
LECTURE 14

OCTOBER 1, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Enumerated data types

The data keyword is used to define new types

data Bool = False | True

data Day = Sun | Mon | Tue | Wed | Thu | Fri |
Sat

Data types with parameters

data Shape = Circle Float  
 | Square Float  
 | Rectangle Float Float

Circle 5.0, Square 4.0, Rectangle 3.0 4.0

Functions on data types

Functions can be defined using pattern matching

weekend :: Day -> Bool  
weekend Sat = True  
weekend Sun = True  
weekend _ = False

area :: Shape -> Float  
area (Circle r) = pi*r*r  
area (Square x) = x*x  
area (Rectangle l w) = l*w  
where  
 pi = 3.1415927

Functions on data types

What about  
weekend2 :: Day -> Bool

weekend2 d  
 | (d == Sat || d == Sun) = True  
 | otherwise = False

Error - No instance for (Eq Day) arising from a use of
‘==’

Functions on data types

How about this function?

nextday :: Day -> Day  
nextday Sun = Mon  
nextday Mon = Tue  
...  
nextday Sat = Sun

Invoking nextday Fri in ghci will lead to error

Error - No instance for (Show Day) arising from a use of
'print'

Add data types to typeclasses

To check equality of two values of a data type a, a must
belong the type class Eq

We add Day to the type class Eq as follows

data Day = Sun | Mon | ... | Sat  
 deriving Eq

Default behaviour: Sun == Sun, Tue /= Fri, ...

Now weekday2 compiles without error

The type class Show

To make nextday work, we must make Day an instance of
Show

data Day = Sun | Mon | ... | Sat  
 deriving (Eq, Show)

The type class Show consists of all data types that
implement the function show

More derivations

show converts its input to a string which can be printed on the
screen

Default text representation

show Wed == "Wed"

data Day = Sun | Mon | ... | Sat  
 deriving (Eq, Show, Ord)

Sun < Mon < ... < Sat

More derivations ...

data Shape = Circle Float  
 | Square Float  
 | Rectangle Float Float  
 deriving (Eq, Ord, Show)

show (Circle 5.0) == "Circle 5.0"

Square 4.0 == Square 4.0  
Square 4.0 /= Square 3.0  
Circle 5.0 /= Rectangle 3.0 4.0

Square 4.0 > Circle 5.0

Constructors

Square, Circle, Sun, Mon, ... are constructors

They are functions 
 Sun :: Day  
 Rectangle :: Float -> Float -> Shape  
 Circle :: Float -> Shape

Constructors ...

Constructors can be used just like other functions

Circle 5.0 :: Shape

map Circle :: [Float] -> [Shape]

map Circle [3.0, 2.0] = [Circle 3.0, Circle 2.0]

Records

data Person = Person String Int Float String  
 deriving Show

guy = Person "Alpha" 21 5.8 "+914427470226"

name :: Person -> String  
name (Person n _ _ _) = n

age :: Person -> Int  
age (Person _ a _ _) = a

Records ...

height :: Person -> Float  
height (Person _ _ h _) = h

phone :: Person -> Int  
phone (Person _ _ _ p) = p

Record syntax

data Person = Person { name :: String  
 , age :: Int  
 , height :: Float  
 , phone :: String  
 } deriving Show

guy = Person {name="Alpha", age = 21,  
height = 5.8, phone = "+914427470226"}

The field names are actually functions

name :: Person -> String  
age :: Person -> Int

Summary

The keyword data is used to declare new data types

The keyword deriving to derive as an instance of a type
class

Data types with parameters - Shape, Person

Sum type or union - Day, Shape

Product type or struct - Person

Abstract data types

Consider a Stack data type

a collection of Ints stacked one on top of the other

push: place an element on top of the stack

pop: remove the topmost element of the stack

Behaviour similar to lists

Abstract data types

type Stack = [Int]

push :: Int -> Stack -> Stack  
push x s = x:s

pop :: Stack -> (Int, Stack)  
pop (x:s') = (x, s')

Internal representation is evident. Stack is just a synonym

insert :: Int -> Int -> Stack -> Stack  
insert x n s = (take (n-1) s) ++ [x]  
 ++ (drop (n-1) s)

Abstract data types

data Stack = Stack [Int]

The value constructor Stack is a function that converts a
list of Int to a Stack object

Internal representation hidden

Abstract data types

empty :: Stack  
empty = Stack []

push :: Int -> Stack -> Stack  
push x (Stack xs) = Stack (x:xs)

pop :: Stack -> (Int, Stack)  
pop (Stack (x:xs)) = (x, Stack xs)

isempty :: Stack -> Bool  
isempty (Stack []) = True  
isempty (Stack _) = False

Type parameters

Polymorphic user-defined data types

data Stack a = Stack [a]  
 deriving (Eq, Show, Ord)

empty :: Stack a

push :: Int -> Stack a -> Stack a

pop :: Stack a -> (a, Stack a)

isempty :: Stack a -> Bool

Type parameters...

Suppose we want to sum all elements in a stack

sumStack (Stack xs) = sum xs

What is the type of sumStack?

Applicable only if the stack has numeric elements

sumStack :: (Num a) => Stack a -> a

A custom show

show (Stack [1,2,3]) == "Stack [1,2,3]"

deriving Show defines a default implementation for show

Suppose we want something mildly fancy

show (Stack [1,2,3]) == "1->2->3"

A custom show

One can change the default behaviour

printElems :: (Show a) => [a] -> String  
printElems [] = ""  
printElems [x] = show x  
printElems (x:xs) = show x ++ "->" ++  
 printElems xs

instance (Show a) => Show (Stack a) where  
 show (Stack l) = printElems l

Queues

Consider a Queue data type

a collection of Ints arranged in a sequence

enqueue: add an element at the end of the queue

dequeue: remove the element at the start of the queue

Queues

data Queue a = Queue [a]

empty :: Queue a  
empty = Queue []

isempty :: Queue a -> Bool  
isempty (Queue []) = True  
isempty (Queue _) = False

Queues

enqueue :: a -> Queue a -> Queue a  
enqueue x (Queue xs) = Queue (xs ++ [x])

dequeue :: Queue a -> (a, Queue a)  
dequeue (Queue (x:xs)) = (x, Queue xs)

Queues

Each enque on a queue of length n takes O(n) time

Enqueueing and dequeueing n elements might take O(n2)
time

Efficient queue

Use two lists

Represent q
1
, q

2
, ..., q

n
 as 

 [q
1
, q

2
, ..., q

j
]and [q

n
, q

n-1
, ..., q

j+1
]

Second list is the second part of queue in reversed order

enqueue adds an element at the start of the second list

dequeue removes an element from the start of the first
list

Efficient queue

What if we try to dequeue when the first list is empty?

We reverse the second list into the first, and remove the
first element

Efficient queue

data Queue a = NuQu [a] [a]

enqueue x (NuQu ys zs) = NuQu ys (x:zs)

dequeue (NuQu (x:xs) ys) =  
 (x, NuQu xs ys)  
dequeue (NuQu [] ys) =  
 dequeue (NuQu (reverse ys) [])

Efficient queue

If we add n elements, we get a queue  
 NuQu [] [qn,qn-1,...,q1]

Next dequeue takes O(n) time to reverse the list

After one dequeue we get NuQu [q2,...,qn] []

Next n-1 dequeue operations take O(1) time

Amortized analysis

How many times is an element touched?

Once when it is added to the second list

Twice when it is moved from the second to first

Once when it is removed from the first list

Each element is touched at most four times

Any sequence of n instructions involves at most n elements

So any sequence of n instructions takes only O(n) steps

Summary

Abstract data types

We can define polymorphic user-defined data types by
supplying type parameters

Conditional polymorphism for functions defined on such
data

The instance keyword to define non-default
implementation of functions

Efficient queues and amortized analysis

