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In this talk, we study language-theoretic questions / expressiveness:!

!
!
!

We are looking for «robust» models of parameterized systems.

Complementation!
Equivalent characterization in terms of MSO logic!
Nonemptiness

There have been robust models for fixed process architectures:!
Thomas: On logical definability of trace languages. ASMICS 1990. 
Henriksen-Mukund-Narayan Kumar-Sohoni-Thiagarajan: A Theory of Regular MSC Languages. I&C 2005. 
Genest-Kuske-Muscholl: A Kleene theorem and model checking algorithms for existentially bounded communicating 
automata. I&C 2006.
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A PCA is given by:!
finite automaton over                                     (here:                    ) !
acceptance condition
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Remark:!
Behavior abstracts away message contents from!
(like states, or stack symbols in pushdown automata).

Msg = {0, 1}

rendez-vous               
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Disambiguation through summaries:!
Alur-Madhusudan: Visibly pushdown languages. STOC 2004. 
La Torre-Madhusudan-Parlato: The language theory of bounded context switching. LATIN 2010. 
La Torre-Napoli-Parlato: Scope-bounded pushdown languages. DLT 2014.
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Corollary [B.-Gastin-Kumar; FSTTCS 2014]:!
For every bounded set L of behaviors, the following are equivalent:!

L is recognized by some PCA.!
L is definable in MSO logic.

The Logic:!
MSO logic over graphs, including process nodes and event nodes.

12

Logical Characterization of Context-Bounded PCAs       



Topologies of Bounded Degree     

Complementation and MSO characterization hold wrt. the class of all  topologies 
over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

lr rr l l
rl

ring

13



Topologies of Bounded Degree     

Complementation and MSO characterization hold wrt. the class of all  topologies 
over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

lr rr l l
rl

ring

l r

tree

l r r

u

u

u

u u

13



Topologies of Bounded Degree     

Complementation and MSO characterization hold wrt. the class of all  topologies 
over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

lr rr l l
rl

ring

l r

tree

l r r

u

u

u

u u

lr rr l l

lr rr l l

lr rr l l

grid

u u u u

u u u u

d d d d

d d d d

13



Context-Bounded Model Checking     

14

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:!
Context-bounded MSO model checking is decidable over rings.

Input: PCA A ; k 2 N ; MSO formula j

Question: M |= j for all k-bounded M 2 L(A) ?



Context-Bounded Model Checking     

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete!
when the acceptance condition is presented as a finite automaton.

14

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:!
Context-bounded MSO model checking is decidable over rings.

Input: PCA A ; k 2 N ; MSO formula j

Question: M |= j for all k-bounded M 2 L(A) ?

Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Context-Bounded Emptiness Problem

Theorem [B.-Gastin-Schubert; RP 2014]:!
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

15

2 Summary

Context-Bounded Nonemptiness Problem Input: PCA A ; k 2 N

Question: Does L(A) contain some k-bounded behavior ?



Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



= strict precedence

= synchronization

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



strict cycle =) run is not accepting

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

no strict cycle =) run is accepting

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

15

Context-Bounded Nonemptiness Problem



qright left right left right left right left right leftq

right
left

q q qq̄

no strict cycle =) run is accepting

Theorem [B.-Gastin-Schubert 2014]:!
Context-bounded emptiness checking over rings is PSPACE-complete.

Finite automaton guesses local states 
& checks membership in summaries.

However, summaries may match 
locally, but not give rise to an 
accepting run!

          Check causal dependencies.

Gives PSPACE procedure.

15

Context-Bounded Nonemptiness Problem
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Theorem:!
Context-bounded nonemptiness checking is decidable over rings and trees.

16

Corollary:!
Context-bounded MSO model checking is decidable over rings and trees.

Theorem:!
Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Context-bounded PCAs form a robust automata model.
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Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes.
MSO can trace back origin of unique process identifiers (pids).
Underapproximate verification of distributed algorithms that send and compare pids.
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Proof uses [Schwentick-Barthelmann 1999] & [Genest-Kuske-Muscholl 2006].
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Temporal logics and efficient model checking

Split-width for parameterized systems!
      [Aiswarya-Gastin-Narayan Kumar 2012]


