
Lecture 5
August 23, 2017

S P Suresh
http://www.cmi.ac.in/~spsuresh

Programming in Haskell

http://www.cmi.ac.in/~spsuresh

Lists

To describe a collection of values

[1,2,3,1] is a list of Int

[True,False,True] is a list of Bool

Elements of a list must be of a uniform type

Cannot write [1,2,True] or [3,’a’]

Lists …

List with values of type T has type [T]

[1,2,3,1] :: [Int]

[True,False,True] :: [Bool]

[] denotes the empty list, for all types

Lists can be nested

[[3,2], [], [7,7,7]] is of type [[Int]]

Internal representation
To build a list, add one element at a time to the front (left)

Operator to append an element is :

1:[2,3] ➾ [1,2,3]

All Haskell lists are built this way, starting with []

[1,2,3] is actually 1:(2:(3:[]))

: is right associative, so 1:2:3:[] is 1:(2:(3:[]))

1:[2,3] == 1:2:3:[], 1:2:[3] == [1,2,3], … all return True

Decomposing lists

Functions head and tail

head (x:xs) ➾ x

tail (x:xs) ➾ xs

Both undefined for []

head returns a value, tail returns a list

Defining functions on lists

Recall inductive definition of numeric functions

Base case is f 0

Define f (n+1) in terms of n+1 and f n

For lists, induction on list structure

Base case is []

Define f (x:xs) in terms of x and f xs

Example: length

 Length of [] is 0

Length of (x:xs) is 1 more than length of xs

mylength :: [Int] -> Int 
mylength [] = 0 
mylength l = 1 + mylength (tail l)

Pattern matching

A nonempty list decomposes uniquely as x:xs

Pattern matching implicitly separates head, tail

Empty list will not match this pattern

Note the bracketing: (x:xs)

mylength :: [Int] -> Int 
mylength [] = 0 
mylength (x:xs) = 1 + mylength xs

Example: sum of values

Sum of [] is 0

Sum of (x:xs) is x plus sum of xs

mysum :: [Int] -> Int 
mysum [] = 0 
mysum (x:xs) = x + mysum xs

List notation

Positions in a list are numbered 0 to n-1

l!!j is the value at position j

Accessing value j takes time proportional to j

Need to “peel off ” j applications of : operator

Contrast with arrays, which support random access

List notation …

[m..n] ➾ [m, m+1, …, n]

Empty list if n < m

[1..7] = [1,2,3,4,5,6,7] 
[3..3] = [3] 
[5..4] = []

List notation …

Skipping values (arithmetic progressions)

[1,3..8] ➾ [1,3,5,7] 
[2,5..19] ➾ [2,5,8,11,14,17]

Descending order

[8,7..5] ➾ [8,7,6,5] 
[12,8..-9] ➾ [12,8,4,0,-4,-8]

Example: appendright

Add a value to the end of the list

An empty list becomes a one element list

For a nonempty list, recursively append to the tail of the list

appendr :: Int -> [Int] -> [Int] 
appendr x [] = [x] 
appendr x (y:ys) = y:(appendr x ys)

Example: attach

Attach two lists to form a single list

attach [3,2] [4,6,7] ➾ [3,2,4,6,7]

Induction on the first argument

attach :: [Int] -> [Int] -> [Int] 
attach [] l = l 
attach (x:xs) l = x:(attach xs l)

Built in operator ++

[3,2] ++ [4,6,7] ➾ [3,2,4,6,7]

Example: reverse

Remove the head

Recursively reverse the tail

Attach the head at the end

reverse ::[Int] -> [Int] 
reverse [] = [] 
reverse (x:xs) = (reverse xs) ++ [x]

Example: is sorted

Check if a list of integers is in ascending order

Any list with less than two elements is OK

ascending :: [Int] -> Bool 
ascending [] = True 
ascending [x] = True 
ascending (x:y:ys) = (x <= y) && 
 ascending (y:ys)

Note the two level pattern

Example: alternating

Check if a list of integers is alternating

Values should strictly increase and decrease at alternate
positions

Alternating list can start in increasing order (updown) or
decreasing order (downup)

tail of a downup list is updown

tail of an updown list is downup

Example: alternating …

alternating :: [Int] -> Bool 
alternating l = (updown l) || (downup l)

updown :: [Int] -> Bool 
updown [] = True 
updown [x] = True 
updown (x:y:ys) = (x < y) && (downup (y:ys)) 
 
downup:: [Int] -> Bool 
downup [] = True 
downup [x] = True 
downup (x:y:ys) = (x > y) && (updown (y:ys))

Built in functions on lists

head, tail, length, sum, reverse, …

init l, returns all but the last element

init [1,2,3] ➾ [1,2] 
init [2] ➾ []

last l, returns the last element in l

last [1,2,3] ➾ 3 
last [2] ➾ 2

Built in functions on lists …

take n l, returns first n values in l

drop n l, leaves first n values in l

Do the “obvious” thing for bad values of n

l == (take n l) ++ (drop n l), always

Built in functions on lists …

Defining take

mytake :: Int -> [Int] -> [Int] 
mytake n [] = [] 
mytake n (x:xs) 
 | n == 0 = [] 
 | n > 0 = x:(mytake (n-1) xs) 
 | otherwise = []

Summary

Functions on lists are typically defined by induction on the
structure

Point to ponder

Is there a difference in how length works for [Int], [Float],
[Bool], …?

Can we assign a more generic type to such functions?

