

COMMUNICATING RECURSIVE PROGRAMS: CONTROL AND SPLIT-WIDTH

Uppsala University, Sweden

Joint work with

Paul Gastin LSV, ENS Cachan, France

K. Narayan Kumar

Chennai Mathematical Institute, India

VERIFICATION

Model Checking

VERIFICATION

Model Checking

> Undecidable in many cases

COMMUNICATING RECURSIVE PROGRAMS: CONTROL AND SPLIT-WIDTH

BEHAVIOURS : MESSAGE SEQUENCE CHARTS

time

VERIFICATION PROBLEMS

- * Emptiness or Reachability
- * Inclusion or Universality
- * Satisfiability ϕ
- * Model Checking: $S \vDash \phi$
 - * Temporal logics
 - * Propositional dynamic logics
 - * Monadic second order logic

COMMUNICATING RECURSIVE PROGRAMS:

- Turing powerful: verification undecidable
- Under-upproximations
 - Decidable
 - Controllable

COMMUNICATING RECURSIVE PROGRAMS: CONTROL AND SPLIT-WIDTH

- Turing powerful: verification undecidable
- Under-upproximations
 - Decidable
 - Controllable

CONTROLLERS FOR VERIFICATION OF COMMUNICATING SYSTEMS

COMMUNICATING DISTRIBUTED SYSTEMS

70

From

CONTROLLERS FOR DISTRIBUTED SYSTEMS

70

From

Network

CONTROLLERS FOR DISTRIBUTED SYSTEMS

70

From

Network

Process 2 Process 3 lacksquareProcess 1 Controller **Controller 2 Controller 3** \bullet Network

CONTROLLERS FOR DISTRIBUTED SYSTEMS

Collection of local controllers
Communication via piggy-backing
Privacy: Do NOT read states/messages

LET'S DESIGN A CONTROLLER

UNDER-APPROXIMATION: BOUNDED (K) PHASE

time

PHASE Receive from one process, send to all processes

k-BOUNDED PHASE

k-BOUNDED PHASE

PHASE Receive from one process, send to all processes

k-BOUNDED PHASE

PHASE Receive from one process, send to all processes

k-BOUNDED PHASE

DISTRIBUTED CONTROLLER FOR K-BOUNDED PHASE U-A

A local controller for each process

DISTRIBUTED CONTROLLER FOR K-BOUNDED PHASE U-A

number of other processes

Sends: tag with phase vector

Receives: update phase vector by taking MAX

CONTROLLERS FOR BOUNDED PHASE DISTRIBUTED SYSTEMS

Collection of local controllers
Communication via piggy-backing
Privacy: Do NOT read states/messages

> System independent

> Generic

> Deterministic

> Finite state

DECIDABILITY OF K BOUNDED PHASE

Polynomial SPLIT-WIDTH

Reachability Temporal Logics

Decidable MSO

Polynomial SPLIT-WIDTH

Refine phases to tree-like

bound split-width

ACYCLIC PHASE DECOMPOSITION

INDUCED GRAPH ON PHASE

INDUCED GRAPH ON PHASE

PHASE DECOMPOSITION

PHASE DECOMPOSITION

Polynomial SPLIT-WIDTH

 $b \longrightarrow d$

a

▲c

a

 b^{-}

TREE INTERPRETATION

₽d'

--**>**c--**>**d

a.

 $b \leq$

 $b \rightarrow c \rightarrow d$

a

С

b

d

a

С

b

d

b

a

С

d

 $b \rightarrow c \rightarrow d$

b

a

С

d

b

a

С

d

p

q

 $b \rightarrow c \rightarrow d$

a

С

d

Split-width

	Complexity	
Problem	bound on split-width	bound on split-width
	part of the input (in	fixed
	unary)	
CPDS emptiness	EXPTIME-Complete	PTIME-Complete
CPDS inclusion or universality	2ExpTime	EXPTIME-Complete
LTL / CPDL satisfiability or model checking	ExpTime-Complete	
ICPDL satisfiability or model checking	2ExpTime -Complete	
MSO satisfiability or model checking	Non-elementary	

SPLIT-WIDTH 3

SPLIT-WIDTH 3

Polynomial SPLIT-WIDTH

Reachability Temporal Logics

Decidable MSO

UNDER-APPROXIMATE VERIFICATION

OTHER UNDER-APPROXIMATIONS

- * Bounded channel size
- * Existentially bounded [Genest et al.]
- * Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]
- * Bounded context switching [Qadeer, Rehof], [LaTorre et al.], ...
- * Bounded phase [LaTorre et al.]
- * Bounded scope [LaTorre et al.]
- * Priority ordering [Atig et al., Saivasan et al.]

OTHER UNDER-APPROXIMATIONS

- * Bounded channel size
- * Existentially bounded [Genest et al.]
- * Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]
- * Bounded context switching [Qadeer, Rehof], [LaTorre et al.], ...
- * Bounded phase [LaTorre et al.]
- * Bounded scope [LaTorre et al.]
- * Priority ordering [Atig et al., Saivasan et al.]

Tree-width

OTHER UNDER-APPROXIMATIONS

- * Bounded channel size
- * Existentially bounded [Genest et al.]
- * Acyclic Architectures [La Torre et al., Heußner et al. Clemente et al.]
- * Bounded context switching [Qadeer, Rehof], [LaTorre et al.], ...
- * Bounded phase [LaTorre et al.]
- * Bounded scope [LaTorre et al.]
- * Priority ordering [Atig et al., Saivasan et al.]

Tree-width

* Many of the above classes have bounded tree-width [Parlato, Madhusudhan]

OTHER UNDER-APPROXIMATIONS Split-width

Width: split vs tree vs clique

Split-Width k

Let C be a class of bounded degree MSO definable graphs. TFAE

- 1. C has a decidable MSO theory
- 2. C can be interpreted in binary trees
- 3. C has bounded tree-width
- 4. C has bounded clique-width
- 5. C has bounded split-width (for concurrent recursive behaviors)

Let C be a class of bounded degree MSO definable graphs. TFAE

- 1. C has a decidable MSO theory
- 2. C can be interpreted in binary trees
- 3. C has bounded tree-width
- 4. C has bounded clique-width
- 5. C has bounded split-width (for concurrent recursive behaviors)

Let C be a class of bounded degree MSO definable graphs. TFAE

- 1. C has a decidable MSO theory
- 2. C can be interpreted in binary trees
- 3. C has bounded tree-width
- 4. C has bounded clique-width
- 5. C has bounded split-width (for concurrent recursive behaviors)

COMMUNICATING RECURSIVE PROGRAMS: CONTROL AND SPLIT-WIDTH

AUTONOMOUS COMPUTATIONS

- Recursive computations which does not read from other stacks/queues.
- A stretch of computation in which all incoming edges are on a single stack

AUTONOMOUS COMPUTATIONS

- Recursive computations which does not read from other stacks/queues.
- A stretch of computation in which all incoming edges are on a single stack

 A stretch of computation which reads from at most one stack/queue

- A stretch of computation which reads from at most one stack/queue
- free (unlimited) autonomous computations

- A stretch of computation which reads from at most one stack/queue
- free (unlimited) autonomous computations
- no loops

K-BOUNDED PHASE

K-BOUNDED PHASE $\wedge \wedge \wedge \wedge$ Phase 1 Phase 2 Phase 3

IDENTIFYING AUTONOMOUS POPS

- Possible by tagging the values on stacks
- Deterministic controller for each stack
- The phase controller simulates one such automaton for each stack.

COMMUNICATING RECURSIVE PROGRAMS: CONTROL AND SPLIT-WIDTH

- C.A., Paul Gastin, and K. Narayan Kumar. Verifying communicating multi pushdown systems via Split-width. In ATVA 2014.
- C.A., Paul Gastin, and K. Narayan Kumar. Controllers for the verification of communicating multi-pushdown systems. In *CONCUR* 2014.
- > A. C., Paul Gastin, and K. Narayan Kumar. MSO decidability of multipushdown systems via Split-width. In *CONCUR* 2012.

> A. C. Verification of Communicating Recursive Programs via Split-width. PhD thesis, ENS Cachan, 2014.

