof:

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Proof:

• Behaviors encode grids.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Theorem [Emerson-Namjoshi 2003]: Emptiness is undecidable for PCAs over rings (even token-passing systems, unless |Msg| = 1).

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Theorem Emptines (even tok	Context-Bounded Model Checking of Concurrent Software	
	Shaz Qadeer and Jakob Rehof	

Idea: Every process is contrained to a bounded number of contexts.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results. **Idea:** Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Idea: Every process is contrained to a bounded number of contexts. There are several possible definitions of a context that lead to positive results.

Here: Process only sends XOR only receives from one fixed neighbor.

3-bounded
Context-Bounded PCAs

Definition: A PCA is *k*-bounded if the finite automaton restricts to *k* contexts.

Context-Bounded PCAs

2-bounded PCA

Definition: A PCA is *k*-bounded if the finite automaton restricts to *k* contexts.

Context-Bounded PCAs

2-bounded PCA

Definition: A PCA is *k*-bounded if the finite automaton restricts to *k* contexts.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]: For every bounded PCA \mathcal{A} , there is a PCA \mathcal{B} such that $L(\mathcal{B}) = \overline{L(\mathcal{A})}$.

nondeterminism

k-bounded

disambiguation every behavior has a unique run

complementation

nondeterminism

k-bounded

disambiguation every behavior has a unique run

complementation

k-bounded

k-bounded

Powerset construction not applicable due to message contents.

k-bounded

Powerset construction not applicable due to message contents.

Disambiguation through summaries:

- Alur-Madhusudan: *Visibly pushdown languages.* STOC 2004.
- La Torre-Madhusudan-Parlato: *The language theory of bounded context switching.* LATIN 2010.
- La Torre-Napoli-Parlato: Scope-bounded pushdown languages. DLT 2014.

• Every process traverses a bounded number of zones.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.
- Sending processes deterministically compute summaries for zones.
- Acceptance condition checks if summaries correspond to accepting run.

Logical Characterization of Context-Bounded PCAs

The Logic:

MSO logic over graphs, including process nodes and event nodes.

Logical Characterization of Context-Bounded PCAs

The Logic:

MSO logic over graphs, including process nodes and event nodes.

Logical Characterization of Context-Bounded PCAs

The Logic:

MSO logic over graphs, including process nodes and event nodes.

Corollary [B.-Gastin-Kumar; FSTTCS 2014]:

For every *bounded* set *L* of behaviors, the following are equivalent:

- \circ *L* is recognized by some PCA.
- \circ L is definable in MSO logic.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of **all topologies** over a fixed set of ports. With 4 ports, this captures **rings**, **binary trees**, **and grids**.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of **all topologies** over a fixed set of ports. With 4 ports, this captures **rings**, **binary trees**, **and grids**.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of **all topologies** over a fixed set of ports. With 4 ports, this captures **rings**, **binary trees**, **and grids**.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

Context-bounded MSO model checking is decidable over rings.

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$; MSO formula φ Question: $M \models \varphi$ for all k-bounded $M \in L(\mathcal{A})$?

Context-Bounded Model Checking

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:

Context-bounded MSO model checking is decidable over rings.

Input:	PCA \mathcal{A} ; $\ k \in \mathbb{N}$; MSO formula $arphi$
Question:	$M \models \varphi$ for all k-bounded $M \in L(\mathcal{A})$?

Theorem [B.-Gastin-Schubert; RP 2014]:

Context-bounded nonemptiness checking over rings is PSPACE-complete when the acceptance condition is presented as a finite automaton.

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Finite automaton guesses local states
& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Input:PCA \mathcal{A} ; $k \in \mathbb{N}$ Question:Does $L(\mathcal{A})$ contain some k-bounded behavior?

Theorem [B.-Gastin-Schubert; RP 2014]:

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
 - = synchronization

Theorem [B.-Gastin-Schubert 2014]:

- \rightarrow = strict precedence
- = synchronization

Theorem [B.-Gastin-Schubert 2014]:

strict cycle \implies run is not accepting

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

Theorem [B.-Gastin-Schubert 2014]:

no strict cycle \implies run is accepting

Theorem [B.-Gastin-Schubert 2014]:

no strict cycle \implies run is accepting

Theorem [B.-Gastin-Schubert 2014]:

Theorem:

Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:

Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Theorem:

Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Corollary:

Context-bounded MSO model checking is decidable over rings and trees.
Theorem:

Context-bounded PCAs are **complementable** and expressively equivalent to **MSO logic**.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Corollary:

Context-bounded MSO model checking is decidable over rings and trees.

Context-bounded PCAs form a robust automata model.

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Franklin's leader-election protocol (1982)

- Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.

Franklin's leader-election protocol (1982)

- Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.

Franklin's leader-election protocol (1982)

- Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.
- MSO can trace back origin of unique process identifiers (pids).

Franklin's leader-election protocol (1982)

- Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.
- MSO can trace back origin of unique process identifiers (pids).

Franklin's leader-election protocol (1982)

- Distributed algorithms often proceed in rounds/contexts.
- Number of rounds is sometimes logarithmic in the number of processes.
- MSO can trace back origin of unique process identifiers (pids).
- Underapproximate verification of distributed algorithms that send and compare pids.

Theorem [B.; CSL-LICS 2014]:

Let T be any of the following topology classes: rings, grids, binary trees.

Theorem [B.; CSL-LICS 2014]:

Let T be any of the following topology classes: rings, grids, binary trees.

For every set L of behaviors over a topology from T the following are equivalent:

- \circ *L* is recognized by some weak PCA.
- \circ L is definable in weak EMSO logic (projection of weak-FO-definable language).

Theorem [B.; CSL-LICS 2014]:

Let T be any of the following topology classes: rings, grids, binary trees.

For every set L of behaviors over a topology from T the following are equivalent:

- \circ *L* is recognized by some weak PCA.
- $\sim L$ is definable in weak EMSO logic (projection of weak-FO-definable language).

Proof uses [Schwentick-Barthelmann 1999] & [Genest-Kuske-Muscholl 2006].

• Topologies of unbounded degree (unranked trees, stars, ...)

- Temporal logics and efficient model checking
- Split-width for parameterized systems
 [Aiswarya-Gastin-Narayan Kumar 2012]

• Topologies of unbounded degree (unranked trees, stars, ...)

- Temporal logics and efficient model checking
- Split-width for parameterized systems
 [Aiswarya-Gastin-Narayan Kumar 2012]

Thank You!