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λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The setΛ of lambda expressions is given by

Λ= x | λx.M |M N

where x � Var and M ,N �Λ.
• Basic rule for computation (rewriting) is calledβ-reduction (or contraction)

• (λx.M )N −−→β M [x :=N ]
• M [x :=N ]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free variables of N
in M
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Church numerals

• [n] = λ f x. f n x

• f 0x = x
• f n+1x = f ( f n x)
• Thus f n x = f ( f (· · · ( f x) · · · )), where f is applied repeatedly n times

• For instance

• [0] = λ f x.x
• [1] = λ f x. f x
• [2] = λ f x. f ( f x)
• [3] = λ f x. f ( f ( f x))
• …

• [n] g y = (λ f x. f (· · · ( f x) · · · ))g y
∗−−→β g (· · · (g y) · · · ) = g n y
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Encoding arithmetic functions

• Successor function: succ(n) = n+ 1

• [succ] = λp f x. f (p f x)

• For all n, [succ] [n] ∗−−→β [n+ 1]

• [succ] [n]
(λp f x. f (p f x)) [n] −−→β λ f x. f ([n] f x)

∗−−→β λ f x. f ( f n x)
= λ f x. f n+1x
= [n+ 1]
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Encoding arithmetic functions

• Addition: plus(m, n) = m+ n

• [plus] = λpq f x. p f (q f x)

• For all m and n, [plus] [m+ n] ∗−−→β [m+ n]

• [plus] [m] [n]
(λpq f x.p f (q f x)) [m] [n] −−→β λq f x. [m] f (q f x)

−−→β λ f x. [m] f ([n] f x)
∗−−→β λ f x. f m([n] f x)
∗−−→β λ f x. f m( f n x)
= λ f x. f m+n x
= [m+ n]
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Encoding arithmetic functions

• Multiplication: mult(m, n) = mn

• [mult] = λpq f x. p(q f )x

• For all m ≥ 0, ([n] f )m x
∗−−→β f mn x

• ([n] f )0x = x = f 0·n x
• ([n] f )m+1x = ([n] f )(([n] f )m x)∗−−→β [n] f ( f mn x)

∗−−→β f m( f mn x) = f mn+m x = f (m+1)n x

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λpq f x.p(q f )x) [m] [n] ∗−−→β λ f x. [m] ([n] f )x
= λ f x.(λg y.g m y)([n] f )x∗−−→β λ f x.([n] f )m x
∗−−→β λ f x. f mn x = [mn]
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Encoding arithmetic functions

• Exponentiation: exp(m, n) = mn

• exp(0,0) is taken to be 1

• [exp] = λpq f x.q p f x

• For all m and n, [exp] [m] [n] ∗−−→β [mn]

• Proof: Exercise!
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Computability

• Church numerals encode n � N

• Can we encode computable functions f :Nk →N?

• Let [ f ] be the encoding of f
• We want [ f ] [n1] · · · [nk]

∗−−→β [ f (n1, . . . , nk )]

• We need a syntax for computable functions
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Recursive functions

• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines

Definition
f :Nk →N is obtained by composition from g :Nℓ→N and
h1, . . . , hℓ :Nk →N if

f (n⃗) = g (h1(n⃗), . . . , hℓ(n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hℓ)
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Recursive functions

Definition
f :Nk+1→N is obtained by primitive recursion from g :Nk →N and
h :Nk+2→N if

f (0, n⃗) = g (n⃗)
f (n+ 1, n⃗) = h(n, f (n, n⃗), n⃗)

• Equivalent to computing a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) { // computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;

• Note If g and h are total functions, so is f
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Recursive functions

Definition
f :Nk →N is obtained byµ-recursion or minimization from g :Nk+1→N if

f (n⃗) =
¨

n if g (n, n⃗) = 0 and ∀m < n : g (m, n⃗)> 0
undefined otherwise

Notation: f (n⃗) =µn(g (n, n⃗) = 0)

• Equivalent to computing a while loop:
n = 0;

while (g(n, n1, ..., nk) > 0) {n = n + 1;}

return n;

• f need not be total even if g is
• If f (n⃗) = n, then g (m, n⃗) is defined for all m ≤ n
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Recursive functions

Definition
The class of primitive recursive functions is the smallest class of functions

1 containing the initial functions

Zero Z(n) = 0
Successor S(n) = n+ 1
Projection Πk

i (n1, . . . , nk) = ni

2 closed under composition and primitive recursion

Definition
The class of (partial) recursive functions is the smallest class of functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization
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Recursive functions: Examples

• f (n) = n+ 2 is S ◦ S

• plus(n, m) = n+m is got by primitive recursion from g =Π1
1 and

h = S ◦Π3
2

plus(0, m) = g (m) = Π1
1(m)

= m
plus(n+ 1, m) = h(n,plus(n, m), m)

= S ◦Π3
2(n,plus(n, m), m) = S(plus(n, m))
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Recursive functions: Examples

• mult(n, m) = nm is got by primitive recursion from g = Z and
h = plus ◦ (Π3

2,Π3
3)

mult(0, m) = g (m) = Z(m)
= 0

mult(n+ 1, m) = h(n,plus(n, m), m)
= plus ◦ (Π3

2,Π3
3)(n,mult(n, m), m)

= nm+m
= (n+ 1)m

• f (m) = log2 m is defined by minimization from g (n, m) = m− 2n

• First n such that m− 2n = 0 is log2 m
• Not defined for all m!
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