
Mutual Exclusion

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

72

Filter
class Filter implements Lock {
 int[] level; // level[i] for thread i
 int[] victim; // victim[L] for level L

 public Filter(int n) {

 level = new int[n];

 victim = new int[n];

 for (int i = 1; i < n; i++) {

 level[i] = 0;

 }}

…

}

level

victim

n-1

n-1

0

1

0 0 0 0 0 0 4

2

2

Thread 2 at level 4

0

4

Art of Multiprocessor
Programming

73

Filter
class Filter implements Lock {
 …

 public void lock(){
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i level[k] >= L) &&
 victim[L] == i);
 }}
 public void unlock() {
 level[i] = 0;
 }}

Art of Multiprocessor
Programming

74

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

One level at a time

Art of Multiprocessor
Programming

75

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i); // busy wait
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Announce
intention to
enter level L

Art of Multiprocessor
Programming

76

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Give priority to
anyone but me

Art of Multiprocessor
Programming

77

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter
Wait as long as someone else is at same or

higher level, and I’m designated victim

Art of Multiprocessor
Programming

78

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Thread enters level L when it completes
the loop

Art of Multiprocessor
Programming

79

Claim
•  Start at level L=0
•  At most n-L threads enter level L
•  Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

Art of Multiprocessor
Programming

80

Induction Hypothesis

•  Assume all at level
L-1 enter level L

•  A last to write
victim[L]

•  B is any other
thread at level L

•  No more than n-L+1 at level L-1
•  Induction step: by contradiction

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove

Art of Multiprocessor
Programming

81

Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4
n-L+1 = 4

A B

Last to
write
victim[L]

Show that A must have seen
B in level[L] and since victim[L] == A
could not have entered

Art of Multiprocessor
Programming

82

From the Code

(1) writeB(level[B]=L)èwriteB(victim[L]=B)

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

83

From the Code

(2) writeA(victim[L]=A)èreadA(level[B])

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

84

By Assumption

By assumption, A is the last
thread to write victim[L]

(3) writeB(victim[L]=B)èwriteA(victim[L]=A)

Art of Multiprocessor
Programming

85

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Art of Multiprocessor
Programming

86

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Art of Multiprocessor
Programming

87

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Thus, A read level[B] ≥ L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor
Programming

88

No Starvation

•  Filter Lock satisfies properties:
–  Just like Peterson Alg at any level
–  So no one starves

•  But what about fairness?
–  Threads can be overtaken by others

Art of Multiprocessor
Programming

89

Bounded Waiting

•  Want stronger fairness guarantees
•  Thread not “overtaken” too much
•  Need to adjust definitions ….

Art of Multiprocessor
Programming

90

Bounded Waiting

•  Divide lock() method into 2 parts:
–  Doorway interval:

• Written DA

•  always finishes in finite steps
– Waiting interval:

• Written WA
• may take unbounded steps

Art of Multiprocessor
Programming

91

•  For threads A and B:
–  If DA

k è DB
j

•  A’s k-th doorway precedes B’s j-th doorway
–  Then CSA

k è CSB
j+r

•  A’s k-th critical section precedes B’s (j+r)-
th critical section

•  B cannot overtake A by more than r times

•  First-come-first-served means r = 0.

r-Bounded Waiting

Art of Multiprocessor
Programming

92

Fairness Again

•  Filter Lock satisfies properties:
– No one starves
–  But very weak fairness

• Not r-bounded for any r!
–  That’s pretty lame…

Art of Multiprocessor
Programming

93

Bakery Algorithm

•  Provides First-Come-First-Served
•  How?

–  Take a “number”
– Wait until lower numbers have been

served
•  Lexicographic order

–  (a,i) > (b,j)
•  If a > b, or a = b and i > j

Art of Multiprocessor
Programming

94

Bakery Algorithm
class Bakery implements Lock {

 boolean[] flag;

 Label[] label;

 public Bakery (int n) {

 flag = new boolean[n];

 label = new Label[n];

 for (int i = 0; i < n; i++) {

 flag[i] = false; label[i] = 0;

 }

 }

 …

Art of Multiprocessor
Programming

95

Bakery Algorithm
class Bakery implements Lock {

 boolean[] flag;

 Label[] label;

 public Bakery (int n) {

 flag = new boolean[n];

 label = new Label[n];

 for (int i = 0; i < n; i++) {

 flag[i] = false; label[i] = 0;

 }

 }

 …

n-1 0

f f f f t f t

2

f

0 0 0 0 5 0 4 0

6

CS

Art of Multiprocessor
Programming

96

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

97

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Doorway

Art of Multiprocessor
Programming

98

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

I’m interested

Art of Multiprocessor
Programming

99

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Take increasing
label (read labels
in some arbitrary

order)

Art of Multiprocessor
Programming

100

Bakery Algorithm

class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

Art of Multiprocessor
Programming

101

Bakery Algorithm
class Bakery implements Lock {
 boolean flag[n];
 int label[n];

 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Someone is
interested

With lower (label,i) in
lexicographic order

Art of Multiprocessor
Programming

102

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

Art of Multiprocessor
Programming

103

Bakery Algorithm

class Bakery implements Lock {

 …

 public void unlock() {
 flag[i] = false;
 }
}

No longer
interested

labels are always increasing

Art of Multiprocessor
Programming

104

No Deadlock

•  There is always one thread with
earliest label

•  Ties are impossible (why?)

Art of Multiprocessor
Programming

105

First-Come-First-Served
•  If DA è DBthen A’s

label is smaller
•  And:

–  writeA(label[A]) è
readB(label[A]) è
writeB(label[B]) è
readB(flag[A])

•  So B is locked out
while flag[A] is
true

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

106

Mutual Exclusion
•  Suppose A and B in

CS together
•  Suppose A has

earlier label
•  When B entered, it

must have seen
–  flag[A] is false, or
–  label[A] > label[B]

class Bakery implements Lock {

public void lock() {
 flag[i] = true;
 label[i] = max(label[0],
 …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) >
(label[k],k));

 }

Art of Multiprocessor
Programming

107

Mutual Exclusion

•  Labels are strictly increasing so
•  B must have seen flag[A] == false

Art of Multiprocessor
Programming

108

Mutual Exclusion

•  Labels are strictly increasing so
•  B must have seen flag[A] == false
•  LabelingB è readB(flag[A]) è

writeA(flag[A]) è LabelingA

Art of Multiprocessor
Programming

109

Mutual Exclusion

•  Labels are strictly increasing so
•  B must have seen flag[A] == false
•  LabelingB è readB(flag[A]) è

writeA(flag[A]) è LabelingA
•  Which contradicts the assumption

that A has an earlier label

Art of Multiprocessor
Programming

110

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Art of Multiprocessor
Programming

111

Bakery Y232K Bug
class Bakery implements Lock {
 …
 public void lock() {
 flag[i] = true;
 label[i] = max(label[0], …,label[n-1])+1;

 while (∃k flag[k]
 && (label[i],i) > (label[k],k));
 }

Mutex breaks if
label[i] overflows

Art of Multiprocessor
Programming

112

Does Overflow Actually
Matter?

•  Yes
–  Y2K
–  18 January 2038 (Unix time_t rollover)
–  16-bit counters

•  No
–  64-bit counters

•  Maybe
–  32-bit counters

Art of Multiprocessor
Programming

113

Timestamps

•  Label variable is really a timestamp
•  Need ability to

–  Read others’ timestamps
–  Compare them
–  Generate a later timestamp

•  Can we do this without overflow?

Art of Multiprocessor
Programming

114

•  One can construct a
– Wait-free (no mutual exclusion)
–  Concurrent
–  Timestamping system
–  That never overflows

The Good News

Art of Multiprocessor
Programming

115

•  One can construct a
– Wait-free (no mutual exclusion)
–  Concurrent
–  Timestamping system
–  That never overflows

The Good News

This part is hard

Art of Multiprocessor
Programming

116

Instead …

•  We construct a Sequential
timestamping system
–  Same basic idea
–  But simpler

•  Uses mutex to read & write
atomically

•  No good for building locks
–  But useful anyway

Art of Multiprocessor
Programming

117

Precedence Graphs

0 1 2 3
•  Timestamps form directed graph
•  Edge x to y

– Means x is later timestamp
– We say x dominates y

Art of Multiprocessor
Programming

118

Unbounded Counter Precedence
Graph

0 1 2 3
•  Timestamping = move tokens on graph
•  Atomically

–  read others’ tokens
–  move mine

•  Ignore tie-breaking for now

Art of Multiprocessor
Programming

119

Unbounded Counter Precedence
Graph

0 1 2 3

Art of Multiprocessor
Programming

120

Unbounded Counter Precedence
Graph

0 1 2 3

takes 0 takes 1 takes 2

Art of Multiprocessor
Programming

121

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

122

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

123

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

124

Two-Thread Bounded
Precedence Graph

0

1 2

Art of Multiprocessor
Programming

125

Two-Thread Bounded
Precedence Graph T2

0

1 2

and so on …

Art of Multiprocessor
Programming

126

Three-Thread Bounded
Precedence Graph?

1 2

0 3

Art of Multiprocessor
Programming

127

Three-Thread Bounded
Precedence Graph?

1 2

0 3
Not clear what

to do if one
thread gets

stuck

Art of Multiprocessor
Programming

128

Graph Composition

0

1 2

0

1 2

Replace each vertex with a
copy of the graph

T3=T2*T2

Art of Multiprocessor
Programming

129

Three-Thread Bounded
Precedence Graph T3

2
0

1 2
1
0

1 2

0
0

1 2

Art of Multiprocessor
Programming

130

Three-Thread Bounded
Precedence Graph T3

2
0

1 2
1
0

1 2

0
0

1 2

20 02 12 < <

Art of Multiprocessor
Programming

131

Three-Thread Bounded
Precedence Graph T3

2
0

1 2
1

0

1 2

0
0

1 2

and so on…

Art of Multiprocessor
Programming

132

In General
Tk = T2 * Tk-1

K threads need 3k

nodes

label size =
Log2(3k) =
2n

Art of Multiprocessor
Programming

133

Deep Philosophical Question

•  The Bakery Algorithm is
–  Succinct,
–  Elegant, and
–  Fair.

•  Q: So why isn’t it practical?
•  A: Well, you have to read N distinct

variables

Art of Multiprocessor
Programming

134

Shared Memory

•  Shared read/write memory locations
called Registers (historical reasons)

•  Come in different flavors
– Multi-Reader-Single-Writer (Flag[])
– Multi-Reader-Multi-Writer (Victim[])
– Not that interesting: SRMW and SRSW

Art of Multiprocessor
Programming

135

Theorem

At least N MRSW (multi-reader/
single-writer) registers are needed
to solve deadlock-free mutual
exclusion.

N registers like Flag[]…

Art of Multiprocessor
Programming

136

Proving Algorithmic
Impossibility

CS

write

C

• To show no algorithm exists:
•  assume by way of contradiction
 one does,
•  show a bad execution that
 violates properties:
•  in our case assume an alg for deadlock
free mutual exclusion using < N registers

Art of Multiprocessor
Programming

137

Proof: Need N-MRSW Registers
Each thread must write to some register

…can’t tell whether A is in critical
section

write

CS CS CS

write

A B C

Art of Multiprocessor
Programming

138

Upper Bound

•  Bakery algorithm
–  Uses 2N MRSW registers

•  So the bound is (pretty) tight
•  But what if we use MRMW registers?

–  Like victim[] ?

Art of Multiprocessor
Programming

139

Bad News Theorem

At least N MRMW multi-reader/
multi-writer registers are needed
to solve deadlock-free mutual
exclusion.

(So multiple writers don’t help)

Art of Multiprocessor
Programming

140

Theorem (First 2-Threads)
Theorem: Deadlock-free mutual
exclusion for 2 threads requires at
least 2 multi-reader multi-writer
registers

Proof: assume one register suffices
and derive a contradiction

Art of Multiprocessor
Programming

141

Two Thread Execution

•  Threads run, reading and writing R
•  Deadlock free so at least one gets in

B A

CS

Write(R)

CS

R

Art of Multiprocessor
Programming

142

Covering State for One
Register Always Exists

Write(R)

B

In any protocol B has to write to
the register before entering CS,

so stop it just before

Art of Multiprocessor
Programming

143

Proof: Assume Cover of 1

A B

Write(R)

CS

A runs, possibly writes to the
register, enters CS

Art of Multiprocessor
Programming

144

Proof: Assume Cover of 1

A B

CS

B Runs, first
obliterating
any trace of A,
then also enters
the critical
section

Write(R)

CS

Art of Multiprocessor
Programming

145

Theorem

Deadlock-free mutual exclusion for 3
threads requires at least 3 multi-
reader multi-writer registers

