
LECTURE 15

OCTOBER 6, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Modules

A module consists of functions that are related to each
other

The name of the file must match the name of the
module

The module can be used in any other file in the same
directory

Queue module

The Queue module, defined in Queue.hs

module Queue(NuQu(..), empty, isEmpty, enqueue,
dequeue, show) where  
data Queue a = NuQu [a] [a]  
empty = ...  
isEmpty = ...  
enqueue = ...

We can use the Queue module in another file in the same
directory by adding the line import Queue

Queue module ...

Hiding mechanism: internal representation can be
hidden from the outside world

Only those functions listed inside () in the module
statement is visible on import Queue

Auxiliary functions can be hidden from users of the
module

Queue module ...

Our Queue is not abstract enough, since the internal
representation (as two lists) is visible outside

Fix this by hiding the constructor

module Queue(makeQueue, empty, isEmpty, enqueue,
dequeue, show) where  
 
data Queue a = NuQu [a] [a]  
 
makeQueue :: [a] -> Queue a  
makeQueue l = Queue l []

Queue module ...

empty :: Queue a  
empty = NuQu [] []

isempty :: Queue a -> Bool  
isempty (NuQu [] []) = True  
isempty (NuQu _ _) = False

enqueue x (NuQu ys zs) = NuQu ys (x:zs)

dequeue (NuQu (x:xs) ys) = (x, NuQu xs ys)  
dequeue (NuQu [] ys) = (z, NuQu zs [])  
 where z:zs = reverse ys

Queue module ...

One can add instance declarations inside a module

instance (Show a) => Show (Queue a) where  
show (NuQu xs ys) =  
 show "{[" ++ printElems (xs ++ reverse ys)  
 ++"]}"

printElems :: (Show a) => [a] -> String  
printElems [] = ""  
printElems [x] = show x  
printElems (x:xs) = show x ++ "->"  
 ++ printElems xs

show "{[" ++  
 intercalate "->" (map show (xs ++ reverse ys)  
 ++ "]}"

Using the Queue module

One uses the Queue module by adding import Queue at
the start of a file (before defining any functions)

The constructor NuQu and the function printElems are
not available outside of Queue.hs

One creates new queues by invoking the makeQueue
function  
 newq = makeQueue [1..100]

A Stack module

module Stack(Stack(..), empty, push, pop, isempty,
show) where  
 
Stack a = Stack [a]  
 
empty = Stack []  
 
push x (Stack xs) = Stack (x:xs)  
 
pop (Stack (x:xs)) = (x, Stack xs)  
 
isempty (Stack []) = True  
isempty (Stack _) = False

A Stack module

instance (Show a) => Show (Stack a) where  
 show (Stack l) =  
 intercalate "->" (map show l)  

Postfix expressions

A postfix expression is an arithmetic expression where
the operator appears after the operands

No parentheses required in a postfix expression

3 5 8 * + = (3 (5 8 *) +) = 43

2 3 + 7 2 + - = ((2 3 +) (7 2 +) -) = -4

Postfix expressions

Every bracket-free expression can be converted uniquely to a
bracketed one

Scan from the left

If it is a number, it is a standalone expression

If it is an operator, bracket it with the previous two
expressions

3 5 8 * + = (3 (5 8 *) +) = 43

2 3 + 7 2 + - = ((2 3 +) (7 2 +) -) = -4

Evaluating postfix expressions

Follow the bracketing algorithm and use a stack

Scan from the left

If it is a number, push it onto the stack

If it is an operator

 remove the top two elements of the stack

apply the operator on them

push the result onto the stack

A calculator program

A postfix expression is a list of integers and operators

We represent it as a list of tokens

import Stack  
 
data Token = Val Int | Op Char  
type Expr = [Token]

Evaluation: one step

evalStep :: Stack Int -> Token -> Stack Int  

evalStep st (Val i) = push i st  
evalStep st (Op c)  
 | c == '+' = push (v2+v1) st2  
 | c == '-' = push (v2-v1) st2  
 | c == '*' = push (v2*v1) st2  
 where (v1,st1) = pop st  
 (v2,st2) = pop st1

Evaluating an expression

evalExp :: Expr -> Int  
evalExp = fst . pop . evalExp' empty

evalExp' :: Stack Int -> Expr -> Stack Int  
evalExp' st [] = st  
evalExp' st (t:ts) =  
 evalExp' (evalStep st t) ts

Alternatively 
evalExp = fst . pop . (foldl' evalStep empty)

Maybe
Functions in modules ought to be as general as possible

No assumptions about usage

max :: [Int] = Int  
max [x] = x  
max (x:xs)  
 | x > y = x  
 | otherwise = y  
 where y = max xs

What is max [] ?

Option 1:

max :: [Int] = Int  
max [] = -1  
max [x] = x  
max (x:xs)  
 | x > y = x  
 | otherwise = y  
 where y = max xs

-1 is a default, works if the input list contains only
nonnegative integers

Maybe

Option 2:

max :: [Int] = Int  
max [] = error "Empty list"  
max [x] = x  
max (x:xs)  
 | x > y = x  
 | otherwise = y  
 where y = max xs

error :: [Char] -> a is a function that prints the error message
supplied and causes an exception

Aborts execution

Maybe

Neither option is robust when we define max inside a
module

No idea what the context the function would be used in

Use the built in type constructor Maybe

Maybe a = Just a | Nothing

Maybe

max :: [Int] = Maybe Int -- inside a module  
max [] = Nothing  
max [x] = Just x  
max (x:xs)  
 | x > y = Just x  
 | otherwise = Just y  
 where Just y = max xs

printmax :: [Int] -> String -- outside the module  
printmax l = case (max l) of  
 Nothing -> "Empty list"  
 Just x -> "Maximum = " ++ show x

Maybe

Consider a table datatype that stores key-value pairs

type Key = Int  
type Value = String  
type Table = [(Key, Value)]

myLookup :: Key -> Table -> Maybe Value

looks up the value corresponding to key in table, if key
occurs in table

Maybe

myLookup :: Key -> Table -> Maybe Value  
myLookup k [] = Nothing  
myLookup k ((k1,v1):kvs)  
| k == k1 = Just v1  
| otherwise = myLookup k kvs

Built-in function  
lookup :: Eq a => a -> [(a,b)] -> Maybe b

More robust than returning error or some default value
on absence of key

Maybe

Summary

Hiding implementation details using modules

Examples - Stack and Queue modules

Using Stacks to evaluate postfix expressions

Use of Maybe for more robust implementations

