
Lecture 7
August 30, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Computation as rewriting

Use definitions to simplify expressions till no further
simplification is possible

An “answer” is an expression that cannot be further
simplified

Built-in simplifications

3+5 ➾ 8

True || False ➾ True

Computation as rewriting

Simplifications based on user defined functions

power :: Int -> Int -> Int 
power x 0 = 1 
power x n = x * (power x (n-1))

Computation as rewriting
power 3 2 
 
➾ 3 * (power 3 (2-1)) user definition  
 
➾ 3 * (power 3 1) built in simplification  
 
➾ 3 * (3 * (power 3 (1-1))) user definition  
 
➾ 3 * (3 * (power 3 0)) built in simplification  
 
➾ 3 * (3 * 1) user definition  
 
➾ 3 * 3 built in simplification  
 
➾ 9 built in simplification

Order of evaluation

(8+3)*(5-3) ➾ 11*(5-3) ➾ 11*2 ➾ 22

(8+3)*(5-3) ➾ (8+3)*2 ➾ 11*2 ➾ 22

power (5+2) (4-4) ➾ power 7 (4-4) 
➾ power 7 0 ➾ 1

power (5+2) (4-4) ➾ power (5+2) 0 ➾ 1

What would power (div 3 0) 0 return?

Lazy Evaluation
Any Haskell expression is of the form f e where

f is the outermost function

e is the expression to which it is applied.

In head (2:reverse [1..5])

f is head

e is (2:reverse [1..5])

When f is a simple function name and not an expression,
Haskell reduces f e using the definition of f

Lazy evaluation …

The argument is not evaluated if the function definition does
not force it to be evaluated.

head (2:reverse [1..5]) ➾ 2

Argument is evaluated if needed

last (2:reverse [1..5)) ➾ 
last (2:[5,4,3,2,1]) ➾ 1

Lazy evaluation …

What would power (div 3 0) 0 return?

power :: Int -> Int -> Int 
power x 0 = 1 
power x n = x * (power x (n-1))

First definition ignores value of x

power (div 3 0) 0 returns 1

Lazy evaluation …

If all simplifications are possible, order of evaluation does not
matter, same answer

One order may terminate, another may not

Lazy evaluation expands arguments by “need”

Can terminate with an undefined sub-expression if that
expression is not used

Infinite lists

infinite_list :: [Int] 
infinite_list = inflistaux 0 
 where 
 inflistaux :: Int -> [Int] 
 inflistaux n = n:(inflistaux (n+1))

infinite_list ➾ [0,1,2,3,4,5,6,7,8,9,10,12,…]

head (infinite_list) ➾ head(0:inflistaux 1) ➾ 0

take 2 (infinite_list) ➾ 
take 2 (0:inflistaux 1) ➾ 
0:(take 1 (inflistaux 1)) ➾ 
0:(take 1 (1:inflistaux 2)) ➾ [0,1]

Infinite lists

Range notation extends to infinite lists

[m..] ➾ [m,m+1,m+2,…]

[m,m+d..] ➾ [m,m+d,m+2d,m+3d,…]

Sometimes infinite lists simplify function definition

Primes

Sometimes infinite lists simplify function definition

primes = filterPrime [2..] 
 where filterPrime (p:xs) =  
 p : filterPrime [x | x <- xs, x `mod` p /= 0]

primes100 = take 100 primes

Summary

In functional programming, computation is rewriting

Haskell uses lazy evaluation — simplifies outermost expression
first

Lazy evaluation allows us to work with infinite lists

