
Passive intruder deduction
S. P. Suresh

Chennai Mathematical Institute
Chennai, India
spsuresh@cmi.ac.in

1 Preliminaries

Recall that we define ground terms T starting with basic terms B = A ∪N ∪K , where
A is a countable set of agents, N is a countable set of nonces, and K is a countable set of
keys (with a function inv : K → K such that inv(k) = k′ iff inv(k′) = k). Complex terms
are built according to the following syntax (where m ∈ B):

t, t′ ::= m | (t, t′) | {t}k

The set of subterms of a term t, denoted st(t), is defined to be the smallest set S such
that: t ∈ S; if (t, t′) ∈ S, {t, t′} ⊆ S; and if if {t}k ∈ S, {t, k} ⊆ S. For a set X of terms,
st(X) is defined to be

∪
t∈X

st(t). One can show that |st(X)| ≤
∑
t∈X

|t|, where |t| measures the

size of (the syntax tree of) t.

ax
X, t ⊢ t

X ⊢ t0 X ⊢ t1
pair

X ⊢ (t0, t1)

X ⊢ (t0, t1)
split

X ⊢ ti

X ⊢ t X ⊢ k
enc

X ⊢ {t}k

X ⊢ {t}k X ⊢ inv(k)
dec

X ⊢ t

Figure 1 The Dolev-Yao system.

The Dolev-Yao system is defined by the derivation system in Figure 1. By X ⊢dy t, we
mean that there is a derivation of X ⊢ t according to the rules of the above system. (For
ease of notation, we drop the suffix and use X ⊢ t to refer to both the sequents and the fact
that a sequent is derivable.)

▶ Definition 1 (Derivability problem or Passive intruder deduction problem). Given X and t,
is it the case that X ⊢dy t?

Among the rules, ax, split and dec are the elimination rules, pair and split are the
introduction rules. A normal derivation is one where the major premise of every elimination
rule is the conclusion of an elimination rule. The following theorem is fundamental.

▶ Theorem 2 (Weak normalization). If there is a derivation of X ⊢ t then there is a normal
derivation of X ⊢ t.

2 Passive intruder deduction

Proof. 1 Consider a derivation π of X ⊢ t of minimum size. We claim that it is normal.
Suppose not. Then π has a subproof ϖ which ends with an elimination rule whose major
premise comes from an introduction rule. The following two cases need to be considered.

ϖ is of the form
ϖ0···

X ⊢ t0

ϖ1···
X ⊢ t1

pair
X ⊢ (t0, t1)

split
X ⊢ ti

Then ϖ can be replaced by ϖi, yielding a smaller proof than π of X ⊢ t.
ϖ is of the form

ϖ0···
X ⊢ t

ϖ1···
X ⊢ k

enc
X ⊢ {t}k

ϖ2···
X ⊢ inv(k)

dec
X ⊢ t

Then ϖ can be replaced by ϖ0, yielding a smaller proof than π of X ⊢ t.
Thus in both cases, we arrive at a contradiction to the fact that π is a derivation of X ⊢ t

of minimum size. Thus it has to be the case that π is normal. ◀

▶ Theorem 3 (Subterm property). Let π be a normal derivation with conclusion X ⊢ t and
last rule str. Let X ⊢ s occur in π. Then s ∈ st(X ∪ {t}). Furthermore, if str is an
elimination rule, then s ∈ st(X).

Proof. The proof is by induction on the structure of π, and based on a case analysis on str.
Suppose str is ax. If X ⊢ s occurs in π, then s = t. And it follows that s = t ∈ X ⊆ st(X).
Suppose str is pair. Then t = (t0, t1) and π is of the following form:

π0···
X ⊢ t0

π1···
X ⊢ t1

pair
X ⊢ t

Clearly t0 ∈ st(t) and t1 ∈ st(t). Now either s = t or X ⊢ s occurs in π0 or π1. In
the second and third cases, s ∈ st(X ∪ {t0, t1}), by induction hypothesis. But st(X ∪
{t0, t1}) ⊆ st(X ∪ {t}), and hence we are done.
Suppose str is enc. Then t = {u}k and π is of the following form:

π0···
X ⊢ u

π1···
X ⊢ k

enc
X ⊢ t

Clearly u ∈ st(t) and k ∈ st(t). Now either s = t or X ⊢ s occurs in π0 or π1. In the
second and third cases, s ∈ st(X∪{u, k}), by induction hypothesis. But st(X∪{u, k}) ⊆
st(X ∪ {t}), and hence we are done.

1 This is a relatively simple proof, since our rules are particularly well-behaved. The proof of weak
normalization in general is much more involved.

S. P. Suresh 3

Suppose str is split. Then t = ti and π is of the following form:

π′
···

X ⊢ (t0, t1)
split

X ⊢ ti

Again, either s = ti or X ⊢ s occurs in π′. Since π is normal, π′ ends in an elimination
rule. Therefore for any X ⊢ s occurring in π′, s ∈ st(X). In particular, (t0, t1) ∈ st(X)
and so {t0, t1} ⊆ st(X). Thus for all X ⊢ s occurring in π, s ∈ st(X).
Suppose str is dec. Then π is of the following form:

π0···
X ⊢ {t}k

π1···
X ⊢ inv(k)

dec
X ⊢ t

Again, either s = t or X ⊢ s occurs in π0 or π1. Since π is normal, π0 ends in an
elimination rule. Therefore for any X ⊢ s occurring in π0, s ∈ st(X). In particular,
{t}k ∈ st(X) and so {t, k} ⊆ st(X). Further, since inv(k) ∈ B, π2 cannot end in
an introduction rule (else inv(k) would be a pair or an encryption, which is absurd).
Therefore for any X ⊢ s occurring in π1, s ∈ st(X). Thus for all X ⊢ s occurring in π,
s ∈ st(X).

◀

2 Polynomial time algorithm for derivability

Fix X0 and t0 and consider whether X0 ⊢ t0. Let st = st(X0 ∪ {t0}), and let N = |st|. We
know that if X0 ⊢ t0 is derivable, there is a derivation which only has terms from st. Further,
the proof of Theorem 2 even guaranteed that a minimum size proof of X0 ⊢ t0 is normal.
A minimum size proof has the further property that for each s ∈ st, X0 ⊢ s occurs at most
once on each branch of the derivation (for otherwise we could short-circuit and obtain a
proof of smaller size). Thus minimum size proofs have a bound of N on the length of each
branch. Thus the height of each minimum size proof is ≤ N . This means that we can try
to calculate the set of all t ∈ st derivable at each level of a proof, starting from the leaves at
level 0, and do not need to go beyond level N . This inspires the following algorithm, where
derive(X0) = {t ∈ st | X0 ⊢ t}. Lines 4–7 in the algorithm update Y by adding all terms

Algorithm 1 Cubic algorithm for computing derive(X0)
1: i← 0;
2: Y ← X0;
3: while i <= N do
4: Z ← Y ∪ {(t0, t1) ∈ st | t0, t1 ∈ Y } ∪ {{t}k ∈ st | t, k ∈ Y };
5: Z ← Z ∪ {t | ∃r : (t, r) ∈ Y or (r, t) ∈ Y };
6: Z ← Z ∪ {t | ∃k : {t}k ∈ Y and inv(k) ∈ Y };
7: Y ← Z;
8: end while
9: return Y ;

that can be got from Y by the application of one rule. This operation is split across four

4 Passive intruder deduction

lines for ease of formatting. It is clear from height bounds and the subterm property that
the algorithm indeed computes derive(X0). The while loop runs for N iterations and each
iteration takes at most O(N2) time, since we ensure that Y and Z are always subsets of st.
Thus the algorithm takes O(N3) time.

3 Linear time algorithm for derivability

Fix a set of terms X0 and a formula t0 for the rest of the section. Let st = st(X0 ∪ {t0}).
Let N = |st|. For any X ⊆ st, derive(X) = {t ∈ st | X ⊢ t}.

Checking if X0 ⊢dy t0 amounts to checking if t0 ∈ derive(X0). In the rest of this section,
we describe how to compute derive(X) for any X ⊆ st. We compute derive(X) by a marking
procedure which initially marks all elements of X and propagates the marking in a clever
manner. Its working is best understood when contrasted with the cubic algorithm from the
previous section. The propagation step in that algorithm was to look at each pair of marked
terms and mark the result of combining them via some rule. This propagation step itself
is repeated many times till no new formula can be marked. In the course of this, the same
term t may be “touched” many times – in deriving (t, t′), {t}k, etc. The marking in the
linear algorithm proceeds differently. When we “process” a marked t, we mark all of its
consequences that we can determine at that stage, and do not process it again. For this
to work, we need information about t being already marked when we process some other
marked t′ (so that we can mark (t, t′), for instance, without revisiting t). Towards this, we
maintain some auxiliary lists. For instance, for each term t there is a list of pairs whose
first component is t. While processing t, we mark each (t, t′) in this list such that t′ is also
marked. We maintain similar lists for other operators and the position of t, as is made clear
below.

For every t ∈ st, we define the following sets.
Pℓ(t) = {(u, v) ∈ st | u = t}.
Pr(t) = {(u, v) ∈ st | v = t}.
Eℓ(t) = {{u}k ∈ st | u = t}.
Er(k) = {{u}k′ ∈ st | k′ = k}.
Dr(k) = {{u}k′ ∈ st | k′ = inv(k)}.

The procedure to compute derive(X) is described in Algorithm 2. For each t ∈ st it
maintains a variable status(t) ∈ {raw, pending, processed}. It also uses a queue Q of formulas,
with the corresponding enqueue and dequeue functions. The correctness of the algorithm is
presented below.

▶ Lemma 4 (Soundness). If status(t) = processed, then u ∈ derive(X).

Proof. Initially, the status of every t ∈ st is either raw or pending. It is clear from the
code that status(t) becomes processed only after becoming pending. It is also clear that any
formula is enqueued only after it becomes pending. We prove by induction that if status(t)
becomes pending at any stage of the while loop, t ∈ derive(X).

The base case is when status(t) becomes pending before the start of the loop. This means
that t ∈ X and hence t ∈ derive(X).

Suppose status(t) becomes pending in some iteration of the loop. We consider a few
sample cases that might occur.
status(t) changes at line 8: This means that there is a (t, s) that has just been dequeued,

and therefore status((t, s)) was pending in an earlier iteration, and hence (t, s) ∈ derive(X).
Since one can apply the split rule to get t from (t, s), t ∈ derive(X).

S. P. Suresh 5

Algorithm 2 Linear time algorithm for derive(X)
1: Q← ∅;
2: for all t ∈ X : status(t)← pending; enqueue(Q, t);
3: for all t ∈ st \X : status(t)← raw;
4: while Q ̸= ∅ do
5: t← dequeue(Q);
6:
7: if t = (u, v) and status(u) = raw then ▷ t is the premise of split.
8: status(u)← pending; enqueue(Q, u);
9: end if

10: if t = (u, v) and status(v) = raw then ▷ t is the premise of split.
11: status(v)← pending; enqueue(Q, v);
12: end if
13: for all (t, u) ∈ Pℓ(t) s.t status(u) ̸= raw and status((t, u)) = raw do
14: status((t, u))← pending; ▷ t is left premise of pair.
15: enqueue(Q, (t, u));
16: end for
17: for all (u, t) ∈ Pr(t) s.t status(u) ̸= raw and status((u, t)) = raw do
18: status((u, t))← pending; ▷ t is right premise of pair.
19: enqueue(Q, (u, t));
20: end for
21:
22: if t = {u}k and status(u) = raw and status(inv(k)) ̸= raw then
23: status(u)← pending; ▷ t is the left premise of dec.
24: enqueue(Q, t0);
25: end if
26: for all {t}k ∈ Eℓ(t) s.t status(k) ̸= raw and status({t}k) = raw do
27: status({t}k)← pending; ▷ t is left premise of enc.
28: enqueue(Q, {t}k);
29: end for
30: if t = k ∈ K then
31: for all {u}inv(k) ∈ Dr(k) s.t status({u}inv(k)) ̸= raw and status(u) = raw do
32: status(u)← pending; ▷ k is right premise of dec.
33: enqueue(Q, u);
34: end for
35: for all {u}k ∈ Er(k) s.t status(u) ̸= raw and status({u}k) = raw do
36: status({u}k)← pending; ▷ k is right premise of enc.
37: enqueue(Q, {u}k);
38: end for
39: end if
40:
41: status(t)← processed;
42: end while
43: return {t ∈ st | status(t) = processed};

6 Passive intruder deduction

status(t) changes at line 18: This means that t = (u, v) and v was dequeued in this it-
eration. Thus status(v) = pending in an earlier iteration, and hence v ∈ derive(X).
The condition on line 17 says that status(u) ̸= raw, which means that status(u) became
pending in an earlier iteration, or earlier in this iteration. In either case, it follows that
u ∈ derive(X). We can now apply the pair rule to conclude that t = (u, v) ∈ derive(X).

status(t) changes at line 32: This means that there is a k that was dequeued in this iter-
ation and a {t}inv(k) ∈ Dr(k) whose status is not raw. Thus status(k) = pending in an
earlier iteration, and hence k ∈ derive(X). Also status({t}inv(k)) ̸= raw, so the status
changed to pending in an earlier iteration, or earlier in this iteration. In either case,
it follows that {t}inv(k) ∈ derive(X). We can now apply the dec rule to conclude that
t ∈ derive(X).

The other cases proceed similarly, and we have the required claim. ◀

▶ Lemma 5 (Completeness). If t ∈ derive(X), eventually status(t) is assigned the value
‘processed’.

Proof. We first prove by induction on size of proofs that if t ∈ derive(X) then eventually
status(t) becomes pending (it is enough to show this – if t ever becomes pending, it is
enqueued, and upon dequeue it gets assigned the status processed).

Suppose π is a proof of X ⊢ t, and let str be its last rule. We consider a few sample
cases.
str is ax: In this case, t ∈ X and status(t) becomes pending in line 2.
str is split: Let the premise of str be X ⊢ (u, t). Since X ⊢ (u, t) has a smaller proof,

status((u, t)) become pending at some point of time, and added to the queue. Eventually
it is dequeued. In that iteration of the while loop, eventually the condition in line 10 is
checked. Either status(t) ̸= raw (which means it became pending earlier), or it becomes
pending in line 11.

str is pair: In this case, t = (u, v) and there are smaller proofs of X ⊢ u and X ⊢ v.
So eventually both status(u) and status(v) become pending, and they are both enqueued.
Eventually they are both dequeued. Without loss of generality, let v be the last dequeued
term among u and v. At the time when it is dequeued, status(u) ̸= raw. In that iteration
of the while loop, eventually we will check the status of t = (u, v) ∈ Pr(v) in line 17.
Either status(t) ̸= raw (which means it became pending earlier), or it becomes pending
in line 18.

The other cases proceed similarly, and we have the required claim. ◀

▶ Lemma 6 (Running time). The algorithm terminates in O(N) time.

Proof. Each element enters Q at most once (when its status changes from raw to pending).
We process each element of Q exactly once, after dequeuing it and before marking it processed.
Processing an element involves setting the status of some of its immediate subterms and
perhaps enqueueing them (all these operations take constant time). It also involves going
through each element of the five sets Pℓ(t), Pr(t), Eℓ(t), Er(t), and Dr(t). Each of these
for all loops takes at most O(N) time. So it would appear that the algorithm takes O(N2)
overall. But we need to use the following crucial property. For distinct u and v and f ∈
{Pℓ, Pr, Eℓ, Er, Dr}: f(u) ∩ f(v) = ∅.

Thus the total time spent processing the sets Pℓ(t) is O(N) across all t ∈ st. And similarly
for Pr, Eℓ, etc. From this it follows that the algorithm terminates in O(N) time. ◀

	Preliminaries
	Polynomial time algorithm for derivability
	Linear time algorithm for derivability

