Towards a Regular Theory of Parameterized Concurrent Systems

Benedikt Bollig
Laboratoire Spécification et Vérification
ENS Cachan \& CNRS, France

Reports on joint works with Paul Gastin, Akshay Kumar, and Jana Schubert.

ACTS 2015

Chennai Mathematical Institute

The verification problem for parmeterized systems:
«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

The verification problem for parmeterized systems:
«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic
- Nonemptiness

We are looking for «robust» models of parameterized systems.

The verification problem for parmeterized systems:
«Is a system correct independently of the number of processes / the way they are arranged?»

Talks by Arnaud Sangnier and Pierre Ganty.

In this talk, we study language-theoretic questions / expressiveness:

- Complementation
- Equivalent characterization in terms of MSO logic

Nonemptiness
We are looking for «robust» models of parameterized systems.

There have been robust models for fixed process architectures:
Thomas: On logical definability of trace languages. ASMICS 1990.
Henriksen-Mukund-Narayan Kumar-Sohoni-Thiagarajan: A Theory of Regular MSC Languages. I\&C 2005.
Genest-Kuske-Muscholl: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. I\&C 2006.

Finite Automata
finite automaton

Finite Automata
finite automaton
determinization

Finite Automata
finite automaton

determinization

complementation

Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata $=$ MSO
$\forall x(a(x) \rightarrow \exists y(\operatorname{succ}(x, y) \wedge b(y)))$

Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO
$\forall x(a(x) \rightarrow \exists y(\operatorname{succ}(x, y) \wedge b(y)))$

Proof:

- free variables \rightarrow extended alphabet

Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

Proof:

- free variables \rightarrow extended alphabet
- existential quantification projection

Finite Automata

finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

Proof:

- free variables \rightarrow extended alphabet
- existential quantification projection
- negation \rightarrow complementation

Fir Outline ita
finite automaton

determinization

complementation

Theorem [Büchi-Elgot-Trakhtenbrot 1960s]: Finite Automata = MSO

Proof:

- free variables \rightarrow extended alphabet
- existential quantification \rightarrow projection
- negation \rightarrow complementation

Parameterized Communicating Automata (PCA)

Parameterized Communicating Automata (PCA)

non-fixed \& unbounded

Parameterized Communicating Automata (PCA) over Rings

non-fixed \& unbounded

Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:
finite automaton over $\{l, r\} \times\{!, ?\} \times M s g \quad$ (here: $M s g=\{0,1\})$ acceptance condition

Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:
finite automaton over $\{l, r\} \times\{!, ?\} \times M s g \quad$ (here: $M s g=\{0,1\})$ acceptance condition

Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:
finite automaton over $\{l, r\} \times\{!, ?\} \times M s g \quad$ (here: $M s g=\{0,1\})$ acceptance condition

Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:
finite automaton over $\{l, r\} \times\{!, ?\} \times M s g \quad$ (here: $M s g=\{0,1\})$ acceptance condition

Parameterized Communicating Automata (PCA) over Rings

A PCA is given by:
finite automaton over $\{l, r\} \times\{!, ?\} \times M s g \quad$ (here: $M s g=\{0,1\})$ acceptance condition

Parameterized Communicating Automata (PCA) over Rings

Parameterized Communicating Automata (PCA) over Rings

Remark:
Behavior abstracts away message contents from $\operatorname{Msg}=\{0,1\}$
(like states, or stack symbols in pushdown automata).

Parameterized Communicating Automata (PCA) over Rings

Parameterized Communicating Automata (PCA) over Rings

Parameterized Communicating Automata (PCA) over Rings

Parameterized Communicating Automata (PCA) over Rings

Complementation

Complementation

Complementation

Complementation

Complementation

Complementation

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
 PCAs over rings are not complementable.

Proof:

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
 PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
 PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Theorem [Emerson-Namjoshi 2003]:
Emptiness is undecidable for PCAs over rings (even token-passing systems, unless $|M s g|=1$).

Negative Results

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
PCAs over rings are not complementable.

Proof:

- Behaviors encode grids.
- Grid automata are not closed under complementation [Matz-Schweikardt-Thomas '02].

Theoren
Emptines (even tok

Context-Bounded Model Checking of Concurrent Software

Shaz Qadeer and Jakob Rehof

Context-Bounded PCAs

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Idea: Every process is contrained to a bounded number of contexts.
There are several possible definitions of a context that lead to positive results.
Here: Process only sends XOR only receives from one fixed neighbor.

Context-Bounded PCAs

Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.

Context-Bounded PCAs

2-bounded PCA

Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.

Context-Bounded PCAs

2-bounded PCA

Definition: A PCA is k-bounded if the finite automaton restricts to k contexts.

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
For every bounded PCA \mathcal{A}, there is a PCA \mathcal{B} such that $L(\mathcal{B})=\overline{L(\mathcal{A})}$.

Proof Outline

k-bounded
disambiguation
every behavior has a unique run
complementation

Proof Outline

nondeterminism

k-bounded
disambiguation
every behavior has a unique run

Proof Outline

nondeterminism

k-bounded
disambiguation
every behavior has a unique run
complementation

Proof Outline

disambiguation
every behavior has a unique run

k-bounded
Powerset construction not applicable due to message contents.

Proof Outline

disambiguation
every behavior has a unique run

k-bounded
Powerset construction not applicable due to message contents.

Disambiguation through summaries:
Alur-Madhusudan: Visibly pushdown languages. STOC 2004.
La Torre-Madhusudan-Parlato: The language theory of bounded context switching. LATIN 2010.
La Torre-Napoli-Parlato: Scope-bounded pushdown languages. DLT 2014.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously by a PCA.

Disambiguation of context-bounded PCAs

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.

Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.
- Zone numbers can be computed unambiguously.

Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Disambiguation of context-bounded PCAs

- Every process traverses a bounded number of zones.

Zone numbers can be computed unambiguously.
Sending processes deterministically compute summaries for zones.
Acceptance condition checks if summaries correspond to accepting run.

Logical Characterization of Context-Bounded PCAs

The Logic:
MSO logic over graphs, including process nodes and event nodes.

Logical Characterization of Context-Bounded PCAs

The Logic:
MSO logic over graphs, including process nodes and event nodes.

Logical Characterization of Context-Bounded PCAs

The Logic:
MSO logic over graphs, including process nodes and event nodes.

Corollary [B.-Gastin-Kumar; FSTTCS 2014]:

For every bounded set L of behaviors, the following are equivalent:
L is recognized by some PCA.
L is definable in MSO logic.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

Topologies of Bounded Degree

Complementation and MSO characterization hold wrt. the class of all topologies over a fixed set of ports. With 4 ports, this captures rings, binary trees, and grids.

Context-Bounded Model Checking

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
Context-bounded MSO model checking is decidable over rings.

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N} ;$ MSO formula φ
Question: $\quad M \models \varphi$ for all k-bounded $M \in L(\mathcal{A})$?

Context-Bounded Model Checking

Theorem [B.-Gastin-Kumar; FSTTCS 2014]:
Context-bounded MSO model checking is decidable over rings.

$$
\begin{array}{ll}
\text { Input: } & \text { PCA } \mathcal{A} ; k \in \mathbb{N} ; \text { MSO formula } \varphi \\
\text { Question: } & M \models \varphi \text { for all } k \text {-bounded } M \in L(\mathcal{A}) \text { ? }
\end{array}
$$

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete when the acceptance condition is presented as a finite automaton.

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Input: \quad PCA $\mathcal{A} ; k \in \mathbb{N}$
Question: Does $L(\mathcal{A})$ contain some k-bounded behavior?

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

```
Input: }\quad\mathrm{ PCA A; k}\in\mathbb{N
Question: Does L(\mathcal{A}) contain some k-bounded behavior?
```

Finite automaton guesses local states \& checks membership in summaries.

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

```
Input: }\quad\mathrm{ PCA A; k}\in\mathbb{N
Question: Does L(\mathcal{A})\mathrm{ contain some k-bounded behavior?}
```

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Theorem [B.-Gastin-Schubert; RP 2014]:
Context-bounded nonemptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
= synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
= synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
= synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

$\longrightarrow=$ strict precedence
m synchronization
Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

strict cycle \Longrightarrow run is not accepting

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!

Check causal dependencies.

no strict cycle \Longrightarrow run is accepting

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Context-Bounded Nonemptiness Problem

Finite automaton guesses local states \& checks membership in summaries.

However, summaries may match locally, but not give rise to an accepting run!
\Rightarrow Check causal dependencies.
Gives PSPACE procedure.

no strict cycle \Longrightarrow run is accepting

Theorem [B.-Gastin-Schubert 2014]:
Context-bounded emptiness checking over rings is PSPACE-complete.

Summary of Results

Theorem:

Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Summary of Results

Theorem:
Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Summary of Results

Theorem:
Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Corollary:

Context-bounded MSO model checking is decidable over rings and trees.

Summary of Results

Theorem:

Context-bounded PCAs are complementable and expressively equivalent to MSO logic.

Theorem:

Context-bounded nonemptiness checking is decidable over rings and trees.

Corollary:

Context-bounded MSO model checking is decidable over rings and trees.

Context-bounded PCAs form a robust automata model.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes.

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes. MSO can trace back origin of unique process identifiers (pids).

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes. MSO can trace back origin of unique process identifiers (pids).

Application to Verification of Distributed Algorithms

Franklin's leader-election protocol (1982)

Distributed algorithms often proceed in rounds/contexts.
Number of rounds is sometimes logarithmic in the number of processes.
MSO can trace back origin of unique process identifiers (pids).
Underapproximate verification of distributed algorithms that send and compare pids.

Beyond Context Bounds

$$
\exists x\left(s_{4}(x) \wedge \forall y\left(y \neq x \rightarrow s_{5}(y) \vee s_{6}(y)\right)\right)
$$

weak PCA

Beyond Context Bounds ...

Theorem [B.; CSL-LICS 2014]:
Let T be any of the following topology classes: rings, grids, binary trees.

Beyond Context Bounds ...

Theorem [B.; CSL-LICS 2014]:
Let T be any of the following topology classes: rings, grids, binary trees.
For every set L of behaviors over a topology from T the following are equivalent:
L is recognized by some weak PCA.
L is definable in weak EMSO logic (projection of weak-FO-definable language).

Beyond Context Bounds ...

weak logic
Theorem [B.; CSL-LICS 2014]:
Let T be any of the following topology classes: rings, grids, binary trees.
For every set L of behaviors over a topology from T the following are equivalent:

- L is recognized by some weak PCA.
L is definable in weak EMSO logic (projection of weak-FO-definable language).

Other Future Work

- Topologies of unbounded degree (unranked trees, stars, ...)

- Temporal logics and efficient model checking
- Split-width for parameterized systems
[Aiswarya-Gastin-Narayan Kumar 2012]

Other Future Work

- Topologies of unbounded degree (unranked trees, stars, ...)

- Temporal logics and efficient model checking
- Split-width for parameterized systems
[Aiswarya-Gastin-Narayan Kumar 2012]

Thank You!

