Programming in Haskell
Aug-Nov 2015

LECTURE 14

OCTOBER 1, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Enumerated data types

* The data keyword is used to define new types

* data Bool = False | True

data Day = Sup EMon | Tue- & Wed | Ty | kg
Sat

Data types with parameters

* data Shape = Circle Float
| Square Float
| Rectangle Float Float

* Circle 5.0, Square 4.0, Rectangle 3.0 4.0

Functions on data types

* Functions can be defined using pattern matching

ared

where
Dl = S 1415927

* weekend :: Day -> Bool
weekend Sat = True
weekend Sun = True
weekend _ = False
area :: Shape -> Float
area (Circle r) = Dripep
area (Square x) TR e 4

1*w

(Rectangle 1 w)

Functions on data types

* What about
weekendZ2 :: Day -> Bool

* weekend2 d
L (d — Sat |l d-—— Stin)
| otherwise

True
False

* Error - No instance for (Eq Day) arising from a use of

¢ b

Functions on data types

* How about this function?

* hextday :: Day -> Day
nextday Sun = Mon
nextday Mon = Tue

nextday Sat = Sun
* Invoking nextday Fri in ghci will lead to error

* Error - No instance for (Show Day) arising from a use of
ot

Add data types to typeclasses

* To check equality of two values of a data type a, a must
belong the type class Eq

* We add Day to the type class Eq as follows

* gata Day = Sun- I -Mon |- ... [k Sat
deriving Eqg

* Default behaviour: Sun == Sun, Tue /= Fri, ...

* Now weekday2 compiles without error

The type class Show

* To make nextday work, we must make Day an instance of
Show

* data-Day = 5un | Mon | ... | Sat
deriving (Eqgq, Show)

* The type class Show consists of all data types that
implement the function show

More derivations

* show converts its input to a string which can be printed on the
screen

* Default text representation

* show Wed == "Wed"

% data-Bay = Sun F Maon b 4o Sat
deriving (Egq, Show, Ord)

* Sun < Mon < ... < Sat

More derivations ...

* data Shape = Circle Float
| Square Float
| Rectangle Float Float
deriving (Eg, Ord, Show)

* show (Circle 5.0) == "Circle 5.0"

* Square 4.0 == Square 4
Square 4.0 /= Square 3
Circle 5.0 /= Rectangle 3.0 4.0

.0
.0

* Square 4.0 > Circle 5.0

Constructors

* Square, Circle, Sun, Mon, ... are constructors

* They are functions
Sum = == Day.
Rectangle :: Float -> Float -> Shape
Circle :: Float -> Shape

Constructors ...

Constructors can be used just like other functions

Circle 5.0 :: Shape
map Circle :: [Float] -> [Shape]

map Circle 3.0, 2.0 — [CGircle 3.0, Cifcle 2,0}

Records

* data Person = Person String Int Float String
deriving Show

* guy = Person "Alpha" 21 5.8 "+914427470226"

* name :: Person -> String
name (Person - n.. =) = h
* age :: Person -> Int

age (Personh g) =

Records ...

* height :: Person -> Float
hetght (Persoa. - -~ h) =
* phone :: Person -> Int

phone (Person _ _ _p) =p

Record syntax

* data Person = Person { name :: String
ssage-2:-Int
s heignt 7. Floagt
, phone :: String
} deriving Show

* guy = Person {name="Alpha", age = 21,
height = 5.8, phone = "+914427470226"}

* The field names are actually functions

* name :: Person -> String
age :: Person -> Int

Summary

* The keyword data is used to declare new data types

* The keyword deriving to derive as an instance of a type
class

* Data types with parameters - Shape, Person
* Sum type or union - Day, Shape

* Product type or struct - Person

Abstract data types

* Consider a Stack data type

* a collection of Ints stacked one on top of the other
+ push: place an element on top of the stack

* pop: remove the topmost element of the stack

* Behaviour similar to lists

Abstract data types

* type Stack = [Int]

* push :: Int -> Stack -> Stack
BUSH. X' § = X'§

®H0p - Stack —> (Int -Stdack)
pop (X:S')} = (X, 5)

* Internal representation is evident. Stack is just a synonym

* 1hsert :: Int > Int -> Stack -> Stack
insert x n s = (take (n-1) s) ++ [x]
++ (drop (n-1) s)

Abstract data types

* data Stack = Stack [Int]

* The value constructor Stack is a function that converts a
list of Int to a Stack object

* Internal representation hidden

Abstract data types

* empty :: Stack
empty = Stack []

* push :: Int -> Stack -> Stack
push x (Stack xs) = Stack (x:xs)

* pop ::. Stack -> (Int, Stack)
pop (Stack (x:xs)) = (x, Stack xs)

* 1sempty :: Stack -> Bool
1sempty (Stack []) = True
1sempty (Stack _) = False

Type parameters

* Polymorphic user-defined data types

* data Stack-a = Stack |al
deriving (Eg, Show, Ord)

* empty :: Stack a
* push :: Int -> Stack a -> Stack a
* pop ::. Stack a -> (a, Stack a)

* 1sempty :: Stack a -> Bool

Type parameters...

* Suppose we want to sum all elements in a stack

* sumStack (Stack xs) = sum xs

* What is the type of sumStack?
* Applicable only if the stack has numeric elements

* sumStack :: (Num a) => Stack a -> a

A custom show

* show (Stack: [T 2 3]) = ’Stack [1 2 3]
* deriving Show defines a default implementation for show

* Suppose we want something mildly fancy

* show (Stack [1.2,3]1) == '1->72->3"

A custom show

* One can change the default behaviour

* printElems :: (Show a) => [a] -> String
printeElkems | = -
printElems [x] = show X
printElems (x:xs) = show x ++ "->" ++
printElems xs

* 1nstance (Show a) => Show (Stack a) where
show (Stack 1) = printElems 1

Queues

* Consider a Queue data type
* a collection of Ints arranged in a sequence
» enqueue: add an element at the end of the queue

» dequeue: remove the element at the start of the queue

Queues

* data Queue a = Queue [a]

* empty :: Queue a
empty = Queue []

* 1sempty :: Queue a -> Bool
1sempty (Queue []) = True
1sempty (Queue _) = False

Queues

* enqueue :: a -> Queue a -> Queue a
enqueue X (Queue xs) = Queue (xs ++ [x])

* dequeue :: Queue a -> (a, Queue a)
dequeue (Queue (x:xs)) = (x, Queue xs)

Queues

* Each enque on a queue of length n takes 0(n) time

* Enqueueing and dequeueing n elements might take 0(n?)
time

Efficient queue

* Use two lists

* Representq,q,..,q as

9. g, . qj]and 9.9 qu]
* Second list is the second part of queue in reversed order
*+ engueue adds an element at the start of the second list

+ deqgueue removes an element from the start of the first
list

Efficient queue

* What if we try to dequeue when the first list is empty?

* We reverse the second list into the first, and remove the
first element

Efficient queue

* data Queue a = NuQu [a] [a]
* enqueue X (NuQu ys zs) = NuQu ys (x:zs)

* dequeue (NuQu (x:xs) ys) =
(X, NuQu xs ys)

dequeue (NuQu [] ys) =
dequeue (NuQu (reverse ys) [])

Efficient queue

* If we add n elements, we get a queue
NuQu [] [gn,gn-1,...,q1]

* Next dequeue takes O(n) time to reverse the list

* After one dequeue we get NuQu [g2,...,gqn] []

* Next n-1 dequeue operations take O(1) time

Amortized analysis

* How many times is an element touched?
* Once when it is added to the second list
* Twice when it is moved from the second to first
* Once when it is removed from the first list
* Each element is touched at most four times
* Any sequence of n instructions involves at most n elements

* So any sequence of n instructions takes only O(n) steps

Summary

* Abstract data types

* We can define polymorphic user-defined data types by
supplying type parameters

* Conditional polymorphism for functions defined on such
data

* The instance keyword to define non-default
implementation of functions

* Efficient queues and amortized analysis

