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VERIFICATION PROBLEMS

Emptiness or Reachability

Inclusion or Universality
Satisfiability ¢

Model Checking: S E ¢

Temporal logics
Propositional dynamic logics

Monadic second order logic
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> Collection of local controllers

> Communication via piggy-backing
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DISTRIBUTED CONTROLLER FOR K-BOUNDED PHASE U-A

EANNCANNY

A |local controller for each process

State Has a Phase Counter

Transitions Remember rrent sender

\ 4
Different sender?

I Detect CEcle? l

fEment counter;
pdate sender




DISTRIBUTED CONTROLLER FOR K-BOUNDED PHASE U-A
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Phase Vectors best info about phase

number of other processes

Sends: tag with phase vector

Recelves: update phase vector by taking MAX
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BOUNDED PHASE

> Collection of local controllers

> Communication via piggy-backing

> System independent
> Generic
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Refine phases to tree-like

bound split-width
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Split-width

Complexity

Problem bound on split-width | bound on split-width
part of the input (in
unary)

CPDS emptiness I ExPTiME-Complete PTiME-Complete

CPDS inclusion or universality I EXPTIME-Complete

LTL / CPDL satisfiability or model checking I ExPTIME-Complete

ICPDL satisfiability or model checking I 2EXPTIME -Complete
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OTHER UNDER-APPROXIMATIONS

Bounded channel size

Existentially bounded {Genest et al.}

Acyclic Architectures [La Torre et al., Heufiner et al. Clemente et al.}
Bounded context switching {Qadeer, Rehof}, {LaTorre et al.], ...
Bounded phase {LaTorre et al.}

Bounded scope {LaTorre et al.}

Priority ordering [Atig et al., Saivasan et al.}
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OTHER UNDER-APPROXIMATIONS

Bounded channel size

Existentially bounded {Genest et al.}

Acyclic Architectures [La Torre et al., Heufiner et al. Clemente et al.}
Bounded context switching {Qadeer, Rehof}, {LaTorre et al.], ...
Bounded phase {LaTorre et al.}

Bounded scope {LaTorre et al.}

Priority ordering [Atig et al., Saivasan et al.}

Tree-width

Many of the above classes have bounded tree-width {Parlato, Madhusudhan}



OTHER UNDER-APPROXIMATIONS
Split-width

‘\\jk Acyclic Architectures '

* Bounded channel size
Existentially bounded

Bounded context switching

Bounded scope

iBound

* Bounded Tree-width



Width: split vs tree vs clique

Split-Width k

Tree-Width t Clique-Width ¢

Let C be a class of bounded degree MSO definable graphs.
TFAE
1. C has a decidable MSO theory

. C can be interpreted in binary trees

. C has bounded tree-width

. C has bounded clique-width
. C has bounded Split‘Width (for concurrent recursive behaviors)
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Width: split vs tree vs clique

K=120(t + 1)

Tree-Width t Clique-Width ¢

Let C be a class of bounded degree MSO definable graphs.
TFAE

k<2C-3

. C has a decidable MSO theory
. C can be interpreted in binary trees
. C has bounded tree-width

. C has bounded clique-width
. C has bounded Split‘Width (for concurrent recursive behaviors)
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AU TONOMOUS COMPUTATIONS

« Recursive computations which does not read from
other stacks/queues.

* A stretch of computation in which all incoming
edges are on a single stack
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* A stretch of compu!a!m vv!m! rea!s from at

most one stack/queue

* free (unlimited) autonomous computations

* No loops
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IDENTIFYING AUTONOMOUS POPS

» Possible by tagging the values on stacks

* Deterministic controller for each stack

* [he phase controller simulates one such

automaton for each stack.
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