Programming in Haskell

S P Suresh

http://www.cmi.ac.in/~spsuresh

Lecture 1
August 9, 2017

http://www.cmi.ac.in/~spsuresh

Administrative

e Mondays and Wednesdays at 9.10 am at Le¢ture Hall 6

e Evaluation: Quizzes, 4—5 programming assignments, exams
e TAs: Agnishom Chattopadhyay, Kishlaya Jaiswal

e Moodle page: http://moodle.cmi.ac.in/course/view.php?id=231

e Course page: http://www.cmi.ac.in/~spsuresh/teaching/prgh17

http://moodle.cmi.ac.in/course/view.php?id=231
http://www.cmi.ac.in/~spsuresh/teaching/prgh17

Resources

e http://www.haskell.org

e Introduction to Functional Programming using Haskell (Richard Bird)

e Thinking Fun&ionally with Haskell (Richard Bird)
e Real World Haskell http://book.realworldhaskell.org/read/

e Learn You a Haskell for Great Good!
http://learnyouahaskell.com/chapters

e Haskell Programming: from first principles (Christopher Allen & Julie
Moronuki) http://haskellbook.com

e Plenty of other resources

http://www.haskell.org
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/chapters
http://haskellbook.com

Programs as functions

e Functions transform inputs to outputs

X > f > f(x)

e Program: rules to produce output from input

e Computation: process of applying the rules

Building up programs

How do we describe the rules?
e Start with built in fun&ions

e Use these to build more complex functions

Building up programs ...

Suppose
e ... we have the whole numbers, {0,1,2,..}
e ... and the successor funcétion, succ

succ 0
succ 1
succ 2

1
2
3

e Note: we that write succ 0, not succ(0)

Building up programs ...

e We can compose succ twice to build a new func¢tion

e plusTwo n = succ (succ n)

e If we compose plusTwo and succ we get

e plusThree n = succ (plusTwo n)

Building up programs ...

e How do we define plus?
o plus n m means apply succ to n, m times

e Again note: plus n m, not plus(n,m)

e plus n 1 = succ n
plus n 2 = succ (plus n 1) = succ (succ n)
plus n 1 = succ(succ(..(succ n)..)

1 times

e How do we capture this rule for all n, 1

Inductive/recursive definitions

e plus n @ = n, for everyn

e plus n 1 = succ n = succ (plus n 0)

e Assume we know how to compute plus n m

e Then, plus n (succ m) is succ (plus n m)

Computation

e Unravel the definition

e plus 7 3

plus 7 (succ 2)

succ (plus 7 2)

succ (plus 7 (succ 1))

succ (succ (plus 7 1))

succ (succ (plus 7 (succ 0)))
succ (succ (succ (plus 7 0)))
succ (succ (succ 7))

Recursive definitions ...

e Multiplication is repeated addition
o mult n m means apply plus n, mtimes
e mult n @ = 0, for everyn

e mult n (succ m) = plus n (mult n m)

Summary

e Functional programs are rules describing how outputs are
derived from inputs

e Basic operation is function composition

e Recursive definitions allow repeated function composition,
depending on the input

Building up programs

e Start with built in funé&ions

e Use function composition, recursive definitions to build more
complex functions

e What kinds of values do functions manipulate?

I'ypes

e Functions work on values of a fixed type

e succ takes a whole number as input and produces a whole
number as output

e plus and mult take two whole numbers as input and produce a
whole number as output

e Can also define analogous functions for real numbers

I'ypes

e How about sqrt, the square root function?

e Even if the input is a whole number, the output need not be—
may have a fractional part

e Number with fractional values are a different type from whole
numbers

e In Mathematics, whole numbers are often treated as a subset
of fraéional or real numbers

e Other types

€pd
‘A’ ’
B ’ (X 1)

e capitalize ‘a’
capitalize ‘b’

e Inputs and outputs are letters or “characters”

Functions and types

e We will be careful to ensure that any function we define has a

well defined type

e The fun&ion plus that adds two whole numbers will be
different from another funéion plus that adds two fractional
numbers

Functions have types

e A function that takes inputs of type A and produces output of
type Bhasatype A > B

e In Mathematics, we write f: § > T for a function with domain
S and codomain T

e A type is a just a set of permissible values, so this is equivalent

to providing the type of f

Collections

e It is often convenient to deal with colletions of values of a
given type

e A list of integers
e A sequence of characters — words or strings
e Pairs of numbers

e Such collections are also types of values

Summary

e Functions manipulate values

e Each input and output value comes from a well defined set of
possible values — a type

e We will only allow fun&tions whose type can be defined
e Functions themselves inherit a type

e Collections of values also types

Huaskell

e A programming language for describing functions
e A function description has two parts

e Type of inputs and outputs

e Rule for computing outputs from inputs
e Example

sqr :: Int -> Int Type definition
sqr X = X * Xx Computation rule

Basic types

Int, Integers

e Operations: +, -, *, / (Note: / produces Float)
e Functions: div, mod

Float, Floating point (“real numbers”)

Char, Chara&ers, ’a’, °%’, °7°, ..

Bool, Booleans, True and False

Basic types ...

e Bool, Booleans, True and False
e Boolean expressions
e Operations: &, ||, not

e Relational operators to compare Int, Float, ...

® ==, /=, <, <=, >, >=

Defining functions

» xor (Exclusive or)
e Input two values of type Bool
e Check that exactly one of them is True
» xor :: Bool -> Bool -> Bool (why?)

xor b1 b2 = (b1 && (not b2)) ||
((not b1l) && b2)

Defining functions

e inorder
e Input three values of type Int
e Check that the numbers are in order

e inorder :: Int -> Int -> Int -> Bool
inorder x vy z = (x <= y) & (y <= z)

Pattern matching

e Multiple definitions, by cases

e Xor :: Bool -> Bool -> Bool

xor True False = True
xor False True = True
xor b1l b2 = False

e Use first definition that matches, top to bottom
e xor False True matches second definition

e Xxor True True matches third definition

Pattern matching ...

e When does a fun&ion call match a definition?

o If the argument in the definition is a constant, the value
supplied in the function call must be the same constant

e If the argument in the definition is a variable, any value
supplied in the function call matches, and is substituted for
the variable (the “usual” case)

Pattern matching ...

e Can mix constants and variables in a definition

e or :: Bool -> Bool -> Bool

or True b = True
or b True = True
or bl b2 = False

e or True False matches first definition
e or False True matches second definition

e or False False matches third definition

Pattern matching ...

e Another example

e and :: Bool -> Bool -> Bool

and True b =0>
and False b = False

e In the first definition, the argument b is used in the definition

e In the second, b is ignored

Summary

e A Haskell function consists of a type definition and a
computation rule

e Can have multiple rules for the same function
e Rules are matched top to bottom

e Use patterns to split cases

Running Haskell programs

e Haskell interpreter ghci
e Interactively call builtin functions
e LLoad user-defined Haskell code from a text file

e Similar to how Python works

Setting up ghci

e Download and install the Haskell Platform

e https://www.haskell.org/platform/

e Available for Windows, Linux, macOS

https://www.haskell.org/platform/

Using ghci

o Create a text file (extension .hs) with your Haskell function
definitions

e Run ghci at the command prompt
e Load your Haskell code

e :load myfile.hs

e Call functions interactively within ghci

Compiling

» ghc is a compiler that creates a standalone executable from a .hs

file

e ghc stands for Glasgow Haskell Compiler
» ghciis the associated interpreter
e Using ghc requires some advanced concepts

e We will come to this later in the course

Summary

» ghciis a user-friendly interpreter
e Can load and interactively execute user defined functions
 ghc is a compiler

e But we need to know more Haskell before we can use it

