
Mutual Exclusion

Companion slides for
The Art of Multiprocessor

Programming
by Maurice Herlihy & Nir Shavit

Art of Multiprocessor
Programming

2

Mutual Exclusion

•  Today we will try to formalize our
understanding of mutual exclusion

•  We will also use the opportunity to
show you how to argue about and
prove various properties in an
asynchronous concurrent setting

Mutual Exclusion

In his 1965 paper E. W. Dijkstra wrote:
 "Given in this paper is a solution to a problem which,

to the knowledge of the author, has been an open
question since at least 1962, irrespective of the
solvability. [...] Although the setting of the
problem might seem somewhat academic at first,
the author trusts that anyone familiar with the
logical problems that arise in computer coupling
will appreciate the significance of the fact that
this problem indeed can be solved."

Art of Multiprocessor
Programming

3

Art of Multiprocessor
Programming

4

Mutual Exclusion

•  Formal problem definitions
•  Solutions for 2 threads
•  Solutions for n threads
•  Fair solutions
•  Inherent costs

Art of Multiprocessor
Programming

5

Warning

•  You will never use these protocols
–  Get over it

•  You are advised to understand them
–  The same issues show up everywhere
–  Except hidden and more complex

Art of Multiprocessor
Programming

6

Why is Concurrent Programming
so Hard?

•  Try preparing a seven-course banquet
–  By yourself
– With one friend
– With twenty-seven friends …

•  Before we can talk about programs
– Need a language
–  Describing time and concurrency

Art of Multiprocessor
Programming

7

•  “Absolute, true and mathematical
time, of itself and from its own
nature, flows equably without relation
to anything external.” (I. Newton,
1689)

•  “Time is, like, Nature’s way of making

sure that everything doesn’t happen
all at once.” (Anonymous, circa 1968)

Time

time

Art of Multiprocessor
Programming

8

time

•  An event a0 of thread A is
–  Instantaneous
– No simultaneous events (break ties)

a0

Events

Art of Multiprocessor
Programming

9

time

•  A thread A is (formally) a sequence
a0, a1, ... of events
–  “Trace” model
– Notation: a0 è a1 indicates order

a0

Threads

a1 a2 …

Art of Multiprocessor
Programming

10

•  Assign to shared variable
•  Assign to local variable
•  Invoke method
•  Return from method
•  Lots of other things …

Example Thread Events

Art of Multiprocessor
Programming

11

Threads are State Machines

Events are
transitions

a0

a1 a2

a3

Art of Multiprocessor
Programming

12

States

•  Thread State
–  Program counter
–  Local variables

•  System state
– Object fields (shared variables)
–  Union of thread states

Art of Multiprocessor
Programming

13

time

•  Thread A

Concurrency

Art of Multiprocessor
Programming

14

time

time

•  Thread A

•  Thread B

Concurrency

Art of Multiprocessor
Programming

15

time

Interleavings

•  Events of two or more threads
–  Interleaved
– Not necessarily independent (why?)

Art of Multiprocessor
Programming

16

time

•  An interval A0 =(a0,a1) is
–  Time between events a0 and a1

a0 a1

Intervals

A0

Art of Multiprocessor
Programming

17

time

Intervals may Overlap

a0 a1 A0

b0 b1 B0

Art of Multiprocessor
Programming

18

time

Intervals may be Disjoint

a0 a1 A0

b0 b1 B0

Art of Multiprocessor
Programming

19

time

Precedence

a0 a1 A0

b0 b1 B0

Interval A0 precedes interval B0

Art of Multiprocessor
Programming

20

Precedence

•  Notation: A0 è B0
•  Formally,

–  End event of A0 before start event of B0

–  Also called “happens before” or
“precedes”

Art of Multiprocessor
Programming

21

Precedence Ordering

•  Remark: A0 è B0 is just like saying
–  1066 AD è 1492 AD,
– Middle Ages è Renaissance,

•  Oh wait,
–  what about this week vs this month?

Art of Multiprocessor
Programming

22

Precedence Ordering

•  Never true that A è A
•  If A èB then not true that B èA
•  If A èB & B èC then A èC
•  Funny thing: A èB & B èA might both

be false!

Art of Multiprocessor
Programming

23

Partial Orders
(you may know this already)

•  Irreflexive:
– Never true that A è A

•  Antisymmetric:
–  If A è B then not true that B è A

•  Transitive:
–  If A è B & B è C then A è C

Art of Multiprocessor
Programming

24

Total Orders
(you may know this already)

•  Also
–  Irreflexive
–  Antisymmetric
–  Transitive

•  Except that for every distinct A, B,
–  Either A è B or B è A

Art of Multiprocessor
Programming

25

Repeated Events
while (mumble) {

 a0; a1;

}

a0
k

k-th occurrence
of event a0

A0
k

k-th occurrence of
interval A0 =(a0,a1)

Art of Multiprocessor
Programming

26

Implementing a Counter

public class Counter {
 private long value;

 public long getAndIncrement() {
 temp = value;
 value = temp + 1;
 return temp;
 }
}

Make these steps
indivisible using

locks

Art of Multiprocessor
Programming

27

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

Art of Multiprocessor
Programming

28

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

acquire lock

Art of Multiprocessor
Programming

29

Locks (Mutual Exclusion)

public interface Lock {

 public void lock();

 public void unlock();
}

release lock

acquire lock

Art of Multiprocessor
Programming

30

Using Locks
public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Art of Multiprocessor
Programming

31

Using Locks
public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

acquire Lock

Art of Multiprocessor
Programming

32

Using Locks
public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Release lock
(no matter what)

Art of Multiprocessor
Programming

33

Using Locks
public class Counter {
 private long value;
 private Lock lock;
 public long getAndIncrement() {
 lock.lock();
 try {
 int temp = value;
 value = value + 1;
 } finally {
 lock.unlock();
 }
 return temp;

 }}

Critical
section

Art of Multiprocessor
Programming

34

Mutual Exclusion
•  Let CSi

k be thread i’s k-th critical
section execution

Art of Multiprocessor
Programming

35

Mutual Exclusion
•  Let CSi

k be thread i’s k-th critical
section execution

•  And CSj
m be thread j’s m-th critical

section execution

Art of Multiprocessor
Programming

36

Mutual Exclusion
•  Let CSi

k be thread i’s k-th critical
section execution

•  And CSj
m be j’s m-th execution

•  Then either
–  or

Art of Multiprocessor
Programming

37

Mutual Exclusion
•  Let CSi

k be thread i’s k-th critical
section execution

•  And CSj
m be j’s m-th execution

•  Then either
–  or

CSi
k è CSj

m

Art of Multiprocessor
Programming

38

Mutual Exclusion
•  Let CSi

k be thread i’s k-th critical
section execution

•  And CSj
m be j’s m-th execution

•  Then either
–  or

CSi
k è CSj

m

CSj
m è CSi

k

Art of Multiprocessor
Programming

39

Deadlock-Free

•  If some thread calls lock()
–  And never returns
–  Then other threads must complete lock()

and unlock() calls infinitely often
•  System as a whole makes progress

–  Even if individuals starve

Art of Multiprocessor
Programming

40

Starvation-Free

•  If some thread calls lock()
–  It will eventually return

•  Individual threads make progress

Art of Multiprocessor
Programming

41

Two-Thread vs n -Thread
Solutions

•  Two-thread solutions first
–  Illustrate most basic ideas
–  Fits on one slide

•  Then n-Thread solutions

Art of Multiprocessor
Programming

42

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Art of Multiprocessor
Programming

43

class … implements Lock {
 …
 // thread-local index, 0 or 1
 public void lock() {
 int i = ThreadID.get();
 int j = 1 - i;
 …

 }
}

Two-Thread Conventions

Henceforth: i is current
thread, j is other thread

Art of Multiprocessor
Programming

44

LockOne
class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Art of Multiprocessor
Programming

45

LockOne
class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Set my flag

Art of Multiprocessor
Programming

46

class LockOne implements Lock {
private boolean[] flag =
 new boolean[2];
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

LockOne

Wait for other
flag to go false

Set my flag

Art of Multiprocessor
Programming

47

•  Assume CSA
j overlaps CSB

k
•  Consider each thread's last (j-th

and k-th) read and write in the
lock() method before entering

•  Derive a contradiction

LockOne Satisfies Mutual
Exclusion

Art of Multiprocessor
Programming

48

•  writeA(flag[A]=true) à
readA(flag[B]==false) àCSA

•  writeB(flag[B]=true) à
readB(flag[A]==false) à CSB

From the Code

class LockOne implements Lock {
…
public void lock() {
 flag[i] = true;
 while (flag[j]) {}
 }

Art of Multiprocessor
Programming

49

•  readA(flag[B]==false) à
writeB(flag[B]=true)

•  readB(flag[A]==false) à
writeA(flag[B]=true)

From the Assumption

Art of Multiprocessor
Programming

50

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

51

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

52

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

53

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

54

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

55

•  Assumptions:
–  readA(flag[B]==false) à writeB(flag[B]=true)
–  readB(flag[A]==false) à writeA(flag[A]=true)

•  From the code
–  writeA(flag[A]=true) à readA(flag[B]==false)
–  writeB(flag[B]=true) à readB(flag[A]==false)

Combining

Art of Multiprocessor
Programming

56

Cycle!

Art of Multiprocessor
Programming

57

Deadlock Freedom

•  LockOne Fails deadlock-freedom
–  Concurrent execution can deadlock

–  Sequential executions OK

 flag[i] = true; flag[j] = true;
 while (flag[j]){} while (flag[i]){}

Art of Multiprocessor
Programming

58

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Art of Multiprocessor
Programming

59

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Let other go
first

Art of Multiprocessor
Programming

60

LockTwo
public class LockTwo implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Wait for
permission

Art of Multiprocessor
Programming

61

LockTwo
public class Lock2 implements Lock {
 private int victim;
 public void lock() {
 victim = i;
 while (victim == i) {};
 }

 public void unlock() {}
}

Nothing to do

Art of Multiprocessor
Programming

62

public void LockTwo() {
 victim = i;
 while (victim == i) {};
 }

LockTwo Claims

•  Satisfies mutual exclusion
–  If thread i in CS
–  Then victim == j
–  Cannot be both 0 and 1

•  Not deadlock free
–  Sequential execution deadlocks
–  Concurrent execution does not

Art of Multiprocessor
Programming

63

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

64

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Art of Multiprocessor
Programming

65

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Art of Multiprocessor
Programming

66

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim

Art of Multiprocessor
Programming

67

Peterson’s Algorithm

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
 }
public void unlock() {
 flag[i] = false;
}

Announce I’m
interested

Defer to other

Wait while other
interested & I’m

the victim No longer
interested

Art of Multiprocessor
Programming

68

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};

Mutual Exclusion

•  If thread 1 in
critical section,
–  flag[1]=true,
–  victim = 0

•  If thread 0 in
critical section,
–  flag[0]=true,
–  victim = 1

Cannot both be true

Art of Multiprocessor
Programming

69

Deadlock Free

•  Thread blocked
–  only at while loop
–  only if it is the victim

•  One or the other must not be the victim

public void lock() {
 …
 while (flag[j] && victim == i) {};

Art of Multiprocessor
Programming

70

Starvation Free

•  Thread i blocked
only if j repeatedly
re-enters so that

 flag[j] == true and
victim == i

•  When j re-enters
–  it sets victim to j.
–  So i gets in

public void lock() {
 flag[i] = true;
 victim = i;
 while (flag[j] && victim == i) {};
}

public void unlock() {
 flag[i] = false;
}

Art of Multiprocessor
Programming

71

The Filter Algorithm for n
Threads

There are n-1 “waiting rooms” called
levels

•  At each level
–  At least one enters level
–  At least one blocked if
 many try

•  Only one thread makes it through

ncs

cs

Art of Multiprocessor
Programming

72

Filter
class Filter implements Lock {
 int[] level; // level[i] for thread i
 int[] victim; // victim[L] for level L

 public Filter(int n) {

 level = new int[n];

 victim = new int[n];

 for (int i = 1; i < n; i++) {

 level[i] = 0;

 }}

…

}

level

victim

n-1

n-1

0

1

0 0 0 0 0 0 4

2

2

Thread 2 at level 4

0

4

Art of Multiprocessor
Programming

73

Filter
class Filter implements Lock {
 …

 public void lock(){
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i level[k] >= L) &&
 victim[L] == i);
 }}
 public void unlock() {
 level[i] = 0;
 }}

Art of Multiprocessor
Programming

74

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

One level at a time

Art of Multiprocessor
Programming

75

class Filter implements Lock {
 …

 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i); // busy wait
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Announce
intention to
enter level L

Art of Multiprocessor
Programming

76

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Give priority to
anyone but me

Art of Multiprocessor
Programming

77

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter
Wait as long as someone else is at same or

higher level, and I’m designated victim

Art of Multiprocessor
Programming

78

class Filter implements Lock {
 int level[n];
 int victim[n];
 public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L) &&
 victim[L] == i);
 }}
 public void release(int i) {
 level[i] = 0;
 }}

Filter

Thread enters level L when it completes
the loop

Art of Multiprocessor
Programming

79

Claim
•  Start at level L=0
•  At most n-L threads enter level L
•  Mutual exclusion at level L=n-1

ncs

cs L=n-1

L=1

L=n-2

L=0

Art of Multiprocessor
Programming

80

Induction Hypothesis

•  Assume all at level
L-1 enter level L

•  A last to write
victim[L]

•  B is any other
thread at level L

•  No more than n-L+1 at level L-1
•  Induction step: by contradiction

ncs

cs

L-1 has n-L+1
L has n-L

assume

prove

Art of Multiprocessor
Programming

81

Proof Structure
ncs

cs

Assumed to enter L-1

By way of contradiction
all enter L

n-L+1 = 4
n-L+1 = 4

A B

Last to
write
victim[L]

Show that A must have seen
B in level[L] and since victim[L] == A
could not have entered

Art of Multiprocessor
Programming

82

From the Code

(1) writeB(level[B]=L)èwriteB(victim[L]=B)

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

83

From the Code

(2) writeA(victim[L]=A)èreadA(level[B])

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Art of Multiprocessor
Programming

84

By Assumption

By assumption, A is the last
thread to write victim[L]

(3) writeB(victim[L]=B)èwriteA(victim[L]=A)

Art of Multiprocessor
Programming

85

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Art of Multiprocessor
Programming

86

public void lock() {
 for (int L = 1; L < n; L++) {
 level[i] = L;
 victim[L] = i;

 while ((∃ k != i) level[k] >= L)
 && victim[L] == i) {};
 }}

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Art of Multiprocessor
Programming

87

Combining Observations

(1) writeB(level[B]=L)èwriteB(victim[L]=B)
(3) writeB(victim[L]=B)èwriteA(victim[L]=A)
(2) writeA(victim[L]=A)èreadA(level[B])

Thus, A read level[B] ≥ L,
A was last to write victim[L],
so it could not have entered level L!

Art of Multiprocessor
Programming

88

No Starvation

•  Filter Lock satisfies properties:
–  Just like Peterson Alg at any level
–  So no one starves

•  But what about fairness?
–  Threads can be overtaken by others

Art of Multiprocessor
Programming

89

Bounded Waiting

•  Want stronger fairness guarantees
•  Thread not “overtaken” too much
•  Need to adjust definitions ….

Art of Multiprocessor
Programming

90

Bounded Waiting

•  Divide lock() method into 2 parts:
–  Doorway interval:

• Written DA

•  always finishes in finite steps
– Waiting interval:

• Written WA
• may take unbounded steps

Art of Multiprocessor
Programming

91

•  For threads A and B:
–  If DA

k è DB
j

•  A’s k-th doorway precedes B’s j-th doorway
–  Then CSA

k è CSB
j+r

•  A’s k-th critical section precedes B’s (j+r)-
th critical section

•  B cannot overtake A by more than r times

•  First-come-first-served means r = 0.

r-Bounded Waiting

Art of Multiprocessor
Programming

92

Fairness Again

•  Filter Lock satisfies properties:
– No one starves
–  But very weak fairness

• Not r-bounded for any r!
–  That’s pretty lame…

