Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 8
September 4, 2017

http://www.cmi.ac.in/~spsuresh

Functions and types

e mylength [] = 0
mylength (x:xs) = 1 + mylength xs

e myreverse [] =[]
myreverse (x:xs) = (myreverse xs) ++ [x]

e myinit [x] = []
myinit (x:xs) = x:(myinit xs)

e None of these funétions look into the elements of the list

e Will work over lists of any type!

Polymorphism

e Functions that work across multiple types
e Use type variables to denote flexibility
e a3, b, c are place holders for types

» [a] is a list whose elements are of type a

Polymorphism ...

e Types for our list functions

e mylength :: [a] -> Int
e myreverse :: [a] -> [a]
e myinit :: [a] -> [a]

e All occurrences of a in a type definition must be instantiated in
the same way

Functions and operators

s +, -, /, ... are operators — infix notation
o 3+5,11-7, 8/9
o div, mod ... are functions —prefix notation
e div 7 5, mod 11 3
e Use operators as functions: (+), (-) ...
e (+) 35,(-) 11 7,(/) 89
e Use (binary) funétions as operators: ‘div", "mod"

e 7 'div’ 5,11 "mod” 3

Functions and operators ...

e plus :: Int -> Int -> Int
plus mn=m+ n

e (plus m) :: Int -> Intaddsmto itsargument
e Likewise,m + nisthe same as (+) m n

e Hence (+ m) and (m +), like (plus m) adds m to the argument

e (+17) 7
(17+) 7

24
24

Functions and operators ...

o (5%) 3 = 15
(*5) 3 = 15

e (5/) 3 = 1.666.
(/5) 3 = 0.6

e (5-) 3 =2
(-5) 3 = ??

e subtract :: Int -> Int -> Int
subtract m n=n - m

e Use (subtract 5) 3instead

Higher order functions

e Can pass functions as arguments

e apply f x = f x

e Applies first argument to second argument
e What is the type of apply?
e A generic function fhastypef :: a -> b
e Argument x and output must be compatible with f

e apply :: (a ->b) ->a ->b

Higher order functions

e Sorting a list of objects
e Need to compare pairs of objects
e What quantity is used for comparison?
e Ascending, descending?

e Pass a comparison function along with the list to the sort
function

Summary

e Haskell functions can be polymorphic

e Operate on values of more than one type
e Notation to use operators as functions and vice versa
e Higher order functions

e Arguments can themselves be functions

Applying a function to a list

e touppercase :: String -> String
touppercase " 7
touppercase (c:cs) = (capitalize c):
(touppercase cs)

e sqrlist :: [Int] -> [Int]
sqrlist [] = []
sqrlist (x:xs) = sqr x : (sqrlist xs)

e Apply a function f to each member in a list

e Built in fun&ion map

e map f [x0,x1,..,xk] = [(f x0),(f x1),..,(f xk)]

Examples

map (+ 3) [2,6,8] = [5,9,11]
map (* 2) [2,6,8] = [4,12,16]

Given a list of lists, sum the lengths of inner lists

sumLength:: [[Int]] -> Int
sumLength [] = 0
sumLength (x:xs) = length x + (sumLength xs)

Can be written using map as:

sumLength 1 = sum (map length 1)

The function map

e The function map

emap f [] =[]
map f (x:xs) = (f x):(map f xs)

e What is the type of map?

emap :: (a -> b) -> [a] -> [b]

Selecting elements in a list

e Select all even numbers from a list

e even_only :: [Int] -> [Int]
even_only [] =[]
even_only (x:xs)
| is_even x
| otherwise
where
is_even :: Int -> Bool
is_even X = (mod x 2) ==

x:(even_only xs)
even_only xs

Filtering a list

filter selects all items from list 1 that satisty property p

filter p [] = []
filter p (x:xs)

| (p x) = x:(filter p xs)
| otherwise = filter p xs

filter :: (a -> Bool) -> [a] -> [a]

even_only 1 = filter is_even 1

Combining map and filter

e Extralt all the vowels in the input and capitalize them
o filter extracts the vowels, map capitalizes them

e cap_vow :: [Char] -> [Char]
cap_vow L = map toUpper (filter is_vowel 1)

e is_vowel :: Char -> Bool
is_vowel c = (c=="3’) || (c=="e’) ||
(c=="1") || (c=="0") ||

Combining map and filter

e Squares of even numbers in a list

e sqr_even :: [Int] -> [Int]
sqr_even 1 = map sqr (filter is_even 1)

Summary

map and filter are higher order functions on lists
map applies a function to each element
filter extralts elements that match a property

map and filter are often combined to transform lists

New lists from old

e Set comprehension

e M={x*|x€L,even(x) |
o Generates a new set M from a given set L
e Haskell allows this almost verbatim

e [x*x | x <- 1, is_even(x)]

e List comprehension, combines map and filter

Examples

e Divisors of n

e divisors n = [x | x <- [1..n],
(mod n x) == 0]

e Primes below n

e primes n = [x | x <- [1..n],
(divisors x == [1,x])]

Examples ...

e Can use multiple generators

e Pairs of integers below 1o

o [(x,y) | x <- [1..10], y <- [1..10]]

e Like nested loops, later generators move faster

* [(1,1), (1,2),..., (1,10), (2,1), ..., (2,10), ...,
(10,10)]

Examples ...

e The set of Pythogorean triples below roo

e [(x,y,2) | x <- [1..100],
y <- [1..100],
z <- [1..100],
X*X + y*y == z*%*z]

e Oops, that produces duplicates.

e [(x,y,z) | x <- [1..100],
y <- [(x+1)..100],
z <- [(y+1)..100],
X¥X + y*y == z%*z]

Examples ...

e The built-in fun&ion concat

econcat L =[x |y <- 1, x <- y]

Examples ...

e Given a list of lists, extract all even length non-empty lists

e even_Llist L =
[(x:xs) | (x:xs) <- 1,
(mod (length (x:xs)) 2) == 0]

e Given a list of lists, extract the head of all the even length non-
empty lists

e head_of _even 1 =
[x | (x:xs) <- 1,
(mod (length (x:xs)) 2) == 0]

The Sieve of Ervatosthenes

e Start with the (infinite) list /2,3,4,.../
e Enumerate the left most element as next prime
e Remove all its multiples from the list

e Repeat the above with this list

The Sieve of Ervatosthenes

In Haskell,

primes = sieve [2..]
where
sieve (X:Xs) =
X:(sieve [y | v <- Xxs, vy 'mod” x /= 0])

The Sieve of Evatosthenes

primes = sieve [2..]
= 2:(steve [y | y <- [3..] , y 'mod” 2 /= 0])
= 2:(sieve (3:[y | v <- [4..], y 'mod™ 2 /= 0])

= 2:(3:(sieve [z |

z<-[yl|ly<-[4..], y mod" 2 [/=0] |
z mod” 3 /= 0])

= 2:(3:(5:(sieve [w |
w<-[z |
z<-[yly~<-1[4..1,y mod" 2 [/=0] |
z ‘mod” 3 /= 0] |
w mod” 5 /= 0])

Summary

e List comprehension is a succin&t, readable notation for
combining map and filter

e Can translate list comprehension in terms of concat, map, filter
(next class)

