Programming in Haskell
Aug-Nov 2015

LECTURE 15

OCTOBER 6, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Modules

* A module consists of functions that are related to each
other

* The name of the file must match the name of the
module

* The module can be used in any other file in the same
directory

Queue module

* The Queue module, defined in Queue.hs

* module Queue(NuQu(..), empty, i1sEmpty, enqueue,
dequeue, show) where
data Queue a = NuQu [a] [a]
empLy = -
1SEmpey = 7.
enqueue = ...

* We can use the Queue module in another file in the same
directory by adding the line import Queue

Queue module ...

* Hiding mechanism: internal representation can be
hidden from the outside world

* Only those functions listed inside () in the module
statement is visible on import Queue

* Auxiliary functions can be hidden from users of the
module

Queue module ...

* Our Queue is not abstract enough, since the internal
representation (as two lists) is visible outside

* Fix this by hiding the constructor

* module Queue(makeQueue, empty, 1sEmpty, enqueue,
dequeue, show) where

data Queue a = NuQu [a] [a]

makeQueue :: [a] -> Queue a
makeQueue 1 = Queue 1 []

Queue module ...

* empty :: Queue a
empty = NuQu [] []

* 1sempty :: Queue a -> Bool

1sempty (NuQu [] []) = True
1sempty (NuQu _ _) = False

* enqueue X (NuQu ys zs) = NuQu ys (x:zs)

* dequeue (NuQu (x:xs) ys) = (X, NuQu xs ys)
dequeue (NuQu [] ys) = (z, NuQu zs [])
where z:zs = reverse ys

Queue module ...

* One can add instance declarations inside a module

* 1nstance (Show a) => Show (Queue a) where
show (NuQu xs ys) =
show "{[" ++ printElems (xs ++ reverse ys)

++" 1"

* printElems :: (Show a) => [a] -> String
pritetEElems [l ="
printElems [x] = show X
printElems (x:xs) = show x ++ "->"
++ printElems xs

* show "{[" ++
intercalate

++ "]}"

->" (map show (xs ++ reverse ys)

Using the Queue module

* One uses the Queue module by adding import Queue at
the start of a file (before defining any functions)

* The constructor NuQu and the function printElems are
not available outside of Queue.hs

* One creates new queues by invoking the makeQueue
function
newg = makeQueue [1..100]

A Stack module

* module Stack(Stack(..), empty, push, pop, isempty,
show) where

Stack a = Stack [a]

empty = Stack []

push o CStack Xs) = Stack (x:xs)
pob. (Stack Cx:xs53)) = (%, Stack Xs)

1sempty (Stack []) = True
1sempty (Stack _) = False

A Stack module

* 1nstance (Show a) => Show (Stack a) where
show (Stack 1) =
1ntercalate

->" (map show 1)

Postfix expressions

* A postfix expression is an arithmetic expression where
the operator appears after the operands

* No parentheses required in a postfix expression
* 358*+ =(3(58%)+) =43

* 23+72+-=(23+)(72+)-)=-4

Postfix expressions

* Every bracket-free expression can be converted uniquely to a
bracketed one

* Scan from the left
* If it is a number, it is a standalone expression

* If it is an operator, bracket it with the previous two
expressions

* 358%+ =(3(58%) +)=43

*x 23+72+-=(23+)(72+)-)=-4

Evaluating postfix expressions

* Follow the bracketing algorithm and use a stack
* Scan from the left
* If it is a number, push it onto the stack
* If it is an operator
* remove the top two elements of the stack
* apply the operator on them

* push the result onto the stack

A calculator program

* A postfix expression is a list of integers and operators
* We represent it as a list of tokens
* 1mport Stack

data Token = Val Int | Op Char
type Expr = [Token]

Evaluation: one step

* evalStep :: Stack Int -> Token -> Stack Int

* evalStep st (Val 1) = push 1 st
evalStep st (Op c)

C== k. = pUSh (VAR sty
C =~ "= — push (vZ-V1) st2
c == o Pl vzl ety

where (vl,stl) = pop st
(vZ2 stZ2) = pop stl

Evaluating an expression

* evalExp :: Expr -> Int
evalExp = fst . pop . evalExp' empty

* evalExp' :: Stack Int -> Expr -> Stack Int
avalExp st i} = st
evalbExp: st (ti1s) =
evalExp' (evalStep st t) ts

* Alternatively
evalkExp = fst . pop . (foldl' evalStep empty)

Maybe

* Functions in modules ought to be as general as possible
* No assumptions about usage

* max < [Int]l = Int
max Fx] = X
max (X:XS)
x> ¥ =X
| otherwise =y
where y = max XS

* Whatismax []?

Maybe

* Option 1:

* Mae o fint] —Int
moc b= =1
max £X1 — x
max (X:Xs)
X >y =
| otherwise =y
where y = max Xs

+ -1is a default, works if the input list contains only
nonnegative integers

Maybe

* Option 2:

o s fint k=t
max 1| =:error Empty Listé
maxX sl X%
max (X:Xxs)
B =X
| otherwise =y
where y = max Xs

+ error :: [Char] -> aisa function that prints the error message
supplied and causes an exception

* Aborts execution

Maybe

* Neither option is robust when we define max inside a
module

* No idea what the context the function would be used in
* Use the built in type constructor Maybe

* Maybe a = Just a | Nothing

Maybe

max
max
max
max

:: FInt] = Maybe Int

[] = Nothing

Xl = lust x

(X:xS)

x>y Just x
| otherwise = Just y
where Just y = max Xs

* printmax
printmax 1

= fIntl —> Strihg

case (max 1) of

-- 1nside a module

-- outside the module

Nothing -> "Empty 1list"

Just x -> "Maximum =

++ show X

Maybe

* Consider a table datatype that stores key-value pairs

* type Key = Int
type Value = String
type Table = [(Key, Value)]

* myLookup :: Key -> Table -> Maybe Value

* looks up the value corresponding to key in table, if key
occurs in table

Maybe

* myLookup :: Key -> Table -> Maybe Value
myLookup k [] = Nothing
myLookup k ((k1,vl):kvs)
ol = el = st vl
| otherwise = myLookup k kvs

* Built-in function
lookup :: Eq a => a -> [(a,b)] -> Maybe b

* More robust than returning error or some default value
on absence of key

Summary

* Hiding implementation details using modules
* Examples - Stack and Queue modules
* Using Stacks to evaluate postfix expressions

* Use of Maybe for more robust implementations

