Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 7
August 30, 2017

http://www.cmi.ac.in/~spsuresh

Computation as rewriting

e Use definitions to simplify expressions till no further
simplification is possible

e An “answer’ is an expression that cannot be further

simplified
e Built-in simplifications
e 3+5=> 8

e True || False = True

Computation as rewriting

e Simplifications based on user defined functions

e power :: Int -> Int -> Int
power X 0 = 1
power X n = X * (power x (n-1))

Computation as rewriting

power 3 2
=> 3 * (power 3 (2-1)) user definition
= 3 * (power 3 1) built in simplification

= 3 * (3 * (power 3 (1-1))) user definition

= 3 * (3 * (power 3 0)) built in simplification
= 3 * (3 * 1) user definition
= 3 * 3 built in simplification

= 9 built in simplification

Order of evaluation

° (8+3)*(5-3) =» 11%(5-3) = 11*2 = 22
e (8+3)*(5-3) =» (8+3)*2 =» 11%2 =» 22

° power (5+2) (4-4) =» power 7 (4-4)
=> power 7 0 = 1

e power (5+2) (4-4) =» power (5+2) 0 == 1

¢ What would power (div 3 0) 0 return?

Lazy Evaluation

e Any Haskell expression is of the form f e where
» fisthe outermost function
o e is the expression to which it is applied.
e In head (2:reverse [1..5])
e f1is head
e e1S (2:reverse [1..5])

e When f is a simple fundtion name and not an expression,
Haskell reduces f e using the definition of f

Lazy evaluation ...

e The argument is not evaluated if the function definition does
not force it to be evaluated.

® head (2:reverse [1..5]) == 2

e Argument is evaluated if needed

e last (2:reverse [1..5)) =
last (2:[5,4,3,2,1]) = 1

Lazy evaluation ...

¢ What would power (div 3 0) 0 return?

e power :: Int -> Int -> Int
power X 0 = 1
power X n = X * (power x (n-1))

e First definition ignores value of x

e power (div 3 0) Oreturns1i

Lazy evaluation ...

o If all simplifications are possible, order of evaluation does not
matter, same answer

e One order may terminate, another may not
e Lazy evaluation expands arguments by "need”

e Can terminate with an undefined sub-expression if that
expression is not used

Infinite lists

infinite_list :: [Int]

infinite_Llist = inflistaux 0O
where
inflistaux :: Int -> [Int]
inflistaux n = n:(inflistaux (n+1))

infinite_list = [0,1,2,3,4,5,6,7,8,9,10,12,..]
head (infinite_list) = head(0:inflistaux 1) =» 0

take 2 (infinite_list) =

take 2 (0:inflistaux 1) =

0:(take 1 (inflistaux 1)) =
0:(take 1 (1:inflistaux 2)) = [0,1]

Infinite lists

e Range notation extends to infinite lists

e [m..] = [m,m+1,m+2,..]
e [mym+d..] = [m,m+d,m+2d,m+3d,..]

e Sometimes infinite lists simplify function definition

Primes

e Sometimes infinite lists simplify function definition

e primes = filterPrime [2..]
where filterPrime (p:xs) =
p : filterPrime [x | X <- xs, X 'mod” p /= 0]

e primesl100 = take 100 primes

Summary

e In functional programming, computation is rewriting

e Haskell uses lazy evaluation — simplifies outermost expression
first

e Lazy evaluation allows us to work with infinite lists

