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Measuring efficiency

Computation is reduction 

Application of definitions as rewriting rules

Count the number of reduction steps 

Running time is T(n) for input size n
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Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

1:(2:([3] ++ [4,5,6])) ➾

1:(2:(3:([] ++ [4,5,6]))) ➾

1:(2:(3:([4,5,6])))

l1 ++ l2 : use the second rule length l1 times, first rule once, always
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Example: elem

elem :: Int -> [Int] -> Bool  
elem i [] = False  
elem i (x:xs)  
  | (i==x) = True  
  | otherwise = elem i xs

elem 3 [4,7,8,9] ➾ elem 3 [7,8,9] ➾ 
elem 3 [8,9] ➾ elem 3 [9] ➾ elem 3 [] ➾ False

elem 3 [3,7,8,9] ➾ True

Complexity depends on input size and value



Variation across inputs

Worst case complexity 

Maximum running time over all inputs of size n 

Pessimistic: may be rare 

Average case 

More realistic, but difficult/impossible to compute
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Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

f(n) = O(g(n)) if there is a constant k such that 
f(n) ≤ k g(n) for all n > 0

an2 + bn + c = O(n2) for all a,b,c 
(take k = a+b+c if a,b,c > 0)

Ignore constant factors, lower order terms

 O(n), O(n log n), O(nk), O(2n), …



Asymptotic complexity …

Complexity of ++ is O(n), where n is the length of the first list 

Complexity of elem is O(n) 

Worst case!
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Complexity of reverse

myreverse :: [a] -> [a]  
myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

Analyze directly (like ++), or write a recurrence for T(n)

T(0) = 1  
T(n) = T(n-1) + n

Solve by expanding the recurrence
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Complexity of reverse …

T(n)  = T(n-1) + n 

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n =  1 + n(n+1)/2 

T(0) = 1  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Complexity of reverse …

T(n)  = T(n-1) + n 

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n =  1 + n(n+1)/2 

= O(n2)

T(0) = 1  
T(n) = T(n-1) + n
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Speeding up reverse

Can we do better?

Imagine we are reversing a stack of heavy stack of books

Transfer to a new stack, top to bottom

New stack is in reverse order!
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Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1  
T(n) = T(n-1) + 1



Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1  
T(n) = T(n-1) + 1

Expanding: T(n) = 1 + 1 + … + 1 = O(n)



Speeding up reverse …

fastreverse :: [a] -> [a]  
fastreverse l = transfer l []

Complexity is O(n) 

Need to understand the computational model to achieve efficiency



Summary

Measure complexity in Haskell in terms of reduction steps 

Account for input size and values 

Usually worst-case complexity 

Asymptotic complexity 

Ignore constants, lower order terms 

T(n) = O(f(n))
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Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

A single card is sorted

Put second card before/after first

“Insert” third, fourth,… card in correct place

Insertion sort
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Insert an element in a sorted list

insert :: Int -> [Int] -> [Int]  
insert x [] = [x]  
insert x (y:ys)  
  | (x <= y) = x:y:ys  
  | otherwise y:(insert x ys)



Insertion sort : insert

Insert an element in a sorted list

insert :: Int -> [Int] -> [Int]  
insert x [] = [x]  
insert x (y:ys)  
  | (x <= y) = x:y:ys  
  | otherwise y:(insert x ys)

Clearly T(n) = O(n)
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Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

isort = foldr insert []

Recurrence

T(0) = 1  
T(n) = T(n-1) + O(n)

Complexity: T(n) = O(n2)



A better strategy?

Divide list in two equal parts 

Separately sort left and right half 

Combine the two sorted halves to get the full list sorted



Combining sorted lists

Given two sorted lists l1 and l2, combine into a sorted list l3 

Compare first element of l1 and l2 

Move it into l3 

Repeat until all elements in l1 and l2 are over 

Merging l1 and l2
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Merging two sorted lists

32 74 89

21 55 64

21 32 55 64 74 89
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Merge Sort

Sort l!!0 to l!!(n/2-1)

Sort l!!(n/2) to l!!(n-1)

Merge sorted halves into l'

How do we sort the halves?

Recursively, using the same strategy!
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Merge Sort

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78 13 57 63 91

13 22 32 43 57 63 78 91
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Merge sort : merge

merge :: [Int] -> [Int] -> [Int}  
merge [] ys = ys  
merge xs [] = xs  
 
merge (x:xs) (y:ys)  
  | x <= y    = x:(merge xs (y:ys))  
  | otherwise = y:(merge (x:xs) ys)

Each comparison adds one element to output

T(n) = O(n), where n is sum of lengths of input lists



Merge sort

mergesort :: [Int] -> [Int]  
mergesort [] = []  
mergesort [x] = [x]  
mergesort l = merge (mergesort (front l))  
                    (mergesort (back l))  
  where  
  front l = take ((length l) `div` 2) l  
  back l = drop ((length l) `div` 2) l



Analysis of Merge Sort

T(n): time taken by Merge Sort on input of size n 

Assume, for simplicity, that n = 2k 

T(n) = 2T(n/2) + 2n 

Two subproblems of size n/2 

Splitting the list into front and back takes n steps 

Merging solutions requires time O(n/2+n/2) = O(n) 

Solve the recurrence by unwinding
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Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n 

  = 2 [ 2T(n/4) + n] + 2n = 22 T(n/22) + 4n

     = 22 [ 2T(n/23) + 2n/22] + 4n = 23 T(n/23) + 6n 
         …

  = 2j T(n/2j) + 2jn

When j = log n, n/2j = 1, so T(n/2j) = 1

T(n) = 2j T(n/2j) + 2jn = 2log n + 2(log n) n = 
n + 2n log n = O(n log n)
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Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to 
the right?

Suppose the median value in list is m

Move all values ≤ m to left half of list

Right half has values > m

Recursively sort left and right halves

List is now sorted!  No need to merge
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Avoid merging …

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list — pivot

Split list with respect to this pivot element
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Quicksort

Choose a pivot element

Typically the first value in the list

Partition list into lower and upper parts with respect to pivot

Move pivot between lower and upper partition

Recursively sort the two partitions
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Quicksort

High level view

13 22 32 43 57 63 78 91



Quicksort

quicksort :: [Int] -> [Int]  
quicksort [] = []  
quicksort (x:xs) = (quicksort lower) ++  
                   [splitter] ++  
                   (quicksort upper)  
   where  
   splitter = x  
   lower    = [ y | y <- xs, y <= x ]  
   upper    = [ y | y <- xs, y > x ]



Analysis of Quicksort

Worst case 

Pivot is maximum or minimum 

One partition is empty 

Other is size n-1 

T(n) = T(n-1) + n = T(n-2) + (n-1) + n 
      = … = 1 + 2 + … + n = O(n2) 

Already sorted array is worst case input!



Analysis of Quicksort

But … 

Average case is O(n log n) 

Sorting is a rare example where average case can be computed 

What does average case mean?



Quicksort: Average case

Assume input is a permutation of {1,2,…,n} 

Actual values not important 

Only relative order matters 

Each input is equally likely (uniform probability) 

Calculate running time across all inputs 

Expected running time can be shown O(n log n)



Summary

Sorting is an important starting point for many functions on lists 

Insertion sort is a natural inductive sort whose complexity is O(n2) 

Merge sort has complexity O(n log n) 

Quicksort has worst-case complexity O(n2) but average-case 
complexity O(n log n)


