
LECTURE 11

SEPTEMBER 10, 2015

S P SURESH
CHENNAI MATHEMATICAL INSTITUTE

Programming in Haskell
Aug-Nov 2015

Measuring efficiency

Measuring efficiency

Computation is reduction

Application of definitions as rewriting rules

Measuring efficiency

Computation is reduction

Application of definitions as rewriting rules

Count the number of reduction steps

Running time is T(n) for input size n

Example: Complexity of ++

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

1:(2:([3] ++ [4,5,6])) ➾

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

1:(2:([3] ++ [4,5,6])) ➾

1:(2:(3:([] ++ [4,5,6]))) ➾

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

1:(2:([3] ++ [4,5,6])) ➾

1:(2:(3:([] ++ [4,5,6]))) ➾

1:(2:(3:([4,5,6])))

Example: Complexity of ++

[] ++ y = y  
(x:xs) ++ y = x:(xs++y)

[1,2,3] ++ [4,5,6] ➾

1:([2,3] ++ [4,5,6]) ➾

1:(2:([3] ++ [4,5,6])) ➾

1:(2:(3:([] ++ [4,5,6]))) ➾

1:(2:(3:([4,5,6])))

l1 ++ l2 : use the second rule length l1 times, first rule once, always

Example: elem

Example: elem

elem :: Int -> [Int] -> Bool  
elem i [] = False  
elem i (x:xs)  
 | (i==x) = True  
 | otherwise = elem i xs

Example: elem

elem :: Int -> [Int] -> Bool  
elem i [] = False  
elem i (x:xs)  
 | (i==x) = True  
 | otherwise = elem i xs

elem 3 [4,7,8,9] ➾ elem 3 [7,8,9] ➾ 
elem 3 [8,9] ➾ elem 3 [9] ➾ elem 3 [] ➾ False

Example: elem

elem :: Int -> [Int] -> Bool  
elem i [] = False  
elem i (x:xs)  
 | (i==x) = True  
 | otherwise = elem i xs

elem 3 [4,7,8,9] ➾ elem 3 [7,8,9] ➾ 
elem 3 [8,9] ➾ elem 3 [9] ➾ elem 3 [] ➾ False

elem 3 [3,7,8,9] ➾ True

Example: elem

elem :: Int -> [Int] -> Bool  
elem i [] = False  
elem i (x:xs)  
 | (i==x) = True  
 | otherwise = elem i xs

elem 3 [4,7,8,9] ➾ elem 3 [7,8,9] ➾ 
elem 3 [8,9] ➾ elem 3 [9] ➾ elem 3 [] ➾ False

elem 3 [3,7,8,9] ➾ True

Complexity depends on input size and value

Variation across inputs

Worst case complexity

Maximum running time over all inputs of size n

Pessimistic: may be rare

Average case

More realistic, but difficult/impossible to compute

Asymptotic complexity

Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

f(n) = O(g(n)) if there is a constant k such that 
f(n) ≤ k g(n) for all n > 0

Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

f(n) = O(g(n)) if there is a constant k such that 
f(n) ≤ k g(n) for all n > 0

an2 + bn + c = O(n2) for all a,b,c 
(take k = a+b+c if a,b,c > 0)

Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

f(n) = O(g(n)) if there is a constant k such that 
f(n) ≤ k g(n) for all n > 0

an2 + bn + c = O(n2) for all a,b,c 
(take k = a+b+c if a,b,c > 0)

Ignore constant factors, lower order terms

Asymptotic complexity

Interested in T(n) in terms of orders of magnitude

f(n) = O(g(n)) if there is a constant k such that 
f(n) ≤ k g(n) for all n > 0

an2 + bn + c = O(n2) for all a,b,c 
(take k = a+b+c if a,b,c > 0)

Ignore constant factors, lower order terms

 O(n), O(n log n), O(nk), O(2n), …

Asymptotic complexity …

Complexity of ++ is O(n), where n is the length of the first list

Complexity of elem is O(n)

Worst case!

Complexity of reverse

Complexity of reverse

myreverse :: [a] -> [a]  
myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

Complexity of reverse

myreverse :: [a] -> [a]  
myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

Analyze directly (like ++), or write a recurrence for T(n)

Complexity of reverse

myreverse :: [a] -> [a]  
myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

Analyze directly (like ++), or write a recurrence for T(n)

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse

myreverse :: [a] -> [a]  
myreverse [] = []  
myreverse (x:xs) = (myreverse xs) ++ [x]

Analyze directly (like ++), or write a recurrence for T(n)

T(0) = 1  
T(n) = T(n-1) + n

Solve by expanding the recurrence

Complexity of reverse …

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

= T(0) + 1 + 2 + ... + n

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n = 1 + n(n+1)/2

T(0) = 1  
T(n) = T(n-1) + n

Complexity of reverse …

T(n) = T(n-1) + n

= (T(n-2) + n-1) + n

= (T(n-3) + n-2) + n-1 + n

...

= T(0) + 1 + 2 + ... + n

= 1 + 1 + 2 + ... + n = 1 + n(n+1)/2

= O(n2)

T(0) = 1  
T(n) = T(n-1) + n

Speeding up reverse

Speeding up reverse

Can we do better?

Speeding up reverse

Can we do better?

Imagine we are reversing a stack of heavy stack of books

Speeding up reverse

Can we do better?

Imagine we are reversing a stack of heavy stack of books

Transfer to a new stack, top to bottom

Speeding up reverse

Can we do better?

Imagine we are reversing a stack of heavy stack of books

Transfer to a new stack, top to bottom

New stack is in reverse order!

Speeding up reverse …

Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1  
T(n) = T(n-1) + 1

Speeding up reverse …

transfer :: [a] -> [a] -> [a]  
transfer [] l = l  
transfer (x:xs) l = transfer xs (x:l)

Input size for transfer l1 l2 is length l1

Recurrence

T(0) = 1  
T(n) = T(n-1) + 1

Expanding: T(n) = 1 + 1 + … + 1 = O(n)

Speeding up reverse …

fastreverse :: [a] -> [a]  
fastreverse l = transfer l []

Complexity is O(n)

Need to understand the computational model to achieve efficiency

Summary

Measure complexity in Haskell in terms of reduction steps

Account for input size and values

Usually worst-case complexity

Asymptotic complexity

Ignore constants, lower order terms

T(n) = O(f(n))

Sorting

Sorting

Goal is to arrange a list in ascending order

Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

A single card is sorted

Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

A single card is sorted

Put second card before/after first

Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

A single card is sorted

Put second card before/after first

“Insert” third, fourth,… card in correct place

Sorting

Goal is to arrange a list in ascending order

How would we start a pack of cards?

A single card is sorted

Put second card before/after first

“Insert” third, fourth,… card in correct place

Insertion sort

Insertion sort : insert

Insertion sort : insert

Insert an element in a sorted list

Insertion sort : insert

Insert an element in a sorted list

insert :: Int -> [Int] -> [Int]  
insert x [] = [x]  
insert x (y:ys)  
 | (x <= y) = x:y:ys  
 | otherwise y:(insert x ys)

Insertion sort : insert

Insert an element in a sorted list

insert :: Int -> [Int] -> [Int]  
insert x [] = [x]  
insert x (y:ys)  
 | (x <= y) = x:y:ys  
 | otherwise y:(insert x ys)

Clearly T(n) = O(n)

Insertion sort : isort

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

isort = foldr insert []

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

isort = foldr insert []

Recurrence

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

isort = foldr insert []

Recurrence

T(0) = 1  
T(n) = T(n-1) + O(n)

Insertion sort : isort
isort :: [Int] -> [Int]  
isort [] = []  
isort (x:xs) = insert x (isort xs)

Alternatively

isort = foldr insert []

Recurrence

T(0) = 1  
T(n) = T(n-1) + O(n)

Complexity: T(n) = O(n2)

A better strategy?

Divide list in two equal parts

Separately sort left and right half

Combine the two sorted halves to get the full list sorted

Combining sorted lists

Given two sorted lists l1 and l2, combine into a sorted list l3

Compare first element of l1 and l2

Move it into l3

Repeat until all elements in l1 and l2 are over

Merging l1 and l2

Merging two sorted lists

32 74 89

21 55 64

Merging two sorted lists

32 74 89

21 55 64

21

Merging two sorted lists

32 74 89

21 55 64

21 32

Merging two sorted lists

32 74 89

21 55 64

21 32 55

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64 74

Merging two sorted lists

32 74 89

21 55 64

21 32 55 64 74 89

Merge Sort

Merge Sort

Sort l!!0 to l!!(n/2-1)

Merge Sort

Sort l!!0 to l!!(n/2-1)

Sort l!!(n/2) to l!!(n-1)

Merge Sort

Sort l!!0 to l!!(n/2-1)

Sort l!!(n/2) to l!!(n-1)

Merge sorted halves into l'

Merge Sort

Sort l!!0 to l!!(n/2-1)

Sort l!!(n/2) to l!!(n-1)

Merge sorted halves into l'

How do we sort the halves?

Merge Sort

Sort l!!0 to l!!(n/2-1)

Sort l!!(n/2) to l!!(n-1)

Merge sorted halves into l'

How do we sort the halves?

Recursively, using the same strategy!

Merge Sort

43 32 22 78 63 57 91 13

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

Merge Sort

43 32 22 78 63 57 91 13

63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78

Merge Sort

43 32 22 78 63 57 91 13

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78 13 57 63 91

Merge Sort

43 32 22 78 63 57 91 13

32 43 22 78 57 63 13 91

22 32 43 78 13 57 63 91

13 22 32 43 57 63 78 91

Merge sort : merge

Merge sort : merge

merge :: [Int] -> [Int] -> [Int}  
merge [] ys = ys  
merge xs [] = xs  
 
merge (x:xs) (y:ys)  
 | x <= y = x:(merge xs (y:ys))  
 | otherwise = y:(merge (x:xs) ys)

Merge sort : merge

merge :: [Int] -> [Int] -> [Int}  
merge [] ys = ys  
merge xs [] = xs  
 
merge (x:xs) (y:ys)  
 | x <= y = x:(merge xs (y:ys))  
 | otherwise = y:(merge (x:xs) ys)

Each comparison adds one element to output

Merge sort : merge

merge :: [Int] -> [Int] -> [Int}  
merge [] ys = ys  
merge xs [] = xs  
 
merge (x:xs) (y:ys)  
 | x <= y = x:(merge xs (y:ys))  
 | otherwise = y:(merge (x:xs) ys)

Each comparison adds one element to output

T(n) = O(n), where n is sum of lengths of input lists

Merge sort

mergesort :: [Int] -> [Int]  
mergesort [] = []  
mergesort [x] = [x]  
mergesort l = merge (mergesort (front l))  
 (mergesort (back l))  
 where  
 front l = take ((length l) `div` 2) l  
 back l = drop ((length l) `div` 2) l

Analysis of Merge Sort

T(n): time taken by Merge Sort on input of size n

Assume, for simplicity, that n = 2k

T(n) = 2T(n/2) + 2n

Two subproblems of size n/2

Splitting the list into front and back takes n steps

Merging solutions requires time O(n/2+n/2) = O(n)

Solve the recurrence by unwinding

Analysis of Merge Sort …

Analysis of Merge Sort …
T(1) = 1

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

 = 2 [2T(n/4) + n] + 2n = 22 T(n/22) + 4n

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

 = 2 [2T(n/4) + n] + 2n = 22 T(n/22) + 4n

 = 22 [2T(n/23) + 2n/22] + 4n = 23 T(n/23) + 6n 
 …

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

 = 2 [2T(n/4) + n] + 2n = 22 T(n/22) + 4n

 = 22 [2T(n/23) + 2n/22] + 4n = 23 T(n/23) + 6n 
 …

 = 2j T(n/2j) + 2jn

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

 = 2 [2T(n/4) + n] + 2n = 22 T(n/22) + 4n

 = 22 [2T(n/23) + 2n/22] + 4n = 23 T(n/23) + 6n 
 …

 = 2j T(n/2j) + 2jn

When j = log n, n/2j = 1, so T(n/2j) = 1

Analysis of Merge Sort …
T(1) = 1

T(n) = 2T(n/2) + 2n

 = 2 [2T(n/4) + n] + 2n = 22 T(n/22) + 4n

 = 22 [2T(n/23) + 2n/22] + 4n = 23 T(n/23) + 6n 
 …

 = 2j T(n/2j) + 2jn

When j = log n, n/2j = 1, so T(n/2j) = 1

T(n) = 2j T(n/2j) + 2jn = 2log n + 2(log n) n = 
n + 2n log n = O(n log n)

Avoid merging

Avoid merging
Some elements in left half move right and vice versa

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Suppose the median value in list is m

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Suppose the median value in list is m

Move all values ≤ m to left half of list

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Suppose the median value in list is m

Move all values ≤ m to left half of list

Right half has values > m

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Suppose the median value in list is m

Move all values ≤ m to left half of list

Right half has values > m

Recursively sort left and right halves

Avoid merging
Some elements in left half move right and vice versa

Can we ensure that everything to the left is smaller than everything to
the right?

Suppose the median value in list is m

Move all values ≤ m to left half of list

Right half has values > m

Recursively sort left and right halves

List is now sorted! No need to merge

Avoid merging …

Avoid merging …

How do we find the median?

Avoid merging …

How do we find the median?

Sort and pick up middle element

Avoid merging …

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Avoid merging …

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list — pivot

Avoid merging …

How do we find the median?

Sort and pick up middle element

But our aim is to sort!

Instead, pick up some value in list — pivot

Split list with respect to this pivot element

Quicksort

Quicksort

Choose a pivot element

Quicksort

Choose a pivot element

Typically the first value in the list

Quicksort

Choose a pivot element

Typically the first value in the list

Partition list into lower and upper parts with respect to pivot

Quicksort

Choose a pivot element

Typically the first value in the list

Partition list into lower and upper parts with respect to pivot

Move pivot between lower and upper partition

Quicksort

Choose a pivot element

Typically the first value in the list

Partition list into lower and upper parts with respect to pivot

Move pivot between lower and upper partition

Recursively sort the two partitions

Quicksort

High level view

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

43 32 22 78 63 57 91 13

Quicksort

High level view

13 32 22 43 63 57 91 78

Quicksort

High level view

13 22 32 43 57 63 78 91

Quicksort

quicksort :: [Int] -> [Int]  
quicksort [] = []  
quicksort (x:xs) = (quicksort lower) ++  
 [splitter] ++  
 (quicksort upper)  
 where  
 splitter = x  
 lower = [y | y <- xs, y <= x]  
 upper = [y | y <- xs, y > x]

Analysis of Quicksort

Worst case

Pivot is maximum or minimum

One partition is empty

Other is size n-1

T(n) = T(n-1) + n = T(n-2) + (n-1) + n 
 = … = 1 + 2 + … + n = O(n2)

Already sorted array is worst case input!

Analysis of Quicksort

But …

Average case is O(n log n)

Sorting is a rare example where average case can be computed

What does average case mean?

Quicksort: Average case

Assume input is a permutation of {1,2,…,n}

Actual values not important

Only relative order matters

Each input is equally likely (uniform probability)

Calculate running time across all inputs

Expected running time can be shown O(n log n)

Summary

Sorting is an important starting point for many functions on lists

Insertion sort is a natural inductive sort whose complexity is O(n2)

Merge sort has complexity O(n log n)

Quicksort has worst-case complexity O(n2) but average-case
complexity O(n log n)

