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Mutual Exclusion 

•  Today we will try to formalize our 
understanding of mutual exclusion 

•  We will also use the opportunity to 
show you how to argue about and 
prove various properties in an 
asynchronous concurrent setting 



Mutual Exclusion 

In his 1965 paper E. W. Dijkstra wrote: 
 "Given in this paper is a solution to a problem which, 

to the knowledge of the author, has been an open 
question since at least 1962, irrespective of the 
solvability. [...]  Although the setting of the 
problem might seem somewhat academic at first, 
the author trusts that anyone familiar with the 
logical problems that arise in computer coupling 
will appreciate the significance of the fact that 
this problem indeed can be solved." 
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Mutual Exclusion 

•  Formal problem definitions 
•  Solutions for 2 threads 
•  Solutions for n threads 
•  Fair solutions 
•  Inherent costs 
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Warning 

•  You will never use these protocols 
–  Get over it 

•  You are advised to understand them 
–  The same issues show up everywhere 
–  Except hidden and more complex 
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Why is Concurrent Programming 
so Hard? 

•  Try preparing a seven-course banquet 
–  By yourself 
– With one friend 
– With twenty-seven friends … 

•  Before we can talk about programs 
– Need a language 
–  Describing time and concurrency 
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•  “Absolute, true and mathematical 
time, of itself and from its own 
nature, flows equably without relation 
to anything external.” (I. Newton, 
1689) 

 
•  “Time is, like, Nature’s way of making 

sure that everything doesn’t happen 
all at once.” (Anonymous, circa 1968) 

Time 

time 
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time 

•  An event  a0 of thread A is 
–  Instantaneous 
– No simultaneous events (break ties) 

a0 

Events 
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time 

•  A thread A is (formally) a sequence 
a0, a1, ... of events  
–  “Trace” model 
– Notation: a0 è a1 indicates order 

a0 

Threads 

a1 a2 … 
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•  Assign to shared variable 
•  Assign to local variable 
•  Invoke method 
•  Return from method 
•  Lots of other things … 

Example Thread Events 
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Threads are State Machines 

Events are 
transitions 

a0 

a1 a2 

a3 
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States 

•  Thread State 
–  Program counter 
–  Local variables 

•  System state 
– Object fields (shared variables) 
–  Union of thread states 
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time 

•  Thread A 

Concurrency 
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time 

time 

•  Thread A 

•  Thread B 

Concurrency 
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time 

Interleavings 

•  Events of two or more threads 
–  Interleaved 
– Not necessarily independent (why?) 
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time 

•  An interval  A0 =(a0,a1) is 
–  Time between events a0 and a1  

a0 a1 

Intervals 

A0 
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time 

Intervals may Overlap 

a0 a1 A0 

b0 b1 B0 
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time 

Intervals may be Disjoint 

a0 a1 A0 

b0 b1 B0 
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time 

Precedence 

a0 a1 A0 

b0 b1 B0 

Interval A0 precedes interval B0 
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Precedence 

•  Notation: A0 è B0 
•  Formally, 

–  End event of A0 before start event of B0 

–  Also called “happens before” or 
“precedes”  
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Precedence Ordering 

•  Remark: A0 è B0 is just like saying  
–  1066 AD è 1492 AD,  
– Middle Ages è Renaissance, 

•  Oh wait,  
–  what about this week vs this month? 
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Precedence Ordering 

•  Never true that A è A  
•  If A èB then not true that B èA 
•  If A èB & B èC then A èC 
•  Funny thing: A èB & B èA might both 

be false!  
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Partial Orders 
(you may know this already) 

•  Irreflexive: 
– Never true that A è A  

•  Antisymmetric: 
–  If A è B then not true that B è A  

•  Transitive: 
–  If A è B & B è C then A è C 
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Total Orders 
(you may know this already) 

•  Also 
–  Irreflexive 
–  Antisymmetric 
–  Transitive 

•  Except that for every distinct A, B, 
–  Either A è B or B è A  
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Repeated Events 
while (mumble) { 

  a0; a1; 

}   

a0
k 

k-th occurrence 
of event a0 

A0
k 

k-th occurrence of 
interval A0 =(a0,a1) 
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Implementing a Counter 

public class Counter { 
  private long value; 
 
  public long getAndIncrement() { 
    temp  = value; 
    value = temp + 1; 
    return temp; 
  } 
} 

Make these steps 
indivisible using 

locks 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 
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Locks (Mutual Exclusion) 

public interface Lock { 
 
 

 public void lock(); 
 
 public void unlock(); 
} 

acquire lock 



Art of Multiprocessor 
Programming 

29 

Locks (Mutual Exclusion) 

public interface Lock { 
 
 public void lock(); 
 
 public void unlock(); 
} 

release lock 

acquire lock 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

acquire Lock 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Release lock 
(no matter what) 
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Using Locks 
public class Counter { 
  private long value; 
  private Lock lock; 
  public long getAndIncrement() { 
   lock.lock(); 
   try { 
    int temp = value; 
    value = value + 1; 
   } finally { 
     lock.unlock(); 
   } 
   return temp; 

  }} 

Critical 
section 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical 
section execution 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical 
section execution 

•  And CSj
m      be thread j’s m-th critical 

section execution 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical 
section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical 
section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k è CSj

m 
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Mutual Exclusion 
•  Let CSi

k      be thread i’s k-th critical 
section execution 

•  And CSj
m      be j’s m-th execution 

•  Then either 
–             or 

CSi
k è CSj

m 

   

CSj
m è CSi

k 
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Deadlock-Free 

•  If some thread calls lock() 
–  And never returns 
–  Then other threads must complete lock() 

and unlock() calls infinitely often 
•  System as a whole makes progress 

–  Even if individuals starve 
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Starvation-Free 

•  If some thread calls lock() 
–  It will eventually return 

•  Individual threads make progress 
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Two-Thread vs n -Thread 
Solutions 

•  Two-thread solutions first 
–  Illustrate most basic ideas 
–  Fits on one slide 

•  Then n-Thread solutions  
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  } 
} 

Two-Thread Conventions 
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class … implements Lock { 
  … 
  // thread-local index, 0 or 1 
  public void lock() { 
    int i = ThreadID.get(); 
    int j = 1 - i;  
  … 

  }   
} 

Two-Thread Conventions 

Henceforth: i is current 
thread, j is other thread 
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LockOne 
class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2]; 
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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LockOne 
class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

Set my flag 
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class LockOne implements Lock { 
private boolean[] flag =  
                        new boolean[2];  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 

LockOne 

Wait for other 
flag to go false 

Set my flag 
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•  Assume CSA
j overlaps CSB

k 
•  Consider each thread's last (j-th 

and k-th) read and write in the 
lock() method before entering  

•  Derive a contradiction 

LockOne Satisfies Mutual 
Exclusion 
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•  writeA(flag[A]=true) à 
readA(flag[B]==false) àCSA 

•  writeB(flag[B]=true) à 
readB(flag[A]==false) à CSB 

From the Code 

class LockOne implements Lock { 
…  
public void lock() { 
  flag[i] = true; 
  while (flag[j]) {} 
 } 
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•  readA(flag[B]==false) à 
writeB(flag[B]=true) 

•  readB(flag[A]==false) à 
writeA(flag[B]=true) 

From the Assumption 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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•  Assumptions: 
–  readA(flag[B]==false) à writeB(flag[B]=true) 
–  readB(flag[A]==false) à writeA(flag[A]=true) 

•  From the code 
–  writeA(flag[A]=true) à readA(flag[B]==false) 
–  writeB(flag[B]=true) à readB(flag[A]==false) 

Combining 
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Cycle! 
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Deadlock Freedom 

•  LockOne Fails deadlock-freedom 
–  Concurrent execution can deadlock 

–  Sequential executions OK 

  flag[i] = true;    flag[j] = true; 
  while (flag[j]){}  while (flag[i]){} 
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LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 
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LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Let other go 
first 
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LockTwo 
public class LockTwo implements Lock { 
 private int victim; 
 public void lock() { 
 victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Wait for 
permission 
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LockTwo 
public class Lock2 implements Lock { 
 private int victim; 
 public void lock() { 
  victim = i; 
  while (victim == i) {};  
 } 
 
 public void unlock() {} 
} 

Nothing to do 
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public void LockTwo() { 
  victim = i; 
  while (victim == i) {};  
 } 

LockTwo Claims 

•  Satisfies mutual exclusion 
–  If thread i in CS 
–  Then victim == j 
–  Cannot be both 0 and 1 

•  Not deadlock free 
–  Sequential execution deadlocks 
–  Concurrent execution does not 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
} 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim 
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Peterson’s Algorithm 

public void lock() { 
 flag[i] = true;  
 victim  = i;  
 while (flag[j] && victim == i) {}; 
 } 
public void unlock() { 
 flag[i] = false; 
} 

Announce I’m 
interested 

Defer to other 

Wait while other 
interested & I’m 

the victim No longer 
interested 
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public void lock() { 
  flag[i] = true;  
  victim  = i; 
  while (flag[j] && victim == i) {}; 

Mutual Exclusion 

•  If thread 1 in 
critical section, 
–  flag[1]=true,  
–  victim = 0 

•  If thread 0 in 
critical section, 
–  flag[0]=true,  
–  victim = 1 

Cannot both be true 
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Deadlock Free 

•  Thread blocked  
–  only at while loop 
–  only if it is the victim 

•  One or the other must not be the victim 

public void lock() { 
  … 
  while (flag[j] && victim == i) {}; 
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Starvation Free 
 

•  Thread i blocked 
only if j repeatedly 
re-enters so that 

  flag[j] == true and 
victim == i 

•  When j re-enters 
–  it sets victim to j. 
–  So i gets in 

public void lock() { 
  flag[i] = true;  
  victim    = i; 
  while (flag[j] && victim == i) {}; 
} 
 
public void unlock() { 
  flag[i] = false;   
} 
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The Filter Algorithm for n 
Threads 

There are n-1 “waiting rooms” called 
levels 

•  At each level  
–  At least one enters level 
–  At least one blocked if  
   many try 

•  Only one thread makes it through 

ncs 

cs 
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Filter 
class Filter implements Lock { 
   int[] level;  // level[i] for thread i 
   int[] victim; // victim[L] for level L 
 

  public Filter(int n) { 

  level  = new int[n]; 

  victim = new int[n];  

  for (int i = 1; i < n; i++) { 

      level[i] = 0; 

  }} 

… 

} 
   

level 

victim 

n-1 

n-1 

0 

1 

0 0 0 0 0 0 4 

2 

2 

Thread 2 at level 4 

0 

4 
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Filter 
class Filter implements Lock { 
  … 
 
  public void lock(){ 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i level[k] >= L) && 
             victim[L] == i );  
    }}  
  public void unlock() { 
    level[i] = 0; 
  }} 
   



Art of Multiprocessor 
Programming 

74 

class Filter implements Lock { 
  … 
  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

One level at a time 
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class Filter implements Lock { 
  … 
  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i); // busy wait 
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Announce 
intention to 
enter level L 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Give priority to 
anyone but me 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 
Wait as long as someone else is at same or 

higher level, and I’m designated victim 
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class Filter implements Lock { 
  int level[n];   
  int victim[n];  
  public void lock() { 
    for (int L = 1; L < n; L++) { 
      level[i]  = L; 
      victim[L] = i; 

      while ((∃ k != i) level[k] >= L) && 
             victim[L] == i);  
    }}  
  public void release(int i) { 
    level[i] = 0; 
  }} 
   

Filter 

Thread enters level L when it completes 
the loop 
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Claim 
•  Start at level L=0 
•  At most n-L threads enter level L 
•  Mutual exclusion at level L=n-1 

ncs 

cs L=n-1 

L=1 

L=n-2 

L=0 
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Induction Hypothesis 

•  Assume all at level 
L-1 enter level L 

•  A last to write 
victim[L]  

•  B is any other 
thread at level L 

•   No more than n-L+1 at level L-1  
•   Induction step: by contradiction  

ncs 

cs 

L-1 has n-L+1 
L has n-L 

assume 

prove 
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Proof Structure 
ncs 

cs 

Assumed to enter L-1 

By way of contradiction 
all enter L 

n-L+1 = 4 
n-L+1 = 4 

A B 

Last to  
write 
victim[L] 

Show that A must have seen  
B in level[L] and since victim[L] == A 
could not have entered  
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From the Code 

(1) writeB(level[B]=L)èwriteB(victim[L]=B) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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From the Code 

(2) writeA(victim[L]=A)èreadA(level[B]) 

public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i] = L; 
   victim[L]  = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     
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By Assumption 

By assumption, A is the last 
thread to write victim[L] 

(3) writeB(victim[L]=B)èwriteA(victim[L]=A) 
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Combining Observations 

(1) writeB(level[B]=L)èwriteB(victim[L]=B) 
(3) writeB(victim[L]=B)èwriteA(victim[L]=A) 
(2) writeA(victim[L]=A)èreadA(level[B]) 
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public void lock() { 
 for (int L = 1; L < n; L++) { 
   level[i]  = L; 
   victim[L] = i; 

   while ((∃ k != i) level[k] >= L) 
          && victim[L] == i) {}; 
   }}     

Combining Observations 

(1) writeB(level[B]=L)èwriteB(victim[L]=B) 
(3) writeB(victim[L]=B)èwriteA(victim[L]=A) 
(2) writeA(victim[L]=A)èreadA(level[B]) 
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Combining Observations 

(1) writeB(level[B]=L)èwriteB(victim[L]=B) 
(3) writeB(victim[L]=B)èwriteA(victim[L]=A) 
(2) writeA(victim[L]=A)èreadA(level[B]) 

Thus, A read level[B] ≥ L,  
A was last to write victim[L], 
so it could not have entered level L! 
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No Starvation 

•  Filter Lock satisfies properties: 
–  Just like Peterson Alg at any level 
–  So no one starves  

•  But what about fairness? 
–  Threads can be overtaken by others  
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Bounded Waiting 

•  Want stronger fairness guarantees 
•  Thread not “overtaken” too much 
•  Need to adjust definitions …. 
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Bounded Waiting 

•  Divide lock() method into 2 parts: 
–  Doorway interval: 

• Written DA 

•  always finishes in finite steps 
– Waiting interval: 

• Written WA 
• may take unbounded steps 
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•  For threads A and B: 
–  If DA

k è DB 
j 

•  A’s k-th doorway precedes B’s j-th doorway 
–  Then CSA

k è CSB
j+r 

•  A’s k-th critical section precedes B’s (j+r)-
th critical section 

•  B cannot overtake A by more than r times 

•  First-come-first-served means r = 0. 

r-Bounded Waiting 
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Fairness Again 

•  Filter Lock satisfies properties: 
– No one starves 
–  But very weak fairness 

• Not r-bounded for any r! 
–  That’s pretty lame… 


